R-AUTOMORPHISMS OF R|[[X]]
Robert Gilmer

1. INTRODUCTION

In this paper, we assume that each ring is commutative and contains an identity
element. ¥ R is such a ring, then an endomorphism ¢ of R[[X]] is said to be an
R-endomorphism if ¢(r) =r for each element r in R. The results of this paper are
closely related to those of M. J. O’Malley in [1] and of O’Malley and C. Wood in [2].
Before proceeding further, we summarize some of the results of [1] and [2] that are
relevant to this paper.

Let S be a ring, and suppose that S contains an element by such that S is a
complete Hausdorff space in the (bg)-adic topology. In [1, Theorem 2.1], O’Malley

proved that for each element @ = 2 i.0a; X' of S[[X]] with ag € (bo), there exists a
unique R-endomorphism i, of R[[X]] such that y4(X) = a; moreover, ¥, is onto
if and only if a; is a unit of R, and if ¥ is onto, Y is also one-to-one. Converse-
ly, if T is a ring, and if there exists a T-endomorphism f of T[[X]] such that

=]
i(X) =a =22 aiXi,
i=0

o0
where ﬂn=1 (aB) = (0), then T is complete in the (ag)-adic topology and f = ¥4 [1,
Theorem 4.10]. The principal question that O’Malley leaves unanswered in [1] is the
following:

(*) Suppose that R is a ring. If there exists an R-automorvphism of R[[X]] map-
o0 s 0
ping X onto 21:0 ain, does it follow that nn=1 (ap) = (0)?

Corollary 5.5 of [1] shows that the answer to (*) is affirmative if

N @ = a, nl (ag) |,
n=1 n=

and hence the answer is affirmative if R is Noetherian or if ay is regular in R.
Since a must belong to the Jacobson radical of R [1,.Lemma 5.1], O’Malley has
characterized all R-automorphisms of R[[X]] when R is either a Noetherian ring,

0
an integral domain, or a ring with the property that ﬂn=1 (ag) = (0), for each a; in
the Jacobson radical.

We shall refer to two results from [2]: If there exists an R-automorphism of
[=e] .
R[[X]] mapping X onto 27;_g b; X', then b; is a unit of R [2, Lemma 4.1]. Asa

o .
consequence, it follows that if B = Eizo b; X' is an element of R[[X]], where b; is
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a unit of R, then there exists an R-automorphism of RI[x]] mapping X onto B if
and only if there exists an R-automorphism of R[[X]] mapping X onto bg - X [2,
Lemma 4.2].

In Section 2, we prove that if the ring R contains an element a such that
©0 o]
al M@ |c N @,
n=1 n=1

then the ring S = R[[X]]/(a - X) is such that S[[Y]] admits an S-endomorphism

(o] : o]
sending Y onto an element 27 b; Y’ , where ﬂ n=1 (b0) # (0). We see therdby that
the answer to (*) is negative in the general case. In Section 3, we give necessary and
sufficient conditions, in the case of a general ring T, for T[[X]] to admit a T-auto-

o0 .
morphism mapping X onto a prescribed element 27y t; X' [Theorem 3.2]; further,
when such a T-automorphism of T[[X]] does exist, we are able to give conditions

0
that are equivalent to the condition that nn:1 (tg) = (0) (Corollary 3.3).

2. A CONSTRUCTION USING POWER SERIES RINGS

In order to provide a negative answer to (*), we use the notion of the (R/A)-
automorphism of (R/A)[[X]] induced by a fixed R-automorphism of R[[X]] that
maps A[[X]] onto itself. Our notation in Theorem 2.1 is as follows. By by we de-
note a fixed element of R such that R is a complete Hausdorff space in the (bj)-

o0 .
adic topology. Let 8 = 21:0 b; X' € R[[X]], and suppose that ¢ is the unique R-
endomorphism of R[[X]] mapping X onto 8. Let A denote an ideal of R such that
#(A[[X]]) = A[[X]]; hence ¢ induces an endomorphism of R[[X]]/A[[X]]. Since
R[[X]]/A[[X]] ~ (R/A)[[X]], the endomorphism ¢ in turn induces an (R/A)-auto-
morphism ¢ 5 on (R/A)[[X]]. If we denote by r' the element r + A of R/A, for
each r in R, then ¢, satisfies the condition

¢A(E r{xi) = 2 s xt

i=0 i=0

where ¢ (EBO r; X' ) = Z)So s; X .
THEOREM 2.1. If ¢ is onlo, then ¢ p is onto; if ¢ is one-to-one, then ¢, is

. Z; 0 't i n°° AN _
one-to-one. The automorphism ¢ maps X onto 2s;_o b; X', and | 1 _y (by)" = (0)
if and only if A is closed in the (bg)-adic topology on R.

Proof. The first sentence of Theorem 2.1 is clear. Under the one-to-one corre-
spondence between ideals of R containing A and ideals of R/A, A + (by) corresponds
to (bg)™, so that ﬂ;’f:l [A + (bg)] corresponds to ﬂff:l (bp)™. Hence
ﬂ}’f:l (bo)™ = (0) if and only if ﬂ;’le [A + (bg)] = A — that is, if and only if A is
closed under the (bg)-adic topology.

To show that the answer to (*) is negative, it suffices, in view of Theorem 2.1, to
find a ring R satisfying the following conditions. The ring R is a complete Hausdorff
space in its (cg)-adic topology, for some element cg € R. Further, there exist an
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0 .
element ¢ = 27g c; X! € R[[X]], where c, iS a unit of R, and an ideal A of R such
that Y (A[[X]]) = A[[X]], while A is not closed in the (cg)-adic topology; here ¥
denotes the unique R-automorphism of R[[X]] determined by the condition that

Ye(X) =c.

At a glance, it might seem that the relation ¥, (A[[X]]) = A[[X]] holds for each
ideal A of R and any such element ¢ in R[[X]]. Indeed, this is true if A is finitely
generated, because in this case,

K K k
Ve (2 aiR[[X]])= 2 ol R[X]) = 27 a; R[[X]],
1 1 1

for any aj, ap, ***, ax in R. Hence, ¥ (A[[X]]) = A[[X]] if A is the intersection of
a family of finitely generated ideals of R. If ¢ = ¢y - X, then §, = ¢ ;1; hence the
inclusion ¥ (A[[X]]) € A[[X]] implies that ¥ _(A[[X]]) = A[[X]].
cO

LEMMA 2.2, Let R be a 7ing, choose a € R, let A= nn=1 a" R, and let
B=27b;X € R[[X]], wheve bg=a. Then A C (8) if and only if aA = A.

Proof. O’Malley proved in [1, Theorem 5.4] that if B is an ideal of R such that
aB =B, then Bc [ 1, (8",

We prove, conversely, that the inclusion A C (8) implies that aA = A. Thus each

t € A has a representation
w . w -
t= (Z) biXI) IEN o B
0 0

o .
for some element 27 r; X in R[[X]]. This equality gives rise to the following sys-
tem of equations:

(==
Il
(=3
o
]
—
+
(=3
—
-
o

0= bori+b1 I‘]'__l + e +bir0,

We prove that each r; belongs to A. We prove first that each r; belongs to (bg).
Thus T = —bIlbOrl € (bg), and if ry, ry, -+, v € (bg), then

_ -1
ropp = ~by (robgup o Frgby+r D)
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is also in (by). Further, if each r; is in (bg), then rg = —bflborl € (b15+l), and if
rg, ***, I'g € (b1(§+1), while r¢ (t > s) is in (b§), then

— -1 k+1
rsp1 = -bj (rObs+2'+"'+'rsb2'krs+2b0) € (bg 7).

It follows that each r; is in A. In particular, t = bgrg € bgA = aA. This implies
that A C aA, and consequently, equality holds.
THEOREM 2.3. Suppose that the ving R contains an element aqg Such that

ao| @Y [ N @y.
n=1 n=1

oo .
If a= Eizo a; X', wheve a) is a unit of R, then the ring S = R[[X]]/(a) has the
property that S[[Y]] admits an s-automorphism sending Y onto an element sg - Y,
0

where ﬂn=1 sgS # (0).

Proof. The ring R[[X]] is complete in the (X)-adic topology; hence there exists
an R[[X]]-automorphism ¢ of R[[X]][[¥]] sending Y onto X - Y. Since
A = aR[[X]] is a finitely generated ideal of R[[X]], ¢ maps aR[[X]][[Y]] onto itself.
By Theorem 2.1, ¢ induces an S-automorphism ¢ 5 of S[[Y]] onto itself. To prove
that the constant term of ¢ A(Y) satisfies the condition in the theorem, we must show
that @R[[X]] is not closed in the (X)-adic topology on R[[X]]. Since

N @) oayf N @],
n=1 n=1

o0
Lemma 2.2 shows that n -1 (ap) € arR[[X]l. We show, however, that the inclusion
o o n=1 0 ’
nn:l (ap) € ﬂn:I (@, X") holds, by proving that a§ € (@, X"), for each n. Thus
(¢, X®) = (ag +a; X + -+ +a__; X" ! X™), and writing
g = - (al + azx + e + an_lxn-z),
we have the relation

al = af - X"g™ +X"g" € (ag- Xg, X®) = (ag +a; X + - +a,_ X, X9).

This completes the proof of Theorem 2.3.
To prove that the answer to (*) is negative, it therefore suffices to exhibit a ring

0 co
R containing an element b such that bl: ﬂn=1 (b™) :I - ﬂn=1 (b™). We present
such a ring in Example 2.4. Although the construction used in Example 2.4 is quite
intuitive, it seems that there should be an easier example than the one we give.

Example 2.4. Let S be a nonzero ring, and let {Y} U {X;}{., be a set of in-
determinates over S. If R = S[Y, {X;}3]/B, where B = ({X, - X;Y'}), then the
0

element y =Y + B is such that xy =X,+B el l _, (y"), while

xo's?'y{n (y%].
n=1
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By passage to preimages under the natural homomorphism from S[Y, {Xl}] onto R,
we can verify the statements above by establishing the following three relations.

(1) N [B+E™] = &Ko, X1, X, Y2, );
n=1
(2) B+Y{ n [B+(Yn)]} = (XY, Xo - X1 Y, Xq - XZYZ, )
n=1
(3) Xo ¢ (XoY, Xo-X,Y, ", Xp - X, Y7, ).

While verification of these relations is rather detailed, it is nevertheless straight-
forward, and we omit the proof The rlnj R provides the example we need, since

xoe[nnl(y“)] [ { l(y“)}

3. EQUIVALENT CONDITIONS FOR THE EXISTENCE
OF AN R-AUTOMORPHISM

In this section, we give necessary and sufficient conditions on a ring R in order
that there exist an R-automorphism of R[[X]] mapping X onto a prescribed element
B. Our conditions show that the construction in Example 2.4 is, in a sense, typical of
the general case.

LEMMA 3.1. Suppose that theve exists an R-automovphism of R[[X]] mapping

X onto B = E?;o b; xt, Then, for each element p = 2;’;0 ri Xi, wheve r1 is a unit
of R and wheve ry is a unit multiple of b, theve exists an R-automorphism of
R([X]] mapping X onto p.

Proof. Since there exists an R-automorphism of R[[X]] mapping X onto p if
and only if there exists such an automorphism mapping X onto rg - X [2, Lemma
4.2], we need to prove that there exists an R-automorphism of R[[X]] mapping X
onto ry - X, under the assumption that there exists an R-automorphism ¢ mapping
X onto by - X. We let rg = ubg, where u is a unit of R. Then there exists an R-
automorphism 7 of R[[X]] such that 7(X) = uX. The R-automorphism 7-! ¢7 of
R[[X]] has the property that

(t71o7)(X) = (171 ) (uX) = 771 (ubg - uX) = ubg - X.

o0 .
THEOREM 3.2. Let 8= 22y b;X € R[[X]]. The following three conditions are
equivalent:

1) There exists an R-automorphism of R[[X]] that maps X onto B.

2) The mapping v — r + (B) of R into R[[X]]/(B) is an isomorphism onto
RI[x11/().

3) R[[X]] = R® ®).

Proof. 1) — 2): Let ¢ be an R-automorphism of R[[X]] mapping X onto 8, and
let 0 = ¢-1; let u be the homomorphism f(X) — £(0) of R[[X]] onto R. Then poo
is a homomorph1sm of R[[X]] onto R with kernel o-!(ker p) = ¢~ 1(X) = (B). The
induced isomorphism between R and R[[X]]/(B) is defined by the relation
r —r+ (B).



20 ROBERT GILMER

2) — 3): Since the mapping r — r + (8) maps R onto R[[X]]/(8), we have that
R[[X]] =R + (B); since r — r + (B) is one-to-one, it follows that R + (8) = R () (8).

It is clear that condition 3) implies condition 2).

2) — 1): We consider the R[[X]]-automorphism ¢ of R[[X]][[Y]] that sends Y
onto X - Y; this automorphism ¢ induces an (R[[X]]/(B))-automorphism ¢5 of
(RI[X]]/BN[[Y]]. To be consistent with our notation in Section 2, we let A = gR[[X]]
in this case. We recall that ¢, is defined by the condition

N (? (r;(X) + (B»Yi) = %3 [s;(X) + (B)] YL,

where ¢ (Z‘f: ri(X)Yi) = Z):)o s;(X) Y,

The isomorphism u: r — r + (8) of R onto R[[X]]/(8) and the automorphism
¢a give rise to an automorphism 7 of R[[Y]], where 7 is defined by the relation

T EBO r;Y') = 200 ,u'l(si(X) +(8))Y', where ¢ (Ez)o r;Y') = E: 5;(X)Y'. In
particular, 7(ry) = r, for each r; in R, and thus 7 is an R-automorphism of
R[[Y]] that maps Y onto p~1(X)- Y. Now u-1(X) is the unique element s of R
such that s - X € (8). Thus we have that R[[X]]=R® (s - X), since 1) — 2) — 3),
and we have that R[[X]] = R(® (B), since 2) — 3). The inclusion (s - X) C (8) im-

plies that (s - X) = (8), and B = [s - X]u(X), for some unit u(X) = EBO u; X' of
R([[X]]. Thus bg = sug, where ug is a unit of R, and b; = suj - ug. Since s be-
longs to the Jacobson radical of R [1, Corollary 5.3], it follows that b; is a unit of
R. By Lemma 3.1, we conclude that there exists an R-automorphism of R[[X]]
sending X onto S.

COROLLARY 3.3. Suppose that theve exists an R- automorvphism of R|[[X]]

©0 .
mapping X onio B = Eizo b; X, The following conditions ave equivalent,

1) (2, 8) = (0);
2) (B) is closed in the (bg)-adic topology on R[[X]];
3) (B) is closed in the (X)-adic topology on R[[X]].

Proof. 1) <> 2): By Theorem 3.2, the mapping r — r + (8) is an isomorphism
of R onto R[[X]]/(8). Under this mapping, (b5) corresponds to (b§, 8)/(8), and
(o]

k=1 (blg) corresponds to
n [(blg, 8)/ (B)] = [ n (blg, 3)j|/(3).
k=1 k=1

Therefore, conditions 1) and 2) are equivalent.

2)<—>3): We write B =by - Xa, where @ = - (b; +by X + +**) is a unit of
R[[X]], since b; is a unit of R. Then b§ = X< aX (8), so that

38, bs) = (8, X5aX) = (8, X¥)

cpe s n°° ky _ n°° ky.
for each positive integer k. It follows that | l,._; (8, bg) = | Ix-; (8, X7); hence 2)
and 3) are equivalent.
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In Corollary 4.11 of [1], O’Malley establishes an equivalent form of the following
result:

If theve exists an R-automovphism of R[[X]] mapping X onto by - X, where
[oe]

nn: 1 (bg) = (0), then, for each element r € R, there exists an R-automorphism of
R[[X]] mapping X onto rby - X.

In the general case, we are able to prove the preceding result only if r is in the
Jacobson radical of R.

THEOREM 3.4. If theve exists an R-automovphism of R[[X]] mapping X onto
by - X, then, for each element r in the Jacobson radical of R, there exists an R-
automorphism of R[[X]] that maps X onto rby - X.

Proof. We denote by ¢ the R-automorphism of R[[X]] that maps X onto bg - X.
Since r is in the Jacobson radical of R, the element r - 1 is a unit of R. Thus, by
Lemma 3.1 (or by Lemma 4.2 of [2]), there exists an R-automorphism o of R[[X]]
such that 0(X) = by + (r - 1)X. Then

¢0(X) = bg+(r-1)(bg - X) = rby - (r - 1)X.
If 1 is the R-automorphism of R[[X]] mapping X onto (r - 1)~! X, it follows that

(10 (X) = rby - X.

We conjecture that Theorem 3.4 is false if the hypothesis that r belongs to the
Jacobson radical is dropped. To prove the conjecture, the element bgp, of course,

[+ 0]
must be such that ﬂ n=1 (b9 # (0), and herein lies our difficulty. The rings S of
Theorem 2.3, which are such that S[[Y]] admits an S-automorphism mapping Y

o0
onto sy - Y, with ﬂn:1 (sg)" # (0), depend upon the existence of a ring R contain-
ing an element a such that

a[ﬂ @) |c ] @»).
n=1 n=1

The examples of such rings R of which we are aware are essentially modifications
of Example 2.4, and these rings R discourage computations in S = R[[X]]/(a).
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