A 3-MANIFOLD ADMITTING A UNIQUE PERIODIC PL MAP
Jeffrey L. Tollefson

1. INTRODUCTION

In this paper, we show that a family {M(n)} of closed, aspherical 3-manifolds
has the property that each M(n) admits a unique PL involution. These 3-manifolds
are of special interest, since P. E. Conner and F. Raymond [3] have shown that very
few finite groups can act effectively on them. In particular, Z, is the only group
that can act effectively on M(1). Thus we obtain the following result.

THEOREM 1. Tkhe closed, aspherical 3-manifold M(1) admits exactly one pe-
riodic PL map (up to conjugation).

Let T2 denote the 2-dimensional torus, that is
{(z, 2,) e CxC: |z| = |zp]| =1} .

If n is a positive odd integer, let &(n) denote the homeomorphism T2 — T2 defined
by

a(n) (z, , z,) = (2]

Z,, 2] Z,) -

Let R! denote the real line, and let M(n) = (T2 X R!)/&(n) be the torus bundle over
the circle obtained from T2 X R! by identification of (z,, z,, t) with

((I)(n) (Zl ’ ZZ), t + 1)-

Denote the points of M(n) by [z,, z,, t]. Each M(n) admits a standard involu-
tion hj, defined by

hO( [Zl , ZZ’ t]) = [g(Zi, Zz)) t]r

where glz;, z;) = (2, Z,).

Let h be a PL involution of M(n). We obtain the uniqueness of involutions on
M(n) by actually constructing an equivalence between h and h,. Our first step is to
obtain an invariant torus fiber T that meets the fixed-point set Fix(h) of h in ex-
actly four points. Then we split M(n) along T to obtain T X [0, 1]. The involution
h defines a product involution g X 1 on T X [0, 1]. If we let ¥ denote the homeo-
morphism repairing the cut made along T, we may view M(n) as T X R!/y. The
homeomorphism &(n) is isotopic to a conjugate of ¥, say aya-!, where ga = ag.
In Section 2 we show that this isotopy can be realized by one that commutes with g
at each level. We use this equivariant isotopy to define an equivalence between
aha-l and hy.

I am grateful to Frank Raymond for bringing the problem solved in this paper to
my attention. Throughout the paper, we work in the PL category exclusively.
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2. FIBER ISOTOPIES

Let g denote a fixed involution on the compact surface X such that
dim (Fix (g)) < 0. If & is a homeomorphism of X that commutes with g, then g X 1
defines an involution hg on the space X X R1/®. We are interested in determining
when the assumption that & is isotopic to ¥ implies that hg is conjugate to h'#'

Let p: X — X/g be the projection to the orbit space of g. A homeomorphism &
of X is fiber-preserving if p(x) = p(x') implies p®(x) = p®(x'). A fiber isotopy H,
is an isotopy for which each H, is fiber-preserving.

The existence of fiber isotopies is considered in a more general setting in [1]
and [8]. It follows from [1] that if X is different from the torus and the 2-sphere,
then fiber-preserving maps that are isotopic are fiber-isotopic. In the case where
X is T2 and Fix(g) = @, the corresponding result follows from [8]. We take up the
case where X is T2 and Fix (g) is 0-dimensional. Let b denote a branch point of
the projection p: X — X/g, that is, a point in Fix (g).

LEMMA 1. If o and a' are two homotopic simple closed curves in T? such
that b € a N a', then o and a' are homotopic relative to b.

This is established by moving & into general position with respect to @' by an
isotopy fixing b and then using an induction argument on the number of points in
aNa'.

LEMMA 2. Let & be a homeomovphism of X = T2 such that ®&(b) =b. If & is
homotopic to 1x, then ® is isotopic to 1x by an isotopy H that fixes b.

Proof. We construct a homotopy H: X X [0, 1] —» X from & to 1x as follows.
On the ends we let Hy =& and H; = 1x . Choose two simple closed curves a and
in X suchthat « N B =D and X - (¢ U B) is an open 2-cell. Since « and 8 are
homotopic to ®#(a) and &(B), respectively, by homotopies fixing b, we can define H
on (e U B) x [0, 1], keeping b fixed. Now we can extend our map over the remaining
open 3-cell. Hence H is a homotopy from & to 1x that fixes b. It follows from [4]
that we may assume H to be an isotopy fixing b.

LEMMA 3. Let & be a fiber-preserving homeomovphism of X = T2 such that
&(b) =b. If & is isotopic to 1x, then @ is fiber-isotopic to 1x .

Pyoof. The isotopy H from Lemma 2 can be adjusted slightly so that there
exists an invariant closed-star neighborhood D about b; that is, Hi(D) =D for
0<t< 1. Let

Y =T2-Int(D) and G =H|YX][0, 1].

It follows from [1] that there exists a fiber isotopy G' from & | Y to 1y . By work-
ing on one simplex at a time, we can extend G' over D X [0, 1] to obtain a fiber iso-

topy between & and 1x.

THEOREM 2. Let & and i be isotopic homeomovphisms of X that commute
with g. Then hg is conjugate to h,’,/ if either X is not the torus ov 2-spheve, ov X
is the tovus T2 and g is fixed-point-free. If X is T and Fix(g) is 0-dimensional,
and if in addition & and Y agree at one point of Fix(g), then hg is conjugate to hy, -

Proof. It follows from the discussion above that the given isotopic homeomor-
phisms & and ¥ are fiber-isotopic. Thus there exists a fiber isotopy H; from 1y
to y®-1 . Define the homeomorphism f: X X R1/& — X X R} /Y by
i([x, t]) = [H (x), t]. Now observe that hg = fhwf-l.
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Remark. Consider the case where X is T? and g(z,, z,) = (2, z,). Let & be
isotopic to ¥, and let both homeomorphisms commute with g. We can always choose
r(zy, z,) = %z, hbzz), where A is a primitive second root of unity, such that the
isotopic homeomorphisms & and Yr agree at the point (1, 1).

3. SOME PROPERTIES OF M(n)

In Section 4, we shall need some special properties of M(n) to show that M(n)
admits only one involution. In the present section, we establish these properties.

First we consider the fundamental group of M(n). If we choose a presentation
for 7;(T2) = <x, y: [x, ¥]= 1> , then a presentation for G, = 7,(M(n)) is given by

G, = <x, y, tr[x, y] =1, txt~! =xn1y? ) tyt-l = xy>.

LEMMA 4. The group Gy has a trivial center.

Proof. Since @(n)* has infinite order and fixes no element of wl(TZ), this fol-
lows from Section 3 of [7].

LEMMA 5. The subgroup K, of G, genevated by the elements {x, vy} is in-
variant undey any automovphism of Gy .

Proof. Let H,=G,/[G,, G,], and observe that H has the presentation

(v, t: [y, t]=1, y2=1) T Z2DZ,.

Since K, is the kernel of the natural homomorphism G, — H, /Tor (H,), the sub-
group K is invariant under each automorphism of G,,.

LEMMA 6. M(n) has a unique two-sheeted covering space M(n).

Proof. Let M(n) = T2 X R1/®(n)2, and define the two-sheeted covering projec-
tion p: M(n) — M(n) by p([x, t]) = [x, 2t]. To prove that M(n) is unique, we recall
that n is an odd integer. Since each homomorphism G, — Z, can be factored
through H,, it then follows that there exists a unique homomorphism onto Z,. The
two-sheeted covering spaces of M(n) are classified by the homomorphism G,—%Z,;
therefore Lemma 6 follows.

For each element g of G,, let C(g) denote its centralizer in G,.
LEMMA 7. If C(tY contains a nontrivial element of K, , then k = 0.

Proof. Clearly, C(t) contains only the trivial element of K,,. Suppose that
C(tk), for some k > 1, contains an element xSyt of K,,. Then the automorphism
(® (n)*)k fixes this element xSyt. Since the automorphism ®(n), is represented

- 1
by the matrix (n n 1 1), the automorphism (#(n), )X is represented by a matrix

( i g)’ where each entry is strictly positive and d > 2. By an easy calculation we

2 ), together with

the equation ( 2 ](01) (ts) = ( ts) , imply that s =t = 0. Therefore C(tk), for k # 0,

contains only the trivial element of K,,.

can show that these conditions on the entries of the matrix ( i’
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LEMMA 8. Let S be a nonseparating, two-sided tovus in M(n) or M(n). Then
the cloisurelof the complement of a regular neighbovhood U(S) of S is homeomovphic
to S x [0, 1].

Proof. Consider S C M(n). Since S is nonseparating, S is incompressible in
M(n), and #1(S) is contained in K,,. Let p: T2x R! — M(n) be the covering space

corresponding to the subgroup K,,. Then p-1(S) = LJn ™ (S), where p | S is a ho-
meomorphism onto S, and where 7 generates the group of covering transformations
of this covering. It follows from [2] that S and 7(S) are parallel in T2 x R!. Thus

M(n) - U(S) is homeomorphic to S X [0, 1]. The argument for the case S C M(n) is
similar.

LEMMA 9. The 3-manifold M(n) does not contain (a)a two-sided, nonsepava-
ting Klein bottle,ov (b) a one-sided tovus ov Klein bottle cavrying a nontrivial ele-
ment of K,,.

Proof. (a) Suppose S is a nonseparating, two-sided Klein bottle in M(n). Con-
sider the orientable double-covering p: M(n) — M(n). The torus p-1(S) is nonsepa-
rating and two-sided in M(n). Therefore p~-1(M(n) - U(S)) is homeomorphic to
T2 % [0, 1]. It follows that M(n) - U(S) is homeomorphic to S x [0, 1] and that 7(S)
is a subgroup of G, contained in K,,. However, since a Klein bottle cannot cover
the torus, it is not possible for 7(S) to be a subgroup of K.

(b) Suppose S is a one-sided torus or Klein bottle in M(n) that carries a non-
trivial element {u} of K,. Observe that aU(S) x [0, 1] doublecovers U(S) and in-
duces a_double covering of M(n), namely p: M(n) — M(n). Because of the orientabil-
ity of M(n), the boundary 2U(S) is a torus.

Since a compressible, two-sided torus in an irreducible 3-manifold must bound
a disk bundle over S!, the torus 9U(S) is incompressible in M(n). Together with u,
an element of the form vtk with v € K, generates 71(S) in G,. Hence t2k com-
mutes with u, so that k = 0 by Lemma 7. Since wl(S) is a subgroup of K, the sur-
face S is not a Klein bottle. Therefore S is a torus and is covered by an incom-
pressible, one-sided torus in T2 X R!. This is impossible, since every incompres-
sible torus in T2x R! is parallel to T2x {0}.

LEMMA 10. Let y: T2 — T2 be a homeomovphism such that T4 x R1/y is ho-
meomorphic to M(n). Then  is isotopic to a conjugate of &(n).

Proof. Let f: M(n) — T2 X Rl /¢ be a homeomorphism preserving the base
points. A presentation for 7;(T2 X Rl/y) is given by

Glzl - <X', yl, t'. [X', yl] = 1’ t'x't! -1 _ IP*(X'), tlyltl -1 _ w*(yr)> .

We have the automorphism f,: G, — Gr'1 . By Lemma 5, the subgroup f*(Kn) of Gy

is generated by {x', y'}. Suppose f(t) =ut', where u € f (K,). Then for w € K,
we have the relations

£,2(n), (w) = f*(twt)'l = ut'f (w) (ut) -l = Yl (w)).

That is, ¢, = f*cb(n)*f;l . Therefore Y is isotopic to a homeomorphism that is con-
jugate to @(n).
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4, INVOLUTIONS OF M(n)

We are now ready to consider our main result.

THEOREM 3. Fov each odd integer n > 1 theve exists a PL involution on
M(n), unique up to conjugation.

The involution of M(n) can be viewed in the following way. Let r; and r, de-
note the rotations on T2 defined by

ri{z;,z;) = (-z;,2) and 1z, zp) = (zy, -z,) .

The involutions hy, hy, h,, h; on M(n), T? x R/®(n)r;, T2 x Rl/a(n)r,,

T2 x R1/®(n)r, r,, respectively, are defined by g X 1, where gz, z,) = (z;, Z;).
The involution hg is merely the standard involution on M(n). Observe that these
four involutions are all conjugates of hg:

hO = rzhlrz = rlrzhzrzrl = r1h3r1.

The next two lemmas are essential to the proof of Theorem 3.

LEMMA 11. Let h be a PL involution on M(n). Then there exists a nonsepa-
rating, two-sided tovus T in M(n) such that either h(T) N T =@ or h(T) =T, and T
is in geneval position with vespect to Fix(h).

Pyoof. The proof follows that of Theorem B in [6] after the following observa-
tions are made. To follow the argument in [6], we must verify that a two-sided, non-
separating torus is retained after each construction. This becomes obvious if we
make a cut along a simple closed curve in T bounding an innermost disk in h(T). If
we are cutting along the boundary of an innermost annulus, it is always possible in
M(n) to obtain a nonseparating surface (see Lemma 8). However, upon attaching two
annuli together along their boundaries, it is possible in general to obtain either a
torus or a Klein bottle carrying a generator of K . According to Lemma 9, among
such surfaces, M(n) contains only two-sided tori. Therefore the reduction in [6] can
be carried through to obtain the desired T.

We recall the following special case of Lemma 6.3 of [5].

LEMMA 12. Let a: T2x [0, 1] » T2 X [0, 1] be an involution. Then there exist
an involution B of T2 and a product stvucture of T2 X [0, 1] such that
a(x, t) = (B(x), t) or a(x, t) =(B(x), 1 -t),for xe T2 and 0<t < 1.

Proof of Theorem 3. Let h be an arbitrary involution on M(n). We first show
that there exists an invariant torus T in M(n) meeting Fix(h). Let T be the torus
obtained in Lemma 11. Suppose that h(T) N T = @. Let us view M(n) as T X Rl/¢
(for a suitable ), where T =T X 0 and h(T) =T X 1/2. By Lemma 12, we may as-
sume that h| T X [0, 1/2] is given by h(x, t) = (8(x), 1/2 - t) and h | T x[1/2, 1] is
g1ven by h(x, t) = (3(x), 3/2 - t), where B and B are involutions of T. It follows that
(x, 0) is identified with (8- 1(x) 1) for each x € T2, that is, ¥ = -1 . The auto-
morphism of 7 (T 2) induced by ,BB has period either two or four, which implies
that 71(M(n)) has a nontrivial center. Because we have observed that the center of
71(M(n)) is in fact trivial, the torus T obtained in Lemma 11 must be invariant
under h. Moreover, h does not interchange the sides of T. For if it did, there

would be another torus T', parallel to and on one side of T, for which
h(T') N T' = @.
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It follows from Theorem 7.12 of [3] that Fix(h) # ¢. Since the sides of T are
not interchanged, we see from Lemma 12 that Fix(h) meets T.

Next we show that Fix(h) is one-dimensional. Suppose that Fix(h) contains a
two-dimensional component ¥. The inclusion-induced homomorphism
71(F) — 71(M(n)) is injective [5]. In view of Lemma 12, Fix(h) consists of two
annuli attached along the boundaries in some fashion, where each boundary compo-
nent of the annuli is a simple closed curve meeting T. By Lemma 9, the surface F
must be either a torus fiber or a separating torus. If F is a fiber, then we can
argue as before that 7;(M(n)) has a nontrivial center. If F is a separating torus,
let A be the closure of one of the components of M - F. Then A is a retract of
M(n), and H;(A; Z) is a direct summand of H,(M(n)) 2 Z (@ Z,. Since A hasa
torus boundary, H,(A; Z) is infinite. Therefore F carries ut in G,, for some
u € K,. But C(ut) =1 in G,, which contradicts the fact that #;(F) is a subgroup of
G, . It follows that Fix(h) has no 2-dimensional components. More precisely,
Fix (h) is a union of disjoint circles (this follows from Lemma 12).

Now consider the invariant torus fiber T meeting Fix (h) in four points. If we
split M(n) apart along T, we obtain T2 x [0, 1]. This product structure may be
chosen so that h induces the involution g X 1 on T2 x [0, 1].

Let ¢ denote the homeomorphism repairing the cut made along T. Then

M(n) = T2 X R!/y. According to Lemma 10, there exists a homeomorphism _

f: T2 — T2 guch that ®(n) is isotopic to fyf-!. The map f is isotopic to a map f
that is fiber-preserving with respect to T2 — T2/g. Therefore &(n) is isotopic to
the fiber-preserving map fyf-1. Let h' be the involution on T2 X Rl/fiyf-1 defined
by g X 1. It follows from Theorem 2 and the Remark that h' is conjugate to one of
the involutions hg, hy, h, or h3. We complete the proof of Theorem 3 by observing
that h' is conjugate to h. Let f': T2 x R1/y — T2 x R1/fyf-1 denote the homeomor-
phism defined by f x 1. Since f is fiber-preserving, it follows that h' ={'hf’ -1,
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