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Isomorphisms of Finite Cylindric Set

Algebras of Characteristic Zero

GYORGY SERENY

Abstract The basic fact of cylindric algebraic model theory according to
which any pair of isomorphic finite-dimensional cylindric set algebras of pos-
itive characteristic are base-isomorphic (J. D. Monk) can be extended in a
natural way to some algebras of characteristic zero. Moreover, no further
improvement is possible in any obvious way.

/ The theorem proved by J. D. Monk, which is the algebraic version of the
logical result stating that any two elementarily equivalent finite models are iso-
morphic, is in fact a generalization of the logical theorem since it includes the
algebraic counterpart of the case of languages with finitely many variables. That
is, it partly claims that if a is finite, then any two isomorphic a-dimensional cylin-
dric set algebras are base-isomorphic whenever one of the algebras has a base of
power < a (Henkin et al. [8] 1.3.6, Henkin et al. [7] 3.1.38 (1)). (Recall from [7]
that for any set U and ordinal a, an a-dimensional cylindric set algebra (Csa)
with base C/is a Boolean algebra of subsets of a U supplemented by distinguished
elements dy = {pEaU:pi—Pj} for any ij E α, and operations defined for any
/ G α a s follows: ctX= {pE aU: (3q EX)(VkE a, k Φ i) qk=pk] for any
X £Ξ a U. On the other hand, / is a base-isomorphism of a Csa 21 if there is a
one-to-one function g such that fa = [g°x:xE: a] for any a EA.) The aim of
this paper is to investigate what happens when the power of the base reaches and
even exceeds the bound set by the dimension. Actually, we shall prove the fol-
lowing theorem.

Theorem If a is finite, then
(i) Any isomorphism between a-dimensional cylindric set algebras is a base-

isomorphism if one of the algebras is not minimal and has a base of power <
a + 1 or the bases of both algebras have the same power <a + 2.

(ii) For any finite a>2,n>m>a + 2orn>m>a + \, there are nonmini-
mal isomorphic but not base-isomorphic {not even lower base-isomorphic)
a-dimensional cylindric set algebras with bases n and m, respectively.
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As a matter of fact, as we shall see, our proof of (i) will also work for all (not
only for nonminimal) algebras if one of them has a base of power < a and indeed
it will directly imply the truth of the infinite dimensional case as well (assuming
then, of course, the regularity and local finiteness of the algebras concerned) giv-
ing an alternative proof of Monk's original theorem. Actually, Monk's theorem
can also be given in a slightly strengthened form guaranteeing not only the exis-
tence of a base-isomorphism between the algebras concerned but stating that all
isomorphisms between them are in fact base-isomorphisms.

Our theorem above is related to some results of Andreka, Comer, and
Nemeti concerning various properties of finite-dimensional Csα's such as, for
example, the minimal number of generators, the homogeneity of full set alge-
bras, or the term definability of substitutions (cf. Comer [6] Theorem 2.5 and
3.7, Andreka and Nemeti [3]). In most of these cases, as in ours, on the one
hand, the positive results are established for algebras with base of power <
a + 2; on the other hand, this bound is proved to be the best possible.

As far as applications of the Theorem are concerned, the proposition gen-
eralizing Monk's original result to the algebraic version of classes of models (due
to Andreka and Nemeti, see [8] Prop. 3.4 on p. 157) can be strengthened so as
also to include some algebras of characteristic zero. Further, the model theoretic
fact according to which compact models for languages with an infinite sequence
of variables of length a. are | a \+-universal (cf. Nemeti [10] Theorem 2, Chang
and Keisler [5] Ex. 4.3.24 on p. 211, Sereny [11]) can without any change be
extended to models for languages with finitely many variables. The homogeneity
of full Csa's with bases of power < a + 2 (cf. [6] Th. 3.7) can also be directly
derived from our result. Finally, Andreka, Dύntsch, and Nemeti [2] have recently
used both parts of the Theorem to show that, in the case of a finite dimensional
Csa with base of cardinality μ, every so-called permutation invariant function
is term definable whenever μ < a + 2 and otherwise this fails to remain true.

The second part of the Theorem shows that the first part cannot be improved
in any obvious way. (The case of minimal algebras is taken care of in [7] 3.1.38
and in Lemma 14 below.) In addition, it improves the counterexample of Birό
[4] showing that the bases of algebras needed to prove the existence of isomor-
phic but not lower base-isomorphic Csa's are not necessarily different.

2 Now, let us turn to the proof of the Theorem. First, a few words about
notation, a is always a finite ordinal except when explicitly stated otherwise.
We use the terminology and notation of [7] on cylindric algebras, among
others d*(R) = Tί<ij>sR ~ dvW Ξ Csa, R c α X a). Moreover, we set d% =

d®(a x a) and omit superscripts when no confusion is likely. We follow the
notation of [7] even when that notation is not the most widely used. For exam-
ple, H1 / will denote the restriction of a function/ to a set H (cf. [7], p. 28).
fu is the function differing from a given function / only at place k where its
value is u (cf. [7] 3.1.1). Trying to keep the exposition self-contained we shall
give the definitions of the key notions when they first appear.

In order to prove the first part of the Theorem itself, we should make some
preparations. The first fact we need is related to the description of atoms of sim-
ple minimal cylindric algebras in [7] 2.4.68 (see also [6]).
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Lemma 1 If d is an atom of a Csα8ί, then 21 is minimal.

Proof: Suppose that 21 is not minimal. By [7] 1.9.2(iii), we may assume that
a > 2. Let Mn% be the universe of the minimal algebra of 2t, and let U be
the base of 21. We may suppose that \U\ > a since otherwise d = 0. For any
qGaU, let q + = <min{y Ga:qj = qt} : / E α>, Hq = Rgq+, Pq = d(Hq X Hq)
(IL eα-j/, ̂ + ) Now, there is an Jf E ,4 ~ MAZ21 and q E X such that P^ JT<£ Af/iSl
since otherwise for all Jf E A ΛT= Σ^ejr ^V^M/i?!. Thus cia~Hq) (PqX) £Mn%
since P^JT = c^Hq){PqX) (Π, e«~j/,<V) Therefore 0 < c [ a ^ ) ( / ^ 0 <
rf(//^ x Hq), which in turn, by | U\ > α, implies that 0 < c{a^Hq)PqX- d(Hq x
(a - //^)) d((a - //^) X α) < d showing that d is not an atom of 21.

By [7] 3.1.38(8), we obtain the next Lemma.

Lemma 2 The power of bases of isomorphic Csa's are the same if one of
these cardinalities is <a.

Now, we shall show that

Lemma 3 The power of bases of isomorphic nonminimal Csa 's are the same
if one of these cardinalities is <α.

Proof: We may suppose that a > 2. The claim follows directly from the two
facts below, where & is a Csa with base T, and for any / E α, et(x) is the fol-
lowing equation: d({i] x a) -CjX = x.

(3.1) If |Γ | = α , then

(VxE C ) [ 0 < Λ : < J=> (V/eα)β/(Jc)].

(3.2) If |Γ | > α , then

(VJC G C ) [ ( 0 < J C < J Λ (V/ E o0e/(x)) => x = d].

Indeed, if 21 and 93 are nonminimal Csa's with bases U and fF, respectively,
/ is an isomorphism from 21 onto 33, then, by Lemma 2, we may suppose that
I U\ = a and \W\ > α. Further, by Lemma 1, there is an X E A such that
0 < X< J5*, so that 0 <fX<d®. Thus, by (3.1), (V/ E α)β/(X) holds imply-
ing the truth of (V/ E α)ef (/Y). So, if | W| > α, then, by (3.2), we have/JT = d,
which is a contradiction. Since (3.1) is nothing more than the formal expression
of the trivial fact that any repetition-free sequence with the same finite length
as the power of its range is uniquely determined by all but one of its elements,
to establish Lemma 3, only (3.2) remains to be proved. Let us therefore suppose
that \T\ > a and assume the remaining hypotheses of (3.2) for an arbitrary
XGC. Then

(*) For any / E a, x E X and t G T ~ Rg(i ] x),
there is a y E X such that /1 x - i 1 y and yt = t.

In fact, if t £ Rg((a - /) 1 x) holds, then y = x\ E Xsatisfies the requirements.
If not, lety = x~ιt. Theny > /. Moreover, there is a u E T - Rgx since \Rgx\ -
a< \T\. Now, xJ

u E Xsince e3(X) holds, thusy = (xJ

u)\E Xalso, which proves

(•).

An induction argument based on (*) shows that for any xGd and 0 < / < α,
there is a y E X such that /1 y - /1 x, which in turn, with / = α, yields d<X.
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This concludes the proof of (3.2) since X< Jby the hypotheses. Consequently
the proof of Lemma 3 is also complete.

Turning to the case when the power of the base is just a + 1, we introduce
some notation and prove a simple technical proposition.

Definition 4 Let 6 be a Csα with base Γ, | T\ = a + 1.
(i) For any / E a and q E d9 let W/# = q}9 where t is the unique element of

Γ~Λ*<7(cf. [6]).
(ii) For any / E a and X E C, let

M?X= -X Ci(X d) + -C/ί-Λ' d),

where the superscript will often be omitted.

Proposition 5 Under the conditions above, for any /Gα, q E J, and XGC9

qGMtX iff niiqeX.

Proof: First, let q E M/X If q E -X Ci(X'd), then there is a / E Γsuch that
#/ E ΛΓ J. Thus t £ Rgq since q φ X9 that is m/# E X If tf E -C (-X J ) ,
then ra,# ^ —X-d. That is, m^q G X again since m/^Grf by definition. Now,
let ra/tf E X If_<7 E X also, then q £ Ci(-X-d), so q E M, X If (7 ̂  X, then
# E —X'Ci(X'd) since m/# E J b y definition. Consequently, # E M,X

As a last step in our preparations, we recall from [3] a result of Andreka and
Nemeti on the existence of substitution operators.

Lemma 6 Let K be the class of Csa's with base of power <a + 2. There is
a function s defined on K x aa such that s assigns to any 21 E K and r Gaa a
function sf ELΛΛ such that
(a) for any XeA andx E 1st, x E sfXiffx° r E X
(b) /or any^SK,fG /s(2ί,S3), XeA,andτe α α , / ^ X = ^ / X

The original version of this result regarding the case K = <a Cs^ was proved by
Monk (cf. [8] 1.3.6). Comer (and, independently, the present author) proved it
to be true in case K = a Csa. For that matter, Lemma 6 also holds with K as the
class of all minimal Csa's (see Sereny [13]).

Now, we are ready to prove the first part of the Theorem itself. Let 21 and
S3 be Csα's with bases U and W, respectively, and let/ be an isomorphism from
21 onto 93. Let us suppose that one of the following conditions holds:

(i) I U\ < a
(ii) I U\ = a and 21 is not minimal (therefore 93 is not minimal either)

( i i i ) \U\ = a + l a n d \W\ = \U\.

By Lemmas 2 and 3, in any one of these cases the powers of bases of 21 and 93
are the same, so in what follows \W\ = \U\.

Let a E α U be such that

Rga= UΊf \U\ < α + 1

and

a<E d * i f \U\ = c x + 1.
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LetQ= {XGAiaGX}. Since aG ΠQ and His finite, n / * g = / ( Π 0 Φ
0 (where g*H = Rg(H 1 g) for any function g and set //) . Let Z? G Πf*Q be
arbitrary, and let Q+ = {7 G B: 6 G 7}.

Now, by the definitions, f*Q c Q+. On the other hand, if Y£f*Q, then
f~ι Y£ Q, that is, a Gf~ι - F. Therefore -YGf*Q Q Q\ which implies that
Y£ Q+ Consequently,

(7.i) r e = δ+.
Since we would like to treat the two essentially different cases | U\ = a + 1 and
1 U\ < a + 1 together, it will be useful to supplement the notation introduced
in Definition 4. So if | U\ = a + 1, then we use the notation of Definition 4 to-
gether with maa = α, mab = b,M* = A] Id,M® = B] Id, while if | U\ < a + 1,
then we set

mid = #, ra,£ = & for any / G α + 1

and

M? = AJ[ Id, M? = B1 Id for any / G α + 1.

Further, by (7.1),

(7.2) oGrf | iff tf$ G Q iff rf$ G β + iff b G rff for any U G α.

Therefore, if | U\ = α + 1, then a E:d% implies 6G J 5 3. Consequently, in this
case the conditions of Definition 4 are satisfied. We set

H=({XeA:mia(ΞX}:iea+ 1>

H+ = ([YGB:mibe η:/Gα + l>

G= <((lG^:M°τeIl:τGαα):/Gα+ 1>

G+ = «{Y<ΞB: (m/6) o r G y ) : r G αα> : / G a + 1>.

From (7.1) and Proposition 5 we obtain

(7.3) f*Hi = Hf for any / G a + 1.

Indeed, ΓG/*///iff m ^ G / " 1 riff α G M f / - 1 r = / - 1 M p r i f f M / 8 r G / * β =
Q + iff δ G Mf r iff /ii/6 G Fiff F G Hf.

Similarly, by Lemma 6 and (7.3), we get

(7.4) f*Gi(τ) = Gf(τ) for any r G α α and / G α + 1.

In fact, Y G f*Gi(τ) iff (m, α) o r G Z " 1 Y iff m.α G sf/"1 Y = / " ^ f y iff
sfY<Ξf*Hi = Ht iff mf 6 G 5?y iff (/fi/6) o r G F i f f F G Gf (τ).

Now, we define the function that induces the desired base-isomorphism.
First, let g = {(ak, bk) : k G a.}. g is one-one by (7.2). Moreover, g maps U onto
FFif I C/| < α + 1 since in this case Rga = Uby our stipulation. Now, we set
h=gU {(u,w)}9 where u and w are the unique elements of U~ Rga and W -
Rg b, respectively, if there are any. If not, let h = g. Clearly, h is a one-one func-
tion from U onto W whether | U\ < a + 1 or | U\ = a + 1.

Further, let n = <min{y G a + 1 :/?gx c Rgrrijd} :x G αC/> and σ =
«min{y* G α: (mnxa)j = xk]:k E a):x G aU). (Note that « is well defined
therefore so is σ.) Then for any x G α£/and k G a, xk = (mnxa)σχk, that is

(7.5) x = (mnxa) ° σx for any i G α ( / .
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Thus for any k E α,

( A ° 4 = h((mnxa) ° σx)^ = h(mnxa)σχk

h(aσχk) = bσχk = (mnxb)σχk = ((mnxb) ° σx)k

if σxk Φ nx or | U\ < a + 1

A(w) = w = (mnxb)σχk = ((mnxb) ° σ ^

if σx/: = «Λ: and \U\ = a + 1.

Consequently,

(7.6) /z o x = (mnxb) o σ̂  for any Λ: E α £Λ

Now we are ready to show that / is in fact a base-isomorphism induced
by h. Let * E A, x E α £/be arbitrary and let 7 = fX. By (7.4), (7.5), and (7.6),
we obtain x E X = f~ι Y iff (mnxa) ° ^ E / ~ ! F iff/"1 F E GΛX (σx) iff
F E GΛ+(σx) iff (mnxb) ° σx E F iff h <>χ E r = /Y, which proves part (i) of the
Theorem.

Before turning to the second part, we would like to point out that, in addi-
tion to what is claimed in part (i) of the Theorem, we have in effect proved a
strengthened version of the finite dimensional part of Monk's original theorem
referred to in the introductory remarks. What is more, the infinite dimensional
part (also in this improved form) follows from our proof immediately as well,
using the fact that any infinite dimensional regular and locally finite cylindric
set algebra with a finite base can be generated by one of its finite neat reducts
(cf. (*) in Sereny [12]).

3 We begin the proof of the second part of the Theorem by giving the basic
definition, which is a variant of the notion of cylindrically equivalent sets intro-
duced in Andreka et al. [1] and used in [4].

Let a > 2 and 2ί be a Csa. OΦP^disa cut (of d) if qP = q(d ~ P) = ctd
for any / E a.

In order to describe the idea behind the proof, we should recall from
[7] and [8] that an isomorphism/ of a Csα2I is an ext-isomorphism if/ =
(X Π a W: X E A) for some subset Wof the base of 31. Further, a Csa is base-
minimal if it is not ext-isomorphic to any Csa except itself. Now, as we first
shall see, Csa's generated by single cuts are all isomorphic. Since Birό [4] proved
that the Csa

9s generated by the special single cuts defined in [1] (which, for
the sake of completeness, will be described before Lemma 16 below) are base-
minimal, in order to prove part (ii) of the Theorem, we should only construct
Csa's generated by single cuts that are not base-minimal, which is just what we
shall do in the concluding part of this paper.

Now, let us first describe the simple structure of Csa's generated by single
cuts. (@bα(/is the cylindric algebra of all subsets of aU for any set U.)

Lemma 8 Let a > 2, n E ω, n > a, and let P be a cut ofd = J@ΐ)Q>z(α X a).
Further, let C = {P,d ~ P}. If % = ^^"{P}, and Wl is the minimal algebra
of 21, then for anyXeA,
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X £ M iff there are unique QELM and Z E C
such that Q d = 0 and X = Q + Z.

Proof: First observe that, by [7] 2.1.17(i),

which in turn implies directly that

(8.1) d is an atom of Wl

(8.2) for any Z E C, Q E M, if QZ Φ 0, then QZ = Z.

Thus 5 = [Q + Z:Qe M, Z E C} U M i s a subuniverse of ©b" £/ since it is
obviously closed with respect to addition; for any QE M, Z E C,

-Q-J + (J~Z)

-(<2 + z) = -β -J+-ρ.(J~z) =« if-β (d~z)#o

—Q'—d otherwise,

and ctZ = Cid for any / E a, Z E C. Consequently, v4 g S since M U C ί S .
Moreover, for any Q E M and Z E C, Q + Z £ M iff Qd = 0. Indeed, if
Q-dΦθ for some β e M , then, by (8.1), Q-d = d, so Q 2 d 2 Zfor any Z E C,
that is Q + Z = Q E M. If, on the other hand, Q + Z E M for some QeM,
ZeC, then Q ZΦO since otherwise Q E Mimplies Z E Mcontradicting (8.1).
Therefore, in this case QZ = Z by (8.2), that is Q J Φ 0.

Finally, turning to the unique expressibility, let Q + Z = Q' + Z'_£ M,
Q,Q' E M, Z,Z' E C. If Z * Z\ then Q' + Z' = Q + Z + Z' = Q + d(ΞM.
Hence Z = Z'. By (8.2), there are three possibilities. If QZ = Q'Z = 0, then
g = Q . - Z = ( Q + Z ) . - Z = ( Q / + Z ) . - Z = Q / . -Z = Q /.IfQ.Z = Q / Z = Z,
then Q = Q + Z = Q' + Z = Q\ At last, without loss of generality, let Q Z = Z,
Q ' Z = 0. Then Q = Q + Z = Q/ + Z, soZ = Q-Q' E M contradicting (8.1).

Lemma 8 leads directly to the following.

Lemma 9 All Csa

ys generated by single cuts are isomorphic.

Proof: Let 2ί and S3 be algebras generated by single cuts P and R, respectively,
and let 5DΪ and 9? be their respective minimal algebras. Now, for any Csa0ί,
if there is a cut of d®, then β must be of characteristic zero (cf. [8] 1.5.3).
Therefore, /s(2K,9ΐ) Φ 0 by [7] 2.5.30. Let h E Is(TlS) and g = {<^#>>
(d% - P, J 3 3 ~ #>}. Then, by Lemma 8,/= h U « β + Z, Λβ 4- #Z> : Q E M,
Z E {P, J H - P}, Q-d% = 0} is an isomorphism from 21 onto 33.

Now we shall construct our special cuts that generate non-base-minimal
Cs α 's. In order to do this, we first describe a more general way to define cuts.

Definition 10 Let a > 2, n E ω, n > a, and & = @bα«. For anyp,qGd such
that Rgp-Rg q, considering τ = ^~ 1 o/?E α αasan element of the symmetric
group Sa of degree α, r can always be expressed as a product of transpositions.
Though the number of these transpositions are not unique itself, its parity is in
fact unique, that is the number of transposition factors in any such product yield-
ing a given element of Sa is either always even or always odd (see e.g. Leder-
mann [9] Theorem 21). Consequently, we can define a function mapping Sa

onto 2 as follows:
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for any r G Sa, let τr(τ) = 0 if the number of transpositions expressing r as
their product is even, and let τr(τ) = 1 otherwise.

Further, for any X, Y c J, let

£ ( * , 7) = [p G rf: (3tf E X)(3τ GSa)(p = qoT and τr(r) = 0)

or (3qG r ) ( 3 r G S α ) ( / 7 = ̂ o T a n d 7 r ( r ) = 1)},

E+(X, Y) = d~E(X,Y).

A Q c C i s a kernel (of a cut) if it consists of two disjoint elements being sub-
sets of d; and, using from now on the notation Xd = (UQ) ~ X for any Jf G Q,
(a) Rgq = Rgq' implies q = q' in case of every q9q' G Ug,
(b) ί ^ ^ : ^ G U 5 J = S&αfl, where SZ f̂l = {x:xc n, \x\ = a] that is the set

of all subsets of n with a elements,
(c) If H c n, \H\ = a - 1, and X G Q, then there are i G a, q G E(X,Xd)9

q+ G £+(A r,A r d) such that (α - {/}) 1 # = (a ~ {/}) 1 tf + and

Our construction will be based on the following fact.

Fact 11 If Q is a kernel, X G Q, then E(X,Xd) is a cut.

Proof: Let us assume that β is a kernel, Xβ Q, i G α, and let us introduce
the following abbreviations: E = E(X9X

d), E+ = E+(X,Xd). Since, from the
definition, CjE,CiE+ c ad, we have to prove only the other inclusion. So let
p G Cid. By hypotheses, there arey Ga,qGE,q+ GE+ such that (a — {j}) 1 q —
(a~{j})ϊq+andRg((a~{j})]q)=Rg({a~{i})]_p).Letr=piί.,r

+=pi]/.
Then Rg r = Rgq, Rgr+ = Rgq+. Moreover, r,r+ Gd. Now, let r = q~ι ° r and
τ+ - (q + )~{ ° r+. We shall show that r = τ+. Indeed, τ(i) =j = r + (/), and
if k Φ /, then there is a t G a, t Φ j such that q(t) = p(k). Hence if k Φ i,
then τ(k) = q~ι{p{k)) = ςr^ίςr(0) = ί = (^ + )~ 1(^+(0) = (^ + )" 1 (^(0) =
(q+)~ι(p(k)) = τ+(k). The other case being completely analogous, we may
suppose that π(r) = 0. Since E(E,E+) = E and E+(E,E+) = E+ by the first
two conditions in the definition of a kernel, we have rGE9r

+GE+. Therefore
p = rι

p. = (r+)ι

Pι implies p G CjE Π CjE+, which was to be proved.

Now, for any α > 2 , n Gω, « > α + l,we shall define a pair of sets which
we shall show to be a kernel of a cut that generates the desired non-base-
minimal Csa with base n. From now on n is always a natural number.

Definition 12 First, for any kjGω- 1, and H^kωy L c Jω, we denote
the set obtained by concatenation of elements of H and L by H~L, that is,
if / / , L Φ 0, t h e n w e set H ~ L = {xG k+Jω : <x, : iGk)G H, ( x k + i : i Gj> G L )
(cf. [7], p. 33), and for any H we set H~0 = 0~H = H. Further, for any k G
ω ~ 1 a n d / / c ω , let Rk(H) = [xGkH: (V/,y G k)(i<j =>*/ < xy )} and we set
R0(H) = 0 for any / / c ω . We define the sets G(n,a) and G + ( « , α ) by induc-
tion for any a > 0 (resp. α > 0) and « > α.
(a) G(n,0) = 0 for any « > 0,
(b) G(A2,1) = {<0,0», G+(n,l) = {<O,A:>:1 <k<n] for any w > 1,
(c) G(α + l ,α) = {5α}, G+(a + l ,α) = {(5α)^ :/ G α } , where 5α = </:/ G α>,

for any a > 2.
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(d) Let a > 2, n > a + 1. Suppose that for any β < a and n > β, G(n,β)
has already been defined, and for any 0 < β < a and n > β, G+(n,β)
also has already been defined. Let / = min(α,« - (a + l)j and I+ =
min{α - 1, n - (a + 1)}. Then

G(«,a)=U/G/G(a+ 1, a - i)~Ri(n ~ (a + 1)),

G + ( « , c 0 = U / e / + G + ( α + 1, α - / ) " / ? / ( * ~ (α + 1)).

Lemma 13 For every a > 2, « > α, {G(n9a)9G
+(n9a)\ is a kernel of a cut

ofd^n.

Proof: Proof is by a straightforward induction based on the facts that for any
n > 1, {G(«,l),G+(«,l)j obviously satisfies conditions (a), (b), (c) in Definition
10 and for any a > 2, {G(α + l,α),G + (α + l,α)} is in fact a kernel. Even
in this second case, only the last condition of Definition 10 needs proof. Let
//<Ξ a + 1, \H\ = a — 1. There are two cases. If / / £ α, then there is a unique
ie a such that /<£//; thereforeRg((a~ {/)) 1 sα) = α ~ {/} =/fand ( α ~ {/}) 1
5α = (α ~ {/}) 1 ( O ^ . If> o n the contrary, a G H9 then there are /,y E α,
/ gfcy such that /,y £ H. Hence i?g((α - {/}) 1 (sa)

J

a) = (a + 1) ~ {/JJ = H
and, using (//) to denote the transposition interchanging i andy, (a ~ {/}) 1
(5α){ = (α ^ {/}) 1 ((sja o (//)). Moreover, ( j α )ΐ E G + (α + l,α) c
E+{G(a + l,α),G + (α + l,α)) and (5α& U/) e £ ( G ( α + l,α),G+(α + l,α))
since (sja E G + (α + l,α) and τr((//)) = 1.

Though we do not need it, a remark on the special case when the power of
the base is just a + 1 may be of some interest. As it can be proved, the only pair
of cuts of d = d®*a("+V i s j u s t E = E(G(a + l ,α),G + (α + l,α)), d ~ E.

In order to prove that the Csa's generated by cuts whose kernels are defined
in Definition 12 are in fact not base-minimal, we should first prove a simple
lemma (which, however, would have a place in our discussion anyway since
it nicely fills in the gap (concerning the case of minimal algebras) in our main
theorem).

Lemma 14 Let a be arbitrary (finite or infinite). For any isomorphism
between minimal Csa's, the isomorphism itself or its inverse is an ext-base-
isomorphism (that is the composition of a base- and an ext-isomorphism).

Proof: Let 2)ϊ and 9Ϊ be isomorphic minimal Csa's with bases U and W9 respec-
tively. We may suppose W^U, WΦU9 and, by [7] 3.1.38(1), | W\ > a Π ω.
Let g = (X Π aW:X E M>. By [7] 0.2.14(iii), it is enough to prove that
g E IsTl. Since g E HoWΰl and m is simple (cf. [7] 3.1.70(i), 3.1.64), we
only have to check that g preserves cylindrifications. This in turn follows from
the fact (implied by [7] 2.1.17(i), 2.3.14, and the simplicity of 2)ΐ) that Wl =
©ff^ldy: ij E a] since on the one hand in any CAa, Cidij = 1 for any ij E a
and, on the other hand, C^UJSH -dψ=lm, cpnjGH - d$ = 1* for any finite
/ / c α and all i E a - H because \U\ > \W\ > a Π ω.

Now we have the property we need.

Lemma 15 For any n, m E ω, n > m > a > 2, the Csa with base n generated
by E(G(n,a),G+(n,a)) is ext-isomorphic to that with base m generated by
E(G(m,a),G+(m,a)).
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Proof: If %k = <&QBi3ak[E(G(k9a),G+(k9a))} for any k > a > 2, k G ω, and
gΛ/fI = < A' Π αm : X G v4Λ> for any n > m > a > 2, then, by Lemmas 8 and 14,
g/7/τ? preserves all the cylindrifications since E(G(n,a)9G

+(n,a)) Π am =
E(G(m,a),G+(m,a)) for all n > m > a > 2, which in turn, adding [7] 0.2.18(i)
to the same argument that we used in Lemma 14, is enough to guarantee that
gnm G Is($n,%m). (As a matter of fact, the aCsa generated by E(G(a + l,α),
G+(a + 1, a)) is base-minimal since in the case of a Csjί with base U, there are
no cuts of d% if \U\ < α . )

Before concluding our proof, for the sake of completeness, we cite the main
result of [4] (Lemma 2 and Lemma 5). For any a > 2 and / G ω, / > 1, a set
Xa £ a(a + /) is defined by induction on α as follows:

χί= { 5 G

2 ( 2 + 0:^i =^o+ l(mod(2 + /))j

and using the abbreviation d — d®, where © = @bα+1(α + 1 + /),

^ + 1 = (5Grf:α + i£Rgs,oi 1 s e X ΐ ) U f5 6 J : 5 α = a + /, α 1 s ί Λ ^ }

U ( i j [sGί:5y = o + i,α1 < G ^ } ) .

Lemma 16 For any i E ω, / > 1, α«ί/ α > 2,
(a) Jίj, = @9e b α ( α + / ){^} fe base-minimal,
(b) Xι

a is a cut of dn'^

Finally, recalling from [8] (Def. 3.1, p. 156) that / is a lower base-
isomorphism between two Csa's if / = ef1 ° b ° e2 for some ext-isomorphisms
£i,e2 and base-isomorphism &, we can finish the proof. In fact, if a > 2 and
w > w > α + 2or/ ι>m>Q! + l, then, by Lemma 9, Fact 11, Lemma 13, and
L e m m a l ό ^ ^ g ^ ^ ^ ^ l i s i s o m o r p h i c t o β g ^ ^ ^ ί G ί m ^ ί ^ + ί m ^ ) ) ) .
Yet, by Lemma 15 and Lemma 16(a), they cannot be base-isomorphic—not even
lower base-isomorphic—which proves the second part of the Theorem, complet-
ing the whole proof.
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