409

Notre Dame Journal of Formal Logic
Volume XVI, Number 3, July 1975
NDJFAM

UNIVERSAL PAIRS OF REGRESSIVE ISOLS

JUDITH GERSTING

1 Itvoduction Universal isols were first introduced by E. Ellentuck in [4]
to provide a uniform source of counter-examples for proposed arithmetic
statements in A. Prof. Ellentuck was also the first to prove, in unpublished
notes, the existence of regressive universal isols, which provide a source
for counter-examples in Ag; his proof is essentially a category argument.
The present paper generalizes this argument to prove the existence of
universal pairs of regressive isols which can serve as a source of
counter -examples for proposed properties of Ag’.

For f a recursive combinatorial function, let C; denote the canonical
extension of f to the isols; if f is recursive, then D, denotes the canonical
extension. From [4] we have the following definition: An isol T is
universal if for each pair of recursive, combinatorial functions f and g,

CH(T) = Co(T) — {x| f(x) # gx)} is finite
or
there exists a number % such that x =# — f(x) = g(x).

We are interested here in pairs of regressive isols (S, T) that have the
property that if f(x,y) and g(x, y) are any recursive, combinatorial functions
of x and v, then the identity C/(S, T) = C4(S, T) will imply certain non-trivial
similarities between the two functions f and g.

One analogue of the above definition would require a universal pair
(S, T) of regressive isols to have the property that for f(x,y) and g(x,y) any
recursive, combinatorial functions,

C/(S, T) = Cg(s, T) — {(x,9) | F(x,y) # g(x,y)} is finite.

However, it is not difficult to construct recursive combinatorial functions
f and g having the property that for all infinite regressive isols S and T,

C/~(S, T) = C4(s, T) and {(x, y) | £(x,y) # Z(x,y)} is infinite;

even easier functions refute the implication if S or T is taken to be finite.
Thus we see that this analogue of the one-dimensional definition is too
stringent, and we are led to the following definition: A pair of regressive
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isols (S,T) is wumiversal if for each pair of recursive, combinatorial
functions f(x,y) and g(x,y),

C4(S,T) = Cg(S, T) — 3 numbers m and # such that
xz2mandy =n— flx,y) = glx,y).

2 Universal Pairs We will outline the proof of the existence of universal
pairs of regressive isols. Following E. Ellentuck, we let E denote the
non-negative integers and define a function f from a subset of E into E to be
initial if the domain of f, 61, is empty or of the form {0, 1, . . ., k} for some
keE. A function f: E — E is e-initial. Let

X = the collection of all e-initial functions,
G = the collection of all initial functions,
F=XUG.

For functions f and g in F, f <g denotes the function g an extension of the
function f. For feF, let

Nf={ge leSg}
and
8={(N;xN | f, g€G}.

Then # serves as a base for a topology on X*; we let X indicate the space
with this topology.

Lemma 1 X? is Category II.
Proof: Let A be any Category I subset of X?, i.e.,

A=Z°>A,-

where for each 7, A; is nowhere dense in X?. We wish to show that 4 ¢ X2,
Let (N, X Ng) € 8. Because A, is nowhere dense in XZ, there exist functions
fo and g, in G such that

(Nfy x Ngo) (N,x Ng)
and
(Nf, X Ngg) NAq =D,
Continuing, sequences of functions {f,;} and {g;} are obtained with
fsfosfis...and g<s g<g <.
and

(Nj; x Ngi) N4 = D.
i<t

Four possibilities arise concerning these functions:

(1) (Elk)(fk =fo1 = . . .) and (Elj)(g,- =8&j+1 = .o D,
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(i) 3RS =fra=.. ) andLoJ bg; = E,
(i) U £, = € and @)(g;= g1 = . . ),
(iv) both loJ 5f; = E and loJ 6g; =E.

For each of these cases we construct a member of X - A,

(i) Let m =mox(k,j). Then (N7, x Ng,) € X* - A.
(if) Let a function £ be defined by & = lim g;. Then (Nj, x &) ©X* - A.

(iii) Similar to case (ii). _

(iv) Let f=lim f;, &= lim g;; then (f,8) e X® - A.
i>00 1500

This completes the proof of Lemma 1.

For fe F, we define a function f* with 5f* = 6f by

ﬁw=ﬁﬂm“
where ¢ enumerates the primes in increasing order. Let 7; denote the
range of f*. Then for f e X, 7; is an infinite retraceable set.
Lemma 2 Let {ai} be an enumeration of all infinite r.e. sets. Let
A;={flfeXand a; C 7/}
and

W= %) A; ={f|fe X and n; contains an infinite r.e. subset}.
Then both W x X and X x W are Category I in X°.

Proof: Wx X = <§ Ai) x X = Zo; (4; x X). If we can prove that 4; x X is

nowhere dense in X®, then W x X will be Category I. Let (N; x Ny) € £ Then
feG with 6f ={0, 1, ..., k - 1}, where this is the empty set if £ = 0, and =,
is a finite set. Let m be a number such that mea; and mlvr/. Define a
function i(x) by

Gh ={0) o o0y k},
Wx) =f(x) forO<sx<k-1,
(k) = m.

Then (Njx Ng) € (Nyx Ny and (Npx Ng) N (4; x X) =@. Hence A; x X is
nowhere dense in X* and W x X is Category I in X?. A similar proof holds
for X x W.

Lemma 3 Let hy(x,y) and hy(x,y) be two vecursive combinatorial functions
of two variables which arve induced by the novmal vecuvsive combinatorial
opevations &, and &, respectively. Let p(x) be a one-to-one partial
recuysive function. Define a set
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A={Ge, ) (x,9) # Iylx,9)}

and a set H

H=H(p, hy ko) = {(f, g) e X2 &,(ny, mg) € 8papdi(my, mg) = Bo(my, mp)}.
If A is totally unbounded, then H is nowheve dense in X2,

Proof: Let (N;x Ng)e#. Then f, geG with 6/=40, 1, ..., 7 - 1}and 6g =
{0, 1, ... m - 1} (these are empty if n =0 or m = 0, respectively). We
may assume (card 5f, card 6¢) e \. If not, since X is totally unbounded,
extensions f' and g' of f and g fulfill this property and (N,, x Ng) ©
(Ny x Ng); the proof could proceed on (Np x Ngr). If (fo Ng) NH = P, the
proof is complete, so assume the existence of (f,&)e (Nyx Ng) NH.
(F,8) € (Nyx Ng) — 7, C m;7 and mg C 7z so that & mp,mg) C él(ﬂf,wg) and
®y(my,mg) C <I>2(1r 2. (£,8)eH— & ( mz) € 6p and p@l(n 71-) = @2(77/ 11-)
Thus <I>1(77f,7rg) - 5p and  ®,(my, mg) C p].’) However, (cord 6f, card Gg)
(card 7y, card mg) € X, so that ky(card 7y, card mg) # Ay(card 7, card mg) or, by a
property of &, and &,, card &,(7f, ;) # card &,(7f, 7). Since p is one-to-one,
we cannot have p&,(n/,7,) = <I>2(n/,7rg). Two cases may obtain:

(i) 3xe d(m;,m) and Iy e <I>2(77/ 1R - y(my,mg), v = plx),
(ii) Ixe <I>1(71 ) - &,(my,mg) and Ely € ®,(m7,7g), ¥ = px).

In each case we construct a member of £ which is a subset of (N 1% Ng) and
whose intersection with H is empty.

(i) Define function f by

_6f= {,...,n},

fix) = flx) for 0<x <m - 1,

f(n) is such that f*(n) > max (1’st components in &,7'(y)).
Define function g by

6g ={0, ..., m},

o(x) =gx) for0 <x <m - 1,
2(m) is such that *(m) > max (2’nd components in ,”'(y)).

Then (N7 x Ng) < (N x Ng) and (N- x Ng—) NH=0.

f
(ii) Define function f by
5~f_ {0 A n}’
f(x) = f(x) for0 <x <mn - 1,
f(n) is such that f*(z) > max (1’st components in &, '(x)).

Define function g by
5g =1{0, ..., m},

g(x) =g(x) for0<sx <m - 1,
2(m) is such that g*(m) > max (2'nd components of &,”'(x)).

Then (N7

This completes the proof of Lemma 3.

x Nz) C (Nyx Ng) and (N7 x Nz) NH = .
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Theorem 1 A universal paiv of vegrvessive isols exists.

Proof: Let (hlk’hzk) be an enumeration of all pairs of recursive combina-
torial functions of two variables such that for each &, A, = {(x,y) lhlk(x,y) #
kzk(x,y)} is a totally unbounded set. For each 2 and each one-to-one partial
recursive function p, we have from Lemma 3 that the set H(p, &y, ) is
nowhere dense in X®. Let W be defined as in Lemma 2. Then using
Lemma 2, the set M,

M = 2 H(p, hy, h5,) U (W x X) U (X x W),
.k

is Category I in X®. Since X® is Category II by Lemma 1, let (s,#) e X* - M.
Then s, £ € X so 7, and 7, are infinite retraceable sets. Also, s ¢W so that
s contains no infinite r.e. subset, i.e., 75 is immune. Similarly 7, is
immune and if S = Req 75, T = Req 7;, we have S, Te AR - E.

We will show that (S, T) is a universal pair. Let 2,(x,y) and k,(x,y) be
two recursive combinatorial functions such that Chl(S, T) = Chz(S, T). Let
&, and &, be the operations inducing #%; and %, respectively. Then
Req ®y(ms, m,) = Req @y(ms,m;) so that there exists a one-to-one partial
recursive function p(x) such that

® (75, m,) < 6p and P‘i’l(ﬂs, M) = By(7s, ).

But since (s,#) ¢H(p, hy, k,), the set X ={(x,y)|hi(x,y) # hy(x,y)} cannot be
totally unbounded. Thus there exist numbers m and z such that x =m and
¥y =n imply 2,(x,y) = ky(x,y). This completes the proof.

We summarize some easily shown properties of universal pairs of
regressive isols.

Proposition 1 Let (S, T) be a universal pair of vegressive isols. Then

a) both s and T ave universal,
b) S+T,
¢) (T1,5) is also a universal pair.

3 An Application The <* relation between isols was introduced in [3],
where it was shown that there are pairs of regressive isols incomparable
relative to <*, (This result also appears in [1].) The use of universal
pairs of regressive isols to contradict universal properties of AR2 is
illustrated below in a third proof of this result.

First we characterize universal pairs in terms of the canonical
extension to ARZ, Rz, of a recursive relation @ in E.

Proposition 2 LetS, TeAg - E. Then (S, T) is a universal pair <>(S, T) £
apz for all sets a CE® such that a is vecursive and E® - a is totally
unbounded.

We will make use of the following result due to J. Barback:
Lemma (Barback) Let a vecursive set a C E? be defined by

a={(x,9x<yk
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Then for X, Ye A, (X, Y) eape<>X <* Y.,
Proof: Since the statement
X <y<>min(x,y) =x

is valid in E, we apply a well-known result of A. Nerode to extend to Ag and
get

(X,Y) € age <> Din(X, Y) = X,
But in Ag, by a result in [2]
DpminlX, ¥) = min(X, Y)
and from [3], Theorem T4(c)
min (X, 7) = X <> X <* V.
Therefore
(X, Y)eapes=>X <+ Y.

Theorem 2 Theve exist vegrvessive isols S and T that ave incomparable
relative to <*,

Proof: Let (S, T) be a universal pair of regressive isols. By ‘Proposition
1(c), (T,S) is a universal pair. Again let
a={(x,y)|x <y}

Then a is recursive and E® - a is totally unbounded. By Proposition 2,
(S, T) £ agz and (T, S) £ age. Now apply the preceding Lemma to get

S#* Tand T #*S.

This completes the proof.
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