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EXPRESSIBILITY IN TYPE THEORY

H. JULIAN WADLEIGH

§1. Introduction

This paper is based on a conception of mathematics not as a system of
statements about ‘‘mathematical objects’’ but as a system of derived rules
of inference which may be applied to physical objects. It aims to build a
foundation for mathematics based on elementary rules of logic which is
independent, so far as possible, of ontological presuppositions. The concept
of expressibility is introduced here mainly for use in constructing such a
foundation. It is a generalization and adaptation to type theory of the
“‘strong I'-consistency’’ defined by Henkin in [4].

Let & be a simple theory of types. Let I' be a set of individual or
predicate constants in @ such that all members of I' belong to the same
type. Let y be a predicate in £ such that y(a) is wf if aeI" (where a is used
autonymously). We shall say that I' is expressible by vy in Q if there exists
a complete and consistent extension I of ¢ such that, for every constant b
of the relevant type, ¢(b) is valid in R iff, for some aeI’, the wif b =a is
valid in %.

It will be shown that a simple theory of types can serve as a
satisfactory foundation for mathematics if and only if certain meta-
predicates (i.e. predicates defined in the metatheory) are expressible by
predicates in the system. Incidentally, we shall find that certain important
problems of consistency, e.g. w~consistency of number theory, consistency
of choice axioms, are reducible to problems of expressibility.

Let us say that a system Q of type theory is adequate for mathematics
iff

(1) the set of wifs of Q is recursive, its set of theorems recursively
enumerable,

(2) there is a designated class of individual constants called names
(for objects) such that

(a) if a, b are typographically distinct names, thent+a # b in g,

(b) if A(xy, ...,x,) is a wiff in which the individual variables
X1, . . ., X%, Occur free such that
Fax: ... 3%, Alxy, . . ., x,) In @,
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then there are names a,, ..., a, such that A(a,, . . ., a,) is not refutable
in g,

(3) every mathematical theorem is a theorem of { in the sense that
both the theorem and its proof can be translated into ¢ and the translation
of the proof is a proof in .

The first and third conditions present no difficulty in principle, which
makes the second decisive. Sub-condition (2b) is equivalent (c¢f. 507T 508T
below) to each of the following:

(i) the metapredicate ‘name’ is expressible in ¢ by V, where V is the
universal predicate of individuals,

(i) Qis strongly I'-consistent (where I' is the set of names) in the
sense of Henkin'',

We shall construct a system Qu(«) in which there are infinitely many
names and in which the axioms of choice are theorems. This system will
be proved consistent by fairly elementary reasoning. It will be shown that
the following statements are equivalent:

(a) Qu(x) satisfies condition (2b) of adequacy,

(b) it is possible to construct an extension of Qu(«) which contains an
w-consistent number theory,

(c) the metapredicate Iy, (defined immediately below) is expressible
in u(w).

We shall say that a predicate constant P is Ty, iff either (1) P is
A(x# x) or (2) P has the form Ax(x=a,v...vx =d, where x is an
individual variable and a,, . . ., a, are individual constants. Obviously if
Tfin is expressible by a predicate y, then y(P) can properly be interpreted
by P is finite.”’

In 86 we shall define a predicate ¢fin’’ and prove that if Iy, is
expressible in our system by any predicate v, then (1) it is expressible in
this system by fin, and (2) the wff = fin is consistent in every extension of
that system in which I';, is expressible by y. Thus the choice of a
definition of finiteness, and that of an axiom of infinity, is determined by
the requirements of adequacy.

If the equivalent conditions (a)—(c) are fulfilled, then we can construct
an extension of Qu(~) which is adequate at least for all mathematical
theories which can be finitely axiomatized, if not for all mathematics
(ct. §9).

§§2-4 are devoted to the construction of Qu(«) and related systems.
Expressibility of metapredicates in these systems is discussed in 8§5-8.
The remainder of the present introductory section is concerned with
motivation and presuppositions. All our results are deduced by syntactical
procedures without reference to semantics. Semantical considerations do,
however, dominate the motivation of our work. A logistic system is
designed for making inferences about objects. This motivates condition (2)
of the definition of adequacy. In a typical application the objects which
constitute the range of discourse would be some well-defined class of
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physical measurements or observable phenomena. In the general theory
the only assumptions made about the objects are (1) that they are distinct
one from another, (2) that we can assign a name to each biuniquely, and
(3) any one of various alternative hypotheses (§4) as to how many objects
are in the range of discourse. Beyond this we make no ontological commit-
ments. We do not even make any assumptions concerning existence of sets.
The role of set theory in our work is analogous to that of geometry in
analysis. The heuristic nature of intuitive set theory makes it useful in the
informal or semi-formal presentation of an argument. We use it only for
this purpose. In this paper ‘‘set’’ is a synonym for ‘‘predicate’’, xeP an
abbreviation for P(x). Let us say that a symbol f kas a denotation iff it
refers to an entity E of which we can have knowledge independently of the
language in which o is an expression. The names are the only symbols
that we assume to have a denotation. It is only by inference that denotations
can be assigned to other symbols, and it is not required that any of the
latter have denotations. They may be nothing more than marks which serve
to facilitate certain calculations. In physics, functions which take complex
values are used where the imaginary part of a value of the function has no
physical interpretation. The usefulness of this procedure is presumably
due to the advantages of working with an algebraically closed field.
Similarly in a logistic system there is much to be gained by closure of the
system with respect to the logical operations. If there are some individual
or predicate constants to which no denotation can reasonably be assigned,
the benefits of logical closure may still justify their use.

In order that one may be able to assign appropriate meanings to
sentences which contain quantifiers, it is necessary to define the ranges of
variables. We shall define, for each variable, a syntactical range and a
semantic range. The syntactical ranges are composed of expressions b
such that from VxF(x) one can infer F(b). In particular, the syntactical
range of an individual variable is composed of the individual constants. If
F is a predicate variable such that F(x;, ..., x,) is wif, its syntactical
range is composed of those wiffs in which the variables x,, ..., x,, and
no others, occur free.

The semantic range of an individual variable must be composed of the
objects, if the system is to serve its purpose. Then a wif of the form
3xP(x) can be interpreted by ‘‘there is an object which is P’’. This
interpretation will be free from contradiction if the system satisfies
condition (2) of the definition of adequacy. (Here ‘‘contradiction’’ is to be
understood in a broad sense, according to which a system which is
consistent hut not w-consistent would be contradictory).

The definition of the semantic range of a predicate variable is
connected with the meanings assigned to sentences which contain quantified
predicate variables. If b is the name of an object, we propose to interpret
IFF(b) by ‘‘there is something which can truthfully be said about b.”’ But
here ‘‘something’’ and ‘‘said’’ need to be made more precise. What can be
said about the object depends not only on the object but also on the
language. Let Q be the language we are using, and let 3FF(b) be undorstood
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to mean ‘‘there is a true statement about b which can be written in the
language {.’’ This leads us to identify the semantic range of a predicate
variable with its syntactical range.

Thus interpreted, type theory is not a pure object language. It contains
talk not only about objects, but also about talk, referring to some of its own
expressions. This interpretation allows us to disentangle type theory from
the ontological quandaries with which it has been associated in the
literature, such as misgivings about impredicative definitions and about
whether the system has a standard model.

One may regard the predicate calculi of higher orders as extensions of
the first-order calculus constructed by introducing into the system certain
forms of expression already present, at least potentially, in the metatheory.
But only certain kinds of predicates can thus be introduced. A predicate
can be introduced only if (1) it is uniform as to type (in the sense of 501D
below), and (2) its introduction is compatible with the axioms of exten-
sionality. We shall see that in a system with a finite set of names all
metapredicates that satisfy conditions (1) and (2) are expressible, hence
can be introduced. But if there are infinitely many names, then there are
predicates which do satisfy these conditions but cannot be introduced. We
can define in the metatheory a function which enumerates all predicates of
any given type, but in consequence of Cantor’s theorem no such function is
expressible in the system. We shall find other metapredicates for which
it is not easy to determine whether or not they are expressible, which
raises the question whether the powers of expression of type theory are
sufficient to make it adequate for mathematics. That is the problem of this
paper.

§2. Construction of the theory

In §1 we mentioned the predicate calculi of higher orders as extensions
of the first-order calculus. Here we use a short cut, starting with a pure
predicate calculus of order w which will be designated by the symbol fw.
This will be extended by postulates, some of which will introduce individual
and predicate constants. The symbols of Fw include (1) logical constants,
i.e. quantifiers and truth-functional symbols, (2) individual and predicate
variables®'. Each variable is composed of a letter with a superscript which
shows the type to which the variable belongs. Individual variables have the
form x, in which the dot is the type symbol. All higher type symbols are

constructed by the rule: if ¢, ... ,#, are type symbols, then (¢, . . ., ¢,)

is a :)ype symbol®”. The atomic wffs of the system have the form
et 8 :

Y % .. 4, where #y, . . ., ¢, are type symbols. All other wifs are

formed from atomic wifs and logical constants in the usual way. The
symbols described above are the only ones needed for Jw, parentheses or
dots being avoidable by use of a parenthesis-free form of notation. For
working purposes, however, we shall use dots to show the scopes of logical
constants,

Type superscripts can usually be omitted in the working notation. A
formula in working notation may be a schema of which the instances are
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wifs. Thus the instances of the schema Fx have the form (If“)yé where ¢
stands for an arbitrary type symbol. Every such schema has a basic
instance written by placing the individual superscript wherever the rules
permit. All other instances are fype elevations of the basic instance. For
perspicuity we shall, so far as possible, follow the practice, wherever two
variables in a formula must be of distinct types, of writing them in distinct
alphabets or distinct parts of an alphabet. In particular, dyadic predicates
will be symbolized by Greek letters. Where type superscripts are needed
at all, it is usually sufficient to write them in one or two places in a
formula (e.g. in Fx the type of F is uniquely determined). In the working
notation, atomic wifs composed of two variables will be written in the form
xeF (in place of Fx), those composed of three variables in the form xay (in
place of axy)®.
The axioms of §w are

(1) all substitution instances of tautologies
(2a) all wifs of the form

VxA — A()

where A(y) results from the wif A by substitution of y for x (subject to
proper safeguards against confusion of free and bound variables)®.
(2b) all wifs of the form

VFA - AB(x . . . xin))

where F is an n-adic predicate variable having exactly m occurrences in A,
each of these occurrences being in one of the atomic wifs Fx;, .. .x;, (1=
i=m), B(x1;...%1,) is a wff in which there are free occurrences of
X115+« « 5 X1y @nd if 1 <7 = m then B(x;; . . . x;,) results from B(x;;. . .X1,)
by substitution of x;; . . . x;, for %, . . . X, A(B(x;1 . .. %;,)) results from A
by the m substitutions of B(x;;. . . x;,) for Fx;;. . . x;,>, (subject to proper
safeguards against confusions or collisions of variables®).

(3) the usual axioms of extensionality. For monadic predicates F, G
these have the form

Vx. xeF<—>xeG, - VX, FeX — GeX.

Later, when we introduce individual and predicate constants into the
system, we shall allow the y in (2a) to be a constant of the same type as x.

The rules of inference of Fw are (1) modus ponens and (2) if x is a
variable which does not occur free in A

A — B+ A—VxB.

We do not need any axiom of reducibility or Mengenbildungsaxiom
because:

201T If A is a wff in which the variables x,, . . . , %, occur free, then
AFVXy o o« V% FXy . 0 o, <A
Proof. Each instance of

VFIx; ... 3% FxX1. .. % <A — 3x; . .. Ix,. A<>A
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is an instance of the axiom schema (2b). The consequent in this formula is
refutable. Hence the result by contraposition.

One could use 201T as an axiom schema and dispense with (2b). We
have chosen to use (2b) in order to emphasize that Fw is based on pure
logic without existential postulates. By the definition of the semantic range
of a predicate variable given in 81, any wff in which %, . . ., x, occur free
is an instance of Fx, . . . x,.

The expression ‘k A in @’ will be used as an abbreviation for ‘4 is
not refutable in {.”’ The following rules for operating with the symbol &
are easy to verify.

202T Let A, B be arbitrary wffs. Then
(1) k AvB iff either k A or k B,
(2) if k Aand A — B, then k B,
(3) if-A and x A — B, then k B,
(4) ¥ A iff either k AnBork Aa1B,
(5) kA — B iff + Aimplies k B.

203D Let ¢ be the system fw or an extension thereof. We shall say that
T is a simple extensionof Qif M is the same as Q or is generated from ¢ by
introducing postulates of the form A(a,, . . ., a,), where (1) A is a wif of Q,
(2) %, ...,x, is a complete list of the variables occurring free in A4,
(3) A(ay, . .., a, is the expression which results when a;, ..., a, are
substituted respectively for x;, . . . , %, in all free occurrences of the latter
in A, all type superscripts remaining unchanged by the substitution, (4) the
new symbols @;, ... ,d,are not in the vocabulary of ¢ and in T they are
individual or predicate constants.

All systems constructed in this paper are simple extensions of Fw.

If the A of 203D is a closed wif of ¢, no new symbols are introduced by
the postulate.

204D In this case we shall say that the postulate is isophasic. % is an
isophasic extension of g if it is generated from g entirely by isophasic
postulates.

205T Let Qbe a simple extension of Fw and M a simple extension of Q. Let
B be an arbitrary wff of .

We shall use these notations: if Cisa wff of I, let a;, . . ., a, be the
new constants (i.e. constants which belong to the vocabulary of %t but not to
that of ¢) which occur in C or B or both; let y,, . . ., y,be variables which
do not occur in C or B and are of the same types, respectively, as
O, ...,0s; let C(y), B(y) stand for the expressions resulting when
Y1, « « « , Yn are substituted respectively fora;, . . . ,a,in C, B.

Then +B in R iff theve exists a conjunction C of postulates genevating
T from Q such that

(1) FVy1...Vy,.C(y) = B(y)in &

Proof. Assume FB in 1 and let II be a formal proof of B. Let C be the
conjunction of those postulates generating %t from Qwhich occur in II. Let
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¢, . .., Gpbe the new constants occurring in II. Let II(y) be the result of
substituting the variables y,, ..., y, for these constants in II. Then
C(y), Ii(y) is a proof in ¢ of B(y) from the hypothesis C(y).

We assert now that ~C(y) — B(y) in Q. To prove this it is sufficient,
by the deduction theorem, to show that the rule of generalization has not
been applied in II(y) to any variable occurring free in C(y). By 203D no
variable occurs free in C, so the only variables occurring free in C(y) are
Y1, . ..,Yp. But these occur only where they have been substituted for
constants in II, so the rule of generalization has not been applied to them.
The assertion follows. Now generalize on yy, . . ., ¥, and (1) is proved.

The converse is obvious. This result is also useful in the contraposi-
tive form:

206T Kk Bin M iff k Iy, .. .3y, C(y) A B(y)in Q.

207TT If B is wf is Q, then VB in N iff theve exists a conjunction C of
postulates generating M from Q such that

Fiy; ... 3y,C(y) = Bin Q.

Proof. The hypothesis implies that none of the variables y,, ..., 3,
occurs in B(y). Hence the result from 205T.
From 206T it is easy to infer that

208T N is a comsistent system iff, for every (finite) conjunction C of
postulates generating R from g,

k3y,...39, C(y)in Q.

209D We shall say that %l is a comnsevvative extension of Q iff every wif of
Q@ which is provable in  is also provable in Q.
From 207T it follows that

210T If Nis a simple extension of Q, then N is conservative iff, for every
conjunction C of postulates generating % from &,

F39; ... 3y, C(y) in Q.
21T If Ris a conservative extension of Q, then M is comsistent iff L is

consistent.

212T If %, is a conservative extension of Qand M, is a conservative
extension of Wy, then N, is a conservative extension of Q.

§3. Introducing constants

We are now ready to construct extensions of §w having a vocabulary of
individual and predicate constants, There are two conditions we wish these
extensions to satisfy:

301D (1) they must be conservative in the sense of 209D, and (2) they must
be quantificationally closed in this sense: let x be a variable and A a wif in
which x occurs free; if F3xA, then there is a constant b such that ~A(b)
where A(b) is the expression obtained by substituting b for x in A, and if for
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every constant b of the relevant type FA(b), then +VxA. The first of these
conditions will assure that we are not smuggling in any existential assump-
tions, and the second that sentences containing quantifiers are provable if
and only if they are true according to the syntactical definitions of the
ranges of variables in §1. The semantic definition of the range of
individual variables will be dealt with later.

302D Let A be a monadic wif (i.e. a wif in which exactly one variable
occurs free) and x the free variable in A. The expression y&A shall stand
for the schema vx. A— A(y). This expression may be used if y is a
constant of the same type as x or a variable of this type which is free at all
places where it is substituted for x.

Let Q0 be an arbitrary isophasic extension of $w. For each monadic
wif A of 20 we now introduce a constant 1(A) which is to be of the same type
as the free variable in A. We shall write 14 for 1(A4) wherever A is used
as a syntactical variable for a wif. If P is a predicate constant we write
1P for V1(xeP). These constants, which we call 1- constants, are introduced
by postulating, for every pair A, Bof monadic wffs which are of the same
type,

303P 148AA1BEBA: Vy. y8A<—>y8B, — 1A = 1B

Let €1 be the extension generated by these postulates. In this system there
are monadic wffs which are not wf in 20 because they contain occurrences
of one or more 17-constants. We now make an extension {2 of {1 by
introducing a constant 14 for every monadic wff A which is wf in 21 but not
in Q0. For every such A coupled with every B of the same type as A,
there is a postulate having the form of 303P generating 82. Repeating this
procedure, we construct an infinite sequence of extensions.

Let 21 be the extension of Q0 generated by all the postulates which
generate members of this sequence. An expression is wf in Q1 iff it is wf
in &» for some non-negative integer z.

Our 1-operator is partly analogous to Hilbert’s e-function®! and to the
functions qeq in Church’s formulation of type theory®’. On the other hand
it must be emphasized that the mark 1 standing alone is not a predicate of
Q1. Nor is any expression of the form 1(xcF) where x and F are free
variables wf in 1, since the 1-operator can be applied only to monadic
wifs. In consequence of this restriction it is possible to prove, without
appeal to any axiom of choice, that

304T Q1is a conservative extension of Q0.
Proof .
305D Let ¢¢ sf (to be read ‘¢ is a selective function’’) stand for
VxVF. x0F — x8F. A VXVFVYYVYG:. xpF A YOG A V2. 28F<—>28G: » x =y

Note that the domain of a selective function thus defined is not restricted to
non-empty predicates.
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We shall use the lemma: if ¢ is a selective function and G is a
predicate of the same type as the members of the domain of 9, then there is
an extension ¢' of ¢ such that

¢'esf A dx xd'G

The proof is elementary.

If B is a wif of 1, the expression {(B) will denote the extension of 20
generated by those 1-postulates (303P) in which every 1-constant occurring
has at least one occurrence in B. We shall prove first that &(B) is a
conservative extension of Q0.

Let 1By, . . ., 1By be a complete list of the 1-constants which occur in
B. TIn consequence of the way in which the 1-constants are written the
phrase ‘‘occurs in’’ expresses a transitive relation between 1-constants.
Hence any 1-constant which occurs in one of the 1B; (1= i< p) is one of
the 1B;. We may assume that these constants are ordered by their sub-
scripts so that first come all those which are wf in 0, next those that are
wf in £1 but not in 20, and so on. This assures that if 1B; occurs in 1B;
then j = 1.

We now construct a sequence of systems %, = Q0, %, . . ., %, such that
if 1=¢=p, N; is the extension of M;_; generated by postulates which
introduce 1B; and an auxiliary constant ¢; which can be discarded later.
These postulates have the form

(1) ¢; 2 dpadiest
(2) VF: Vx. x¢F <> B;(x). = 1B; ¢;F

where ¢ is defined as follows: if there is a Bj of the same type as B; with
j<1i,let kB be the largest of the subscripts j which satisfy this condition,
and let ¢p be the selective function introduced by the postulates which
generate M;; if there is no such j, let 2 = 0 and let ¢, be the null relation.

We assert that the postulates (1) and (2) generate a conservative
extension of M;-;. I k =+ 0, ¢ is a selective function in consequence of the
postulates generating M,; if 2=0, ¢, is a selective function since the
null-relation satisfies 305D. By 201T and extensionality there is exactly
one F such that Vx. xeF <—> B,(x), and by the lemma there is a selective
function which is an extension of ¢, and includes this F in its domain. The
assertion follows by 210T, hence by 212T I, is a conservative extension of
20. Clearly the theorems of {B) are theorems of %, so (B) is a conser-
vative extension of {0.

Finally to prove the theorem, let B be a wif of €0, let II be a proof of B
in Q1 and let Q(II) be the extension of Q0 generated by those 1-postulates in
which all 1-constants occurring have occurrence in II. Then II is a proof in
() and L(IT) is conservative by the above reasoning. So B is provable
in Q0.

This theorem shows that the postulates generating {1 from L0 are
nothing more than implicit definitions of the 71-constants. If 20 is §w, any
inference made by means of {1 is made by pure logic. Incidentally, by
introducing the 1-constants we have formalized what is known as ‘‘natural
deduction.”” From 3xA one can always infer ‘14 is such an x.”’
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306T Q1 is quantificationally closed in the sense of 301D.

Proof. This can be proved by reasoning similar to that used in [6]%
with respect to Hilbert’s e-function.

This theorem holds in all isophasic extensions of 21, in particular in
the system Qu which we shall now construct.

The motive for constructing Qu is that we need a system in which the
9-operator is expressed by predicates in the system so that we can use the
axioms of choice. The simplest way to do this would be to define u as an
abbreviation for 1

Apesf A VFIx xpF)

and generate Qu as an extension of {1 by postulating for each monadic
predicate constant P of 21

307P 1P pu P.
It will be more convenient, however, to use a stronger set of postulates.
308D Let £ wo F be an abbreviation for

VxVY: %,9EF —. XYV YEXV X = P:A VG . Vx. x€G — xEF. — 1x: %8G A
vy. yéx — 19EG

to be read ‘¢ is a well-ordering of F**.”
Let p be an abbreviation for

AVF EwoF)

so that for each type # there is a p of type (#) which is a well-ordering of
the universal set of type (£). Then Qu can be defined as the extension of Q1
generated by postulating for each 1-constant 14

309P Vy.yp14A — yéA

In consequence of these postulates, Qu has the convenient property that for
each non-empty predicate P, 1P is the p-first member of P. This permits
us to define a set of selective functions uby the schema

VXVF:. xuF<—>: x8FA VY. ypx — 198F
and
310T the schema 307TP is then deducible from 309P.
31T Lu is a conservative extension of R0 iff the instances of the schema
312P 3¢. ¢e sf A VFIx x¢F
are axioms (or theorems) of Q0.

Proof. Assume 312P. Since these are choice axioms the well-ordering
theorem 3tVF& wo F holds in 0. It is easy to see that Qu is the same as
the extension of 20 generated by the postulates
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(1) VFpwo F
(2) for each monadic wff A

VAZA A Vy. yp1A — 1yEA

We may assume that this extension is constructed by stages, first
postulating all instances of (1) and those instances of (2) in which A4 is wf in
{0, next those instances of (2) in which A is wf in 21 but not in 0, and so
on, thus introducing all 1-constants.

Each p not only occurs in those places where it appears above as p, but
also in one instance of (2) where it occurs as the right argument of a p of
higher type.

Let B be an arbitrary wff of Qu, let ¢, ..., t. be the types of the
1-constants occurring in B. Let Qu(B) be the extension of 20 generated by
(i) those instances of (1) in which p belongs to one of the types (£:y), . . .,
(¢ats), (ii) those instances of (2) in which 1A is one of the 1-constants
occurring in B. We may suppose that Qu(B) is generated by a finite
sequence of extensions of which each introduces just one new constant. It
is then easy to verify that, in consequence of the well-ordering theorem and
210T, each of these extensions is conservative.

It follows by 212T that Qu(B) is a conservative extension of {0 and by
an argument similar to the last part of the proof of 304T, that Qu is
likewise conservative.

To prove the second part: the axioms of choice are deducible from
307P by quantificational closure (306T).

Thus the system 2u has a set of axioms which have prefixes containing
existential quantifiers. But this need not raise any ontological ghosts.
There can be no question about the existence of selective functions which
have in their domain all predicates of a given type; for such functions are
definable in the metatheory of 1. The choice axioms merely state that
such functions are included among the predicates of the object language.
We shall have more to say about this in §5.

313T Let B be a wff of {1, hence also of {u. Let C be the conjunction of
the postulates which generate the system {B) (the system Q. (B)) defined in
the proof of 304T (311T). Then, using the notation of 205T,

=B in Q(in Qu)
if and only if
=C(y) — B(y) in Q0.

Proof. 1t is sufficient to show (1) that Q1 is a conservative extension of
Q(B) and (2) that Qu is a conservative extension of Qu(B).

To prove (1), let A be an arbitrary wff of Q1. Construct the system
QB A A) by the method of 304T, introducing first those constants which
occur in B. By this procedure one can show that Q(BaA) is a conservative
extension of ¢(B), from which (1) can be inferred as in the last part of the
proof of 304T.
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Similarly (2) can be proved by adaptation of the reasoning of 311T.

314D Let us say that a wif A of Q1is basic iff there exists a wif B of Q0
such that FA<—B in ).

We have used the expression {0 to denote an arbitrary isophasic
extension of Fw. It follows that 21, which we have defined as the extension
of Q0 generated by 303P, likewise denotes an arbitrary member of a class
of systems. Let {Q‘I} denote this class. It is easy to see that

315T {QV} is closed with respect to extensions genevated by basic postu-
lates.

Qu is not in the class {Q1}, since 309P are not basic. The class {Qu}
can be defined similarly.

To complete the vocabulary of our systems we mention here a few
notations that will be used in the sequel. The customary expressions of set
theory can be defined in obvious ways.

If Aisawff and x;, . . ., x, is a complete list of its free variables,
Ay % A) Zaef WVXy . o Vi Flxy, ., x) <> A).
316D The concept of a function is introduced by

1=5s =gef NE(VXVYV 2 Y EX A2ZEX. — Y = 2)
s =1 =gef NE(VXVYV 20 XEYAXER. — Y = 2)
1-1=def1-sNs-1

Terms containing free variables are used in this paper in a few places.
Such expressions, which have the form ¢% can be introduced by postulating

del-s— Vx.3y ypx — ¢‘xpx
It is not difficult to show that such postulates are conservative.
§4. Names for objects.

As stated in §1, each object is to have exactly one name, so if a,b are
distinct names we must have ~a # b. We shall use Arabic numerals as
names, placing a dot over each to distinguish the name-numerals from the
“‘proper numerals’’ which will be defined in §7. If the range of discourse
is finite, the names will be C”),‘ ..., for the appropriate choice of #; if it
is infinite, the names will be 0, 1, 2, . ..

It would be natural to introduce these as new constants by postulating
m # n for each pair of distinct names, but it is more convenient to define
them as abbreviations for certain expressions already present in 21.

401D Accordingly we define

0 =aef Wx = %)
} =def Wx # Q) )
2 =def AUx+ 0ax# 1)
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If the range of discourse is infinite, we postulate
402P i¢6,2¢(),...

These will be called the least number positulates. From them it can be
inferred that / = # for all pairs of distinct names.

Let Q1(») (Qu(=)) be the extension of {1(Qu) generated by 402P. If the
range of discourse has exactly » members we postulate the first n» - 1 wifs
of 402P and

403P n=0.

Then it is easy to prove for all numerals m such that » > # that % = 0. In
this case the only names are 0, . . ., (# - 1). The systems thus generated
will be called {1(n), Qu(n).

404T For each positive integer n, every closed wff of Fw is decidable in
Q(n), so Q(n) is consistent.

Proof. Every wif of the form VxxeF is equivalent in Q1(n) to the
conjunction

0eF A. .. (n < 1)&F.

Every wif of the form VF FeA, where F is of type (-), is equivalent in
Q1(xn) to a conjunction of the form

PigAn. . .APyEA,

where g = 2” and each P; has one of the forms Ax(x # %), Ax(Xx = #iyv . . .
v ¥ = ), each ; being a name in ().

By a generalization of the two preceding statements it can be shown
that every closed wif of Fw is equivalent in @1(n) to a wif in which every
variable occurring is bound by A and the only non-logical constants
occurring are lambda-constants, names and =. These wiffs are clearly
decidable in Q1(z). The result follows.

From here through 411T it will be assumed that 0 is fw. Then the
axioms of Q1(«) are the axioms of Fw, the 1-postulates (303P) and the
least-number postulates. Since every theorem of Q1(«~) is deducible from a
finite subset of these,

405T every theorem of Q1(®) is provable in QUn) for sufficiently large n.
It follows that

406T every wff which is consistent in infinitely many of the finite systems
is consistent in V().

The choice axioms 312P are provable in each of the finite systems, so
by 404T, 406T they are consistent in Q1(«), from which we infer

407TT Q) is consistent and by 311T so is Qu(x).

It is easy to find a wff A such that A is provable in infinitely many of
the finite systems and 714 is also provable in infinitely many of these. So
by 406T and 407T:
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408T Both () and Qu(») are incomplete.

409D Let us say that a wif A is an infinity formula if A is refutable in each
of the finite systems but not in 1(<). Then

410T A is an infinity formula iff (1) k A in (=), and (2) each of the least-
number postulates is a consequence of A.

By 405T:

411T No infinity formula can be proved in QW) and it is easy to see that
this holds also for Qu(«).

In order to satisfy condition (3) of adequacy (§1), 21(«) must be extended
by postulating an infinity formula. In consequence of some results of
Trahtenbrot [9] there is no weakest (or strongest) infinity formula, which
would seem to make it difficult to justify selection of any particular
postulate. This difficulty is resolved in §6.

§85. Expressibility of metapredicates

501D A predicate I' in the metatheory of Q1(and of its isophasic extensions)
will be called a wmetapredicate iff: (1) the meaning of the statement
T'(ay, ..., d,, where aj, . . ., a, are 1-constants, is defined when these
constants are used autonymously; and (2) T is uniform as to type in the
sense that, whenever I'(ay, . . ., a,) and I'(b;, . . . , b,) are true, then, for
1= i<, a; and b; are of the same type.

It will be convenient to write aeI’ for T'(ay, . ., d,, where use of the
symbol € (not €) will serve as a reminder that the predicate is defined in
the metatheory. We shall also write as-y for y(ay, . .., a,) where y is an
n-adic predicate in €1 and the q; are used in the language Q1.

Let us say that an z-ad of 1-constants (by, . .., b,) is relevant forT'
iff, for any a such that ael“, a; and b; (1 = { = ») are of the same type.

502D Let @ be an isophasic extension of @1, I a metapredicate, v a
predicate in 1. We shall say that y expresses I'in Q iff

(1) Qis consistent,
(2) for each a, if &I‘,"then |—as'y in g,
(3) for each relevant b there exists aeT such that

13 n
Fbey — b =ain .

503D We shall say that T'is expressible by v in Qiff ¢ has an extension in
which y expresses I (We do not require that such an extension be
constructible in the sense that one can formulate an effective set of rules
for writing the postulates which generate it.)

504T If v expresses T in Q, then vy expresses T in every consistent
isophasic extension of Q.

505T If T is expressible by vy in T and N is an isophasic extension of ¢,
then T' is expressible by y in L.
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For a monadic metapredicate, the definition of expressibility in §1 is
equivalent to 503D. This follows from Lindenbaum’s theorem®! and 504T.

506T Let R be the extension of Q genevated by postulating dey for each
n . .
ael. Then the following ave equivalent:

(1) T'is expressible by y in Q, ”
(2) for every finite collection of relevant n-ads b1, <« ., by there exist
al, ey upel“ such that

n n
kbls'y—>b1=a1./\.. .A.bp&‘)/—’bp=ap’l:n ¢,

(8) for every finite colgection By, . . ., By of wffs of the same type as
v, thevre existal, ..., 0p€T" such that

k 3% Xeya%eBy. — MEBy A. . . At IX. Xey AXEBp. = @peBpin 1.

Proof. Assume (3). Let us say that a wif B is relevant iff it is of the same
type as y. It will be shown first that there exists a consistent extension
of T such that, for every relevant B,

(4) if -agBin % for everyaeT, then FV%. Xey — %¢B in R.
To see this, observe that from

(a) k 3%. X€YAXEB;. — @1€By: A I%. XEYA XEB,. — G,6B,;
and

(b) +a,$B,
one can infer

(c) k Vx. Xey — %8By. a: A%, Xey A XEB,. — A,EB;:

This argument applies also where (a) holds for By, ..., By (p > 2) and
(b) holds for any proper subset of By, ..., Bp. Thus we can generate an
extension %, of M by postulating V%. Xy — %#¢B for every relevant B such
that -ag¢B in T for every 361“, and condition (3) will be preserved in %,. If
there are any relevant B such that +atB in 7, for all el but not -V#. 9'587 -
#€B in R, let N, be generated from R, in the same way, and so on, infinitely
many times if necessary, till we have an extension % which satisfies (4).
This done, let b1 bz, . . . be an enumeration of the relevant n-ads ”by a
Go6del numbering or some lexicographic rule. Now postulate, for each b,,

n n ”
(5) biey —b; =a;,

where the 3,- are determined by the following rule: if there exists at least
one @eT" such that

n n n n n n n n

kb;=an.biey—by=a.4...abjc;8y—bim;=0a;-1 inR,

then let 3; be the first of these in the enumeration of the relevant z-ads; if

no such aeT exists, let a; be the first of all the ae I'(or an arbitrary ael’).
Thus the postulates are uniquely defined. It remains to be shown that

they are consistent. We prove this by course-of-values induction on the
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sequence lgl, lgz, . ... Assume that the conjunction of the first » members
of the sequence of postulates (5) is consistent. Then by rule (4) of 202T,
either

n n n » n n n .
kbp+1$‘)’/\.b18'y"b1=ql./\. . .A.bpsy_’bp=qplnm
or
n n n n n n
£ bppi&y Abigy = bi=ai.a. . .a.bpey = by =a,in N

If the former, then clearly the (p + 1)th postulate is simultaneously
consistent with the first p postulates. If the latter, then

n n n 7 n n n n n n
F3x:.xey AixX = by abi€y = by=a;.a. . .abpey = b, =a,in R

and the expression following the first conjunction sign in this formula is a
relevant wif. 1t follows by (4) in its contrapositive form that there exists
ael such that b,,+1 =aq is simultaneously consistent with the first p
postulates. This proves that the postulates (5) are consistent.

It follows that (3) implies (1). It is almost obvious that (1) implies (2).
Assume (2) and consider first the case where I"' and y are monadic. Let
B;, . ..,By, be relevant wifs. We shall write B; for Ax(B;(x)) (1= i= p).
By (2), there are a,, . . ., dpel’ such that

(6) k Wy NB)ey —ar=Wy NBy).A...a. Wy NBpEY = ap =y NBy)
From each member of this conjunction we can deduce
Ay NB)eya Wy NB;)e B;— q;EB;,
and, since for any monadic P, F1PeP<—>31x x€P,
Ix. xey A xEB;. — A;EB;

Apply this to (6), using rule (2) of 202T, and it follows in this special case
(T and v monadic) that (2) implies (3).

To extend this to the general case it is sufficient to exhibit, for an
arbitrary n-adic predicate P, an n-ad of constants c,, . . ., ¢, such that

n n n
ceEP<—>3Ix xeP

We show a method of doing this by illustrating it for the case n = 2 where,
if a is the dyadic predicate under consideration, the required constants are

13z xaz) and 13z xaz)a y).

The proof is now easy to complete.
It follows that,

507T in ovder that T be expressible by y in , it is sufficient that
(1) |—38yfo1f each Q€T s
and

(2) the equivalent conditions (2), (3) of the preceding theovem are
satisfied.
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It follows also from 506T that,

S08T if T is a monadic metapredicate of individual constants, then T is
expressible in & by V wheve V = x(x = x)) iff Ris strongly T'-consistent in
the sense of Henkin®®.

509T If (1) T is expressible by y in @,
(2) A is a wff such that k A in every extension R of Qin which v
expressesT, ]
then (3) A in every such extension R of @, and (4) T'is expressible by v in
the extension of Q generated by postulating A.

Proof. By (1) there is an extension R of Q in which y expresses I'. By
(2) and 504T, k A in every consistent extension of %, hence +4 in R, from
which (4) follows by 505T.

510T In the finite systems Q(n), Qu (n) all metapredicates are expressible.

Proof. There is a finite subset A ={a,, . . . q,,} of T" such that p= » and
A is maximal with respect to the property that for all pairs a;, ajeA such
that ¢ # j the wifs a; # a; are simultaneously consistent in 2)(z). It can be
verified that T" is expressible in 2n) by Ax(x=a;v...vx=a,). This
applies also to Qu(n).

511D For each type ¢, let Ty, be the metapredicate composed of all dyads of
the form 1P, P where P is of type (£).

512T For each type ¢, T is expressed by the u of type (H(t)) in Qu. It is
expressible by u in every extension of {in which the relevant axiom of
choice is not refutable.

Proof. The first part is a consequence of 310T and the fact that each
p is single-valued. The second part follows by 311T.

This theorem shows how a question of consistency, such as consistency
of an axiom of choice in a particular system, can be stated as a question of
expressibility. It also shows that an axiom of choice is correctly inter-
preted as a statement to the effect that any universal selective function (of
the relevant type) definable in the metalanguage is expressible in the object
language.

513D LetT, be the metapredicate composed of the names. From 507T it is
clear that condition (2b) of the definition of adequacy given in §1 can be
stated in the form ‘T is expressible by V in Q.”

It can be proved thatT; is expressible by V in {1, but this proof is not
of much use to us since it does not hold for Qu. It will be seen later that
expressibility of I'; by V in Qu entails the consistency of number theory
embedded in Qu.

Consider an enumeration, based on some system of G&del numbering
or lexicographic ordering, of all the predicates of a given type #in £1. Let
T be defined by “T'(P,z) iff P is the nth predicate in the enumeration.’”’ Let
T be expressed by y in @(#n). Since -0 =7 in 21(r), there is more than one
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predicate P such that ~Py0 in @1(n). In )(»), however, if T’ were ex-
pressed by vy then y would be a mapping of a set of individuals onto the
universal set of type (£), which is impossible. So T is not expressible in
Q1(«). The non-denumerable sets of mathematics are represented in £1(«)
and its extensions by predicates of which no enumeration is expressible in
the system.

§6. Expressibility of ‘‘finite”’

This concept has shown itself to be surprisingly elusive, so it may help
to ask the question: what do we really mean by ‘“finite’’ when the word is
used informally ? Let us say that a set has property A if we can write a
complete list of names of its members, and that it has property B if we can
specify a procedure by which, given any list of names, one can name a
member of the set which is distinct from each of the objects named on the
list. If a set has property A we do not hesitate to call it finite, and if it has
property B we do not hesitate to call it infinite. There are, of course,
many sets which we call finite even though we cannot list their members,
e.g. the set of bacterial organisms in a shovelful of garden soil. But it
seems reasonable to suppose that it is only because we lack the necessary
information that we cannot list the members of such a set.

Property A is the basis of the definition in §1 of the metapredicate T';,.
This definition is the basic instance of a typically ambiguous schema. We
shall be concerned here mainly with the basic instance. The definition of
T'in cannot be translated literally into the formal language, for this would
require powers of self-reference which €1and gu do not have. In order to
find a predicate to express I'fj, one must look for some property which is
possessed by the members of Iy, and their synonyms in 1 and by no other
constants in Q1 and can be described in that language. In searching for a
proof that a particular predicate applies to all finite sets it is natural to try
induction. In our search for a definition of finiteness in Q1 we start by
sketching a general theory of mathematical induction®!. In the definitions
which follow it is to be understood that, for some type £, a is a predicate of
type (¢(¢)) and P, @, R are of type (t).

601D We shall say that P is a-kereditary (in symbols, Pea-hered) iff
VF: F CP — Vx.xaF —x¢P.

602T If X is a family of a-hered sets, then the intersection of the members
of X is a-hered.

603D We shall say that @ is a-connected to R (in symbols, @ a-con R) iff
(1) @ 2R,

and
(2) VF: RS FAF CcQ.—3x.xaFAx8FAxeQ

604T -Q a-con R —VF: Fga-hered—. RS F —Q C F in Q0, i.e. if @ a-con R,
then @ is contained in every a-hered overset of R.
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Proof. Let F be an a-hered overset of R, @ a-con R. Then R C FNQ.
If we also had

(1) FNQc @
then, since @ a@-con R, we would have
Axxe(FNQaxg(F N Qaxed,
hence
Ixxo(F NQaxeF,
and F would not be a-hered. So (1) is false and the result follows.

605T Suppose theve exists a set @ which is both a-hereditary and
a-connected to R. Then by 604T, Q is the intersection of all a-heveditary
oversets of R, and it is the union of all sets a-connecied fo R. Hence Q is
uniquely determined by o and R.

606D Such a set @, if it exists, will be called the a-completion of R. The
relation o will be called inductively complete iff every set has an
a-completion.

607T In ovder that a be inducltively complete, the following condition is
sufficient and necessary: If R is any set and Q is the intersection of all
a-hereditary oversets of R, then

(1) VF: REFAF CQ.— IxxaFaxdF.
Proof. Assume the condition holds. By 602T, @ is a-hered. Hence
(2) F C QaxaF. — xeQ,

which, in conjunction with (1), implies @ a-con R. This proves sufficiency.
The necessity is obvious.

608T If ais isotonic in the sense that
VFVYG:F € G — Vx.xaF —xaG
then a is inductively complete.

Proof. The hypothesis implies that a set F' is a-hered iff Vx.xaF — x¢&F,
and the result follows by 607T.

609D Given a relation £ of type (¢2), let te be defined by
£€ =gof AXF(3Y.YEF A XE D).
Thus g€ is the relative product of £ and the relation € and is of type (£(£)).

610T If a is existential in the sense that, for some relation &, a = £€, then
a is isotonic, hence (by the preceding theorem) a is inductively complete.

611T If a = t&, then P is a-hered iff
Vx Vy: xePayéx, — YEP,
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t.e. P is a-hered iff, in the usual terminology, it is closed with vrespect
lo &.

612T The definitions and theovems 601-611 can be modified so as to apply
to a triadic relation a of type (tt(#t)) and dyadic relations §, 0, 0 of type (tt)
as follows:

¢ is a-hered iff
VEIECS E—VaVY. alx,y,E) — %y,
and 0 a-con 1 iff

(1) 621
(2) VEEnC EatC b, —Ix3y. alx,y, E)A T xEYAXHY.

The necessary modifications of the remaining definitions and theorems
can easily be found by the reader. Similarly for n-adic @ where n = 3.

Every proof by induction in mathematics is an application of 604T or
one of its extensions to n-adic relations (z = 2). To obtain the principle of
finite induction on the natural numbers, let ¢ be Peano’s successor
function and let 72 be the set of natural numbers. The induction postulate
can be stated in the form: 7% is oe-comnected to {0}. Then by 604T, if OcP
and P is oe-hereditary, % & P.

To obtain the principle of transfinite induction, let a set S be well-
ordered by a relation p. Let ¢ be defined by: x¢R iff (1) Rc S and (2) x is
the p-first member of S - R. Then S is ¢-connected to each of its subsets
— in particular the null-set. So by 604T, if P is ¢-hereditary, then SC P.

Every entity defined by induction in mathematics is, for some ¢, the
a-completion of some set or relation. In particular, primitive recursion
is a form of a-completion.

This completes the sketch of induction theory. It will now be used in
finding an expression for T',.

614D Let 7 be the relation defined by
T =aef \FGAxVY: YEF AYEG. — Y =X)
i.e. F7G iff there is at most one member of F which is not in G.

614D fin is the Te-completion of {A}, i.e. of the family whose sole member
is the null-set.

By 610T, fin exists. By 605T, fin is the union of all families of sets
Te-connected to {A} and is itself Te-connected to {A}. It is also Te-
hereditary, i.e. 7-closed.

615T If Fefinand G € F, then Gefin,

Proof. G C F implies GTF. The result follows by 611T.
The next theorem yields an alternative definition of fin.

616T Let X be the family composed of those sets F such that every family
of subsets of F has a maximal membev. Then X = fin.
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This can be proved by showing that X is Te-connected to {A} and is
Te-hereditary.

617T If PeTy,, then -Pefin in Q; that is to say, fin satisfies condition (1) of
507T.

Proof. 1f P is A the result is immediate. If P is {ay, . . . , q,}, then it
is easy to see that the family composed of A, {ay}, {as,az}, . . ., {as, . . ., a}
is 7 e-connected to {A}.

618T If X is any predicate such that T, is expressible by X in 2¥~) and R
is an isophasic extension of Q¥«) in which X expresses Ty, then X = fin in
.

Proof. We show first that
(1) ~XeTe-heredin M.
Suppose Rely, and @ is any predicate constant of type (+). From the
definition of 7(613D) it is easy to deduce
FRTRAQ# A, —mIx. . XEQAVY.YEQAYER., — Y = X,
Let b =4 Wx€Q AVY:yEQAYER. — ¥y =x). Then
FQ =RAQ # A. =~ Q =R U{b}.

If Ris A, RU{b}={b}. If Ris {ay, ..., asf then R U{b} ={a,, . . ., a,b}.
So in each case one can write an expression S such that SeT'y, and
FRTR A Q# A. — @=S. Since X expresses I'y, and AeT',, it follows that

(2) FQ7R — QeXin M.

Now let P,Q be two predicate constants of type (-). Since X expresses
T4n, there exists Rely, such that —FPeX— P =R in I, hence FPeX —.
QTP — QTR and by (2)FPeX —. Q7P — Q¢eX, from which (1) follows by
quantificational closure and 611T.

1t is not difficult to show that

(3) X Te-con {A}in M.

The result follows from (1) and (3).
From this theorem it is easy to infer that

619T If T, is expressible by X in Vo) or amy isophasic extension of
(), then it is expressible in this system by fin, and, (by 509T), in the
extension of this system genevated by postulating X = fin.

So if the concept ‘‘“finite’’ is expressible at all in a theory of types, we
know how to express it.

620T Let Mbe an isophasic extension of QV»). If Ty, is expressible in R,
thenk V& fin in .

Proof. Clearly, if ReT'g,, then -V # R in 21(«), from which the result
is easy to infer.
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621D Let {1(inf) denote the extension of 21 generated by the postulate V¢ fin.
It is easy to see that this postulate is basic (314D), hence

622T Q\(inf) belongs to the class {21}

Clearly V&fin, if consistent in 1(«), is an infinity formula in the sense
of 409D, and, by 410T,

623T Q\(inf) is an extension of QV(«).
In consequence of 620T and 509T,
624T if Tinis expressible in QU), it is expressible in Q(inf).

625T Every statement made in §6 remains true if, for @1, Q1(*), Q1(inf) we
substitute Qu, Qu(»), Lu(inf).

§7. Number theory in Q(inf)

In this section it will be shown that T4, is expressible in Q1(») iff
number theory is w-consistent in Q1(inf). For this purpose it will be helpful
to define the natural numbers as families of finite sets, using a definition
equivalent to that of Principia Mathematica. The results of §6 make it
possible to do this with minimal labor.

701D We define the relation # as an abbreviation for
AYX(VG: GeY<—>1F.FeXAF C GAGTF),

where T is defined by 613D; that is to say, Y9X iff Y is the family
composed of all sets G such that, for some FeX, G is composed of all the
members of F and exactly one individual which does not belong to F.

702D Using 0 as an abbreviation for {A}, we define 7, the class of natural
numbers, as the ge-completion (606D, 609D) of the class {0}.

Existence of 7% is confirmed by 610T. By 605T 7 is 6 e-hereditary
and 9 e-connected to {0}.

T03T The relation 0 has the following properties:

(1) 6 1-5(316D)

(2) VX3Y Y9X

(3) VXVY. Y6X — A$Y

(4) VXVY:.Y0X — :3G GeY — IF.FeXaF # V.

These are easily inferred from 701D.
T704T If Xe%, then

(1) XC fin
(2) FeX iff X is the family of sets equipollent to F
(3) IF FeX (assuming V &fin)

Clearly 0 has these properties. Since 7 is 0e¢-connected to {0} it is
sufficient by 604T to show that each of the three properties is 6e-
hereditary. For (1) and (2) this is easily inferred from 701D; for (3) it
follows from (1), the infinity postulate V §fin and 703T(4).



EXPRESSIBILITY IN TYPE THEORY 279

T05T Let k be the restriction of 6 to 7%, i.e. \YX(Y 90X A YenAXeN). Then

(a) kel-1
(b) VX: Xe?— 3Y. YKXAY 20
(c) 7 ke-con {0}.

(a) follows from 703T(1) and 704T (2), (3); (b) from 703T (2), (3); (c) from
the definitions of % and k.

These three properties of x are equivalent to the properties of the
successor function described by the Peano postulates. (Observe that (c) not
only implies Peano’s induction postulate in consequence of 604T, but also
implies that every number z distinct from zero is the successor of a
number distinct from n.)

706D We have already defined zero. Let the positive integers be defined by
1 =4ep k0, 2 =45 k‘1, . ..

We shall call these the ‘‘proper numerals’’ to distinguish them from the
name-numerals of §4. All the recursive functions and predicates of
natural numbers are definable as 1-constants, using 606D, 612T. All
theorems of number theory are theorems of Q1(inf).

707T FVF: Fefin<>1X. Xe%aFeX in Q(inf).
This can be proved by showing that the predicate
AF(3X. X aFeX)
is Te-hereditary and Te-connected to {A}.
T08T Given any constant P of type (-) and any proper numeral n > 0,
FPen<—>P = {1P, \,P, . . . , 1,-,P} in Q1(inf)
where

NP =4ef AXEPAX #1P)

VP =4ej W xePAx # WP A. . .AX # V=) P)

Proof. The schema

VF:.: Fen<—>3x1...3%,Vy:. YeF<—>. Yy =X1v. . .VY = Xp.
AXyFXagAhe « AX]FXpAe o AXpay F Xn

can be proved, by recursion, for each positive integer ».

T09T Let T, be the metapredicate composed of the proper numervals. The
following statements ave equivalent:

(1) T, is expressible by 7 in {1(inf)
(2) Ty, is expressible in Q1(o).

Proof. Assume (1) and let W be an extension of 21(inf) in which %



280 H. JULIAN WADLEIGH

expresses I',. Let P be a predicate of type (-). By 502D there exists a
proper numeral z such that

FAPeXAXeW) e — WPeXAXe?) = nin R.
hence by 7T0TT +Pefin — Pen, and by T08T there exists ReT'y;, such that
FPefin— P =R in @t

which proves, in conjunction with 617T, that fin expresses Iy, in . By
623T, 505T this implies (2).

Assume (2). Then by 624T I';, is expressible by fin in 21(inf). Let % be
an extension of Q1(inf) in which fin expresses T',. Let W be any predicate
constant of type ((+)). By 704T(3), 707T,

FWen — Wefin in Q1(inf).
Since fin expresses I'y;, in % it follows that there exists Rel'y;, such that
FWe7 —IW =R in R.

Now it is not difficult to prove that for each ReTy;, there exists a numeralz
such that

FReOv . . . v Ren,
so
FWe% —. Welv...v1Wenin %,
hence by 704T(2)
FWe —. W=0v...v W=mn,

from which it is easy to infer that T, is expressible by 7 in %, hence by
505T in Q1(inf).

T10T T, is expressible by % in QU(inf) iff number theory is w-consistent in
QU(inf).

Proof. Obviously ~ne7 in Q1(inf) for each proper numeral », hence I',
is expressible by 7 iff condition (2) of S507T is satisfied, and this is
clearly equivalent to w-consistency.

TI1T Every statement made in this section vemains true if, for 1, Q1(),
QU(inf) we substitute Qu, Qu(=), Lu(inf).

§8. Avithmetic on the name-numerals

Since we can construct arithmetic on the proper numerals one might
ask, why bother with arithmetic on the names? The answer is twofold.
From a formal point of view, the conditions of adequacy set out in §1, in
particular condition (2b), can be satisfied in an extension of Qu(e«) only if
we have at least the possibility of constructing an w-consistent number
theory on the names. This is proved by 806T below. From the standpoint
of motivation and semantics, the empirical objects which are discussed
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when mathematics is used in science are usually described in numerical
terms, either by whole numbers or rational numbers, or by ordered finite
sequences of such.

Up to now we have given parallel treatment to 21 and Qu. But here we
reach a stage at which the two systems diverge. To save space we confine
our attention here to the more important of the two, namely Qu. We shall
use the abbreviation a ) ‘b for Ax(xab) where o is a dyadic predicate and b
an individual or predicate constant of the relevant type. o )‘b may be
verbalized by ‘‘the a-segment of b’’. We shall also use expressions of the
form a ) ‘% where a or x or both are variables. For justification of this
see the end of §3.

Let Qv be the extension of Qu(inf) generated by the postulate

801P Vi p)x e fin

where p is the well-ordering of the individuals defined in §3. This
postulate, together with the axioms of Qu(inf) implies that the well-ordering
of the individuals is of type w. Thus all of number theory is provable on
the name-numerals in Qu.

The members of 7 (702D), subsets of 7, etc. form a model for Qv,
which can be used to show that if the proper numerals are expressible by
2 in Qu(inf), then the name-numerals are expressible by V. This motivates
the next two theorems.

802T Assume that the axioms of 0 are the axioms of Fw and the axioms of
choice. Let @ be a monadic predicate constant such that +3x xeQ in Qu.
Then one can construct in the metatheovy a function Ilg, to be called
projection on Q, which maps into itself the set of expressions composed of
the wffs, variables and 1-constants of {u such that

(1) if a is an individual constant, then llg‘a is an V-comstant such that
Fllp‘a €@ in L,
(2) if B is a theovem of Qu so is I‘B.

Proof. We shall write II for IIy. If x is a variable or 1-constant, x'
stands for II‘x.

Let () be the type of @. If x is a variable of arbitrary type, let x' be
the variable which results when each dot in the type superscript of x is
replaced by &.

We shall use the expression p¢ for ‘‘power set of,’”’ e.g. p‘Q denotes the
power set of Q.

If ¥ is a variable or 1-constant, the expression Qx’ is defined as
follows:

if x is of type -, Q«' stands for x'€@Q
if x is of type (), Qx’' stands for x'€p‘@
if x is of type (-©), Qx' stands for x'ep“(Q X Q)

and similarly for higher types.

14
Qxl ... x,stands for @x; A. . . A Qxy.
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If A is a wif of Qu, the wif [I4 is constructed in three steps, namely:

(a) Replace each variable x in A by x’, wherever its occurrence is not
contained in an 1-constant. Replace each 1-constant a in A by the constant
a’ which will be defined later. Let A’ denote the resulting expression.

(b) For each expression of the form Vx’ (3x') occurring in A’ and not
‘contained in an 1-constant, substitute Vx'. @x' — (3x'. @x'Aa), the punctua-
tion being modified as required to suit the context, e.g. vx'dy’A’'(x', y')
becomes Vx': @x' — 3y'. Qy'AA(x', »'). Let A'" stand for the result of this
operation.

(c) If A is a closed wif of Qu, then II‘A is A'. Otherwise letx,;, . .., %
be a complete list of the variables occurring in A. Then II‘4 is
Qxh. .. x5 — A",

If T is a theorem of {0, then II‘T is a theorem of Qu. To prove this it
can be verified (bearing in mind the hypothesis +3x x€Q) that (i) if A is an
axiom of 0, i.e. an axiom of Fw or an axiom of choice, then -II‘4 in Qu,
and (ii) if B follows from A (from A and A — B) by a rule of inference, then
‘B is deducible from II‘A (from II‘A and I1‘(A — B)) in Qu.

It remains to be shown how, for each 1-constant a one can define a’ so
as to satisfy (1) and (2). Let B be a theorem of Qu. We may assume
without loss of generality that B is a closed wff. Let a,, ..., a, be the
1-constants occurring in B, and let C(a,, . . ., a,) be the conjunction of the
postulates which generate the system Qu(B) defined in the proof of 311T
from £0. Then by 313T,

VX1 .. V% C(Xy, ..., %) = B(Xy, . . ., Xp) in 20,

and by what we have just proved, the projection of this wif on @, i.e.

Vxl .. VX Q4. . . % —. C(xY, ..., %) = B'(xY, ..., %),
must be a theorem of Qu. This is equivalent to
VLo V% Qxh . X ACT (XL, o, Xn) QXL . . X AB(xl, ..., %)

From this it is easy to infer, since II‘B is B'' (B being a closed wif),
that conditions (1) and (2) will be satisfied if af, . . ., a, are so defined that

(3) FQa}...a,AC"(a}, . ..,d,)in Qu.

In constructing Qu from {0, as in the proof of 311T, each 1-constant is
introduced by a postulate of the form

148AA VY. yp14 — 1y8A,

which says that1A4 is the p-first x such that x84, where p is a well-
ordering of V. Now suppose that p’ is an arbitrary well-ordering of @ and
14 is an individual constant. Let II‘14 be so defined that, if the intersection
@ N A" is non-empty, then 1114 is the p’-first member of this intersection,
and otherwise it is the p-first member of @. In formal language let

4 = 1(Qx'Ax’§(Q NAMNAYY'. y'p"A —>'ly’§(QﬂA"))
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where we may take p’ to be 1(£ wo @), or any other well-ordering of Q. This
will satisfy (3) so far as concerns individual constants.

Now consider the 1-constants of type (--), i.e. dyadic relations of
individuals. These are introduced by postulates which say that 14 is the
py-first relation such that 148 A where p, is a well-ordering relation of
type ((:*) (++)). The postulates of Qu require that the p of type (-+) mentioned
in the preceding paragraph be the p,-first of the well-orderings of the
individuals. Except for this condition, p, can be an arbitrary well-ordering
of the universal set of type ((.-)). So, having appropriately selected p' we
can satisfy condition (3) by setting II‘p, = p} equal to any well-ordering of
p{(@ X @) such that p' is the pj-first member of the set of well-orderings of
Q. The reader should have no difficulty finding the proper formal
expression for a relation satisfying this condition.

Now to generalize. Let p be any of the well-ordering relations used to
introduce 1-constants in constructing Qu. If there is no well-ordering of
lower type in the field of p (as in the case where p is a well-ordering of
individuals), then II‘p can be an arbitrary well-ordering of the relevant set
in the model (e.g. @, p‘Q, P(@ X @X%X @), etc.). If p does have such a
relation of lower type in its field, then we assume that such a relation of
lower type has already been selected. Let p§ be the relation thus selected.
Then p’ must satisfy the condition that p§ is the p'-first well-ordering of
the relevant set in the model.

Thus II can be constructed in various ways to satisfy (3). This
completes the proof.

803T Let Q0 be as in the preceding theovem. Then there exists a projection
My on 72(702D) such that

(1) if a is an individual constant, —1I‘ae? in Qu(inf),

(2) if nnis a name and n the corvesponding proper numeval, then Iy ‘i
is n,

(8) if +B in Q, then Iy ‘B in Qu(inf).

Proof. Let Iy be constructed as a special case of the projection
described in the preceding theorem, with @ specialized to 7 and the
well-ordering of the individuals mapped on the natural ordering of the
proper numerals. (1) and (2) are immediate. To prove (3) it is sufficient
to supplement the proof of 802T by showing that (i) the axiom of infinity
Véfin maps on a theorem of Qu(inf), which it does since +7¢fin, and
(ii) 801P maps on a theorem, which it does since it can be proved in u(inf)
that the natural ordering of the proper numerals has the property ascribed
to p by 801P,

804T If Qu(inf) is consistent, then 801P is neither refutable nor provable in
Qu(inf).

Proof. In consequence of 803T, if the negation of 801P were a theorem
there would be a contradiction in Qu(inf).
By constructing a projection on p‘7% it can be seen that if 801P were a
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theorem this would involve a contradiction in Qu(inf), since no ordering of
p‘% of type w can be expressible in Qu(inf).

805T Tre following statements are equivalent:.

(1) T, is expressible in Qu().
(2) T, (513D) is expressible by V in Qu,
(3) Tsin is expressible in Qu.

Proof. We shall use the projection defined in 803T. Suppose T'; is not

expressible by V in Qu. Then there are individual constants a;, ..., ap
such that, for all possible choices of names #,, . . . , 7,
FOy# 7yv. . .v Op# 7pin Qu.
So by 803T, for all possible choices of proper numerals #,, . . . , %y,
Faj#nyv. . .vap# npin Qulinf).

Since we also have, by 803T,
Fal, . . ., dpE%in Qu(inf),

it follows that the metapredicate composed of the proper numerals is not
expressible by 7 in Qu(inf), hence by 7T11T, 709T T, is not expressible in

Lu().
This proves that (1) implies (2). Now assume (2) and let

R =gefAF(3x F S p ) %)

i.e. R is the family of subsets of p-segments. It is easy to prove that R is
Te-hereditary and that {A} C R, so

(a) ~fin C R in Qu.
We also have, for every name numeral # 6,
() FpYn={0,..., (#n=1)}in Qv
and
() pYO=Ainlw
From (a)—(c) it follows that (2) implies (3). That (3) implies (1) is
immediate by 505T.

The next theorem shows that V can express T'; in u(«) only if the
well-ordering of the individuals is of order-type w, that is to say:

806T If Mis an extension of Qu (=) in which V expresses T, then M is also
an extension of Lv.

Proof. 1t is easy to see that the statements (a)—(c) in the proof of the
preceding theorem are provable in Qu(x).

Since V expresses T'; in M there is, for every individual constant a, a
name # such that a = # in I, hence,
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FpYa=pYnin N,
from which it follows by (b), (c) and 618T that
+p ) ‘acfin,
and by quantificational closure
(1) ~vx p ) ‘xefin in B.

From the least-number postulates (402P), (b), (c¢) and quantificational
closure it can be inferred that our hypothesis implies

Fvx3y ¥4 p) ‘xin B,
so V&R where R is defined as in the preceding theorem, so by (a),
(2) FVgfin in M.

The result follows from (1) and (2). From 805T and 806T it is not difficult
to deduce the equivalence of the statements (a)—(c) on p. 258, §1.

§9. Concluding remarks

We have shown that the system Qv satisfies condition (2) of adequacy if
and only if T, is expressible in Qu(~). That it satisfies condition (1) is
clear from the way it is constructed. Condition (3) remains to be verified.
We have shown how arithmetic can be developed in this system and it is
easy to see that basic concepts and constructions of mathematics, such as
groups and other algebraic structures, topological spaces, Lebesgue
integrals, etc. can readily be identified with 7-constants in Qv. More
generally, let T be a mathematical theory which is finitely axiomatizable.
Let A(dy, ..., by be the conjunction of the axioms of T, where b,, . . ., b,
are the undefined terms. Then we have in Qv such 1-constants as

7\x1(3x2 .. dxy, A(x]_, ce ey xn))

and Ax; .. .x,(A(®, .. .,%,)). Evidently T can be embedded in Qu. Its
axioms are absorbed in the postulates which introduce the relevant
1-constants.

It is conceivable, however, that there might be some special mathemat-
ical theories which cannot be finitely axiomatized even in a system of type
theory, and which could be incorporated in an extension of Qv only if we
introduced new constants by infinite sets of postulates. In view of this it
seems better not to be dogmatic in asserting that Qv satisfies condition (3).
The system does, however, seem adequate for all the better known and
more important parts of mathematics.

Finally, we now review the question whether any ontological presup-
positions have been used in constructing Qv as an extension of Fw. This
extension is generated by

(1) the 1-postulates (303P)
(2) the axioms of choice
(3) the postulates 309P
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(4) The infinity postulate 3F F ¢fin
(5) 801P

The 1-postulates, as we have seen, are nothing more than implicit
definitions. They give names to things of which the existence is already
proved within the system (cf. 304T, 210T). On (2) we commented following
311T and following 512T. The comments made here on (1) apply also to (3)
in consequence of 311T. Postponing discussion of (4) for the moment and
passing to (5), this postulate merely transposes to the individuals a system
of relations, i.e. number theory, already constructed in Qu(inf) on predi-
cates of type ((*)).

Now as to (4). We seem at first sight to have committed ourselves to
the assumption that there exists, independently of the language Qv, an
infinite totality of some kind. And this is really rather paradoxical. The
trend in physics today seems to favor a finite universe. In any case, the
totality of human knowledge is necessarily finite. The end results of most
if not all mathematical inferences, if they are statements about reality,
are statements about finite configurations of things or events.

Why, then, do we use an infinite system? Presumably because the
methods of classical mathematics require a field which is closed with
respect to limit operations, even though our measuring instruments are not
sensitive to indefinitely small space-time intervals. The use of infinite
predicates, then, like that of certain complex-valued functions in physics
(cf. §1), is to facilitate calculation. The calculations are reliable if Ty, is
expressible in Qu(«), and if this is the case, then all our results could have
been obtained, at least in principle, in one of the systems Qu(x) without
assuming anything about expressibility of T'fp,.

So if we really are assuming existence of an infinite totality, we must
be guilty of a preposterous act of make-believe, and that merely for the
sake of computational convenience. But there is really no need to interpret
the infinity postulate this way. A predicate P is finite if there is a
self-terminating algorithm which lists the objects x such that xeP and
terminates itself when the list is complete. P is infinite if either (a) there
is a listing procedure which terminates only when the operator gets tired
or bored or runs out of paper, or (b) there is no listing procedure. Thus
the infinite is essentially open-ended. ‘‘The completed infinite’’; like ‘‘the
round square’’, is a contradiction in terms. The postulate V§fin is a
statement, not about the universe, but about the logistic system itself. It
means, in effect ‘‘we are using an open-ended system.”’

NOTES

11. Henkin’s definition of strong I'-consistency in [4] must be adapted to the present
context by specifying that the variable in A;(x) is an individual variable.

12. In consequence of our definition of the range of a predicate variable, and also of
condition (1) of adequacy, we are compelled to give due recognition to the fact,
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pointed out many years ago by Skolem, but frequently ignored in the literature,
that a set may be enumerable in metalanguage without being enumerable in the
object language. Of course all our predicates are enumerable in metalanguage.
See end of §5, below.

It is not easy to decide whether to use ‘‘predicate’’ as a primitive idea and
define ‘“function’’ in terms of predicate, as is done in this paper, or to follow the
reverse procedure, as is done, for instance, in [1]. The choice made here,
prompted in the first place by the conception of type theory as an extension of
the first order predicate calculus, is also partly motivated by the thought that
‘‘predicate’’ is a more elementary and ‘‘function’’ a more sophisticated concept,
as suggested by the history of the two.

cf. 5], pp. 129,131. Our notation differs from the abbreviated form of [5], p. 131
in that we do not omit the outer pair of parentheses. In his fourth edition Acker-
mann abandoned his type symbols.

Perspicuity is the aim of these notations. The forms x € FF and ¥y a x imitate
simple syntactical patterns common in natural language: noun-copula-adjective,
as in ‘“4hree is prime,’’ and noun-verb-noun as in ‘“four exceeds three.’’

For definition of confusions and collisions of variables see [T7], p. 136.
This axiom schema is analogous to *509, on p. 297 of [2].
See note 24.

Reference numbers followed by T refer to theorems, by D to definitions, by P to
postulates.

[61, vol. 2, pp. 9 fi.

[1], pp. 57 ff.

Vol. 2, p. 15.

Cf. the definition of well-ordering on p. 21 of [3].
[81, pp. 98, 366.

Subject to the modification specified in note 11.

Our method of approach to this problem has been inspired by that of White-
head and Russell in [10], Part III, Section C. Our predicate ‘‘fin’’ (614D below)
is equivalent to the analogue in Q1 of the ‘‘Cls induct’’ of [10], but the form of its
definition is entirely different.
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