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Urquhart's C with Intuitionistic Negation:
Dummett’s LC without the Contraction Axiom

JOE M. MENDEZ and FRANCISCO SALTO

Abstract This paper offers a particular intuitionistic negation completion of
Urquhart's systent resulting in a super-intuitionistic contractionless proposi-
tional logic equivalent to DummettisC without contraction.

1 Introduction Ono and Komorilf] is ageneral study of propositional contraction-
less logic, i.e., propositional logics without the rule

I, aq,a, A > g
I a, A— y

in a Gentzen-type formulation, or without the axiom
[A— (A— B)]— (A— B)

in a Hilbert-type one.

In the “concluding remarks” of their paper, Ono and Komori encourage the study
of intermediate logics (i.e., logics between the intuitionistic and the classical logic)
without the contraction principle. Moreover, in Urquh&i} & most interesting posi-
tive propositional logicC is introduced, which can intuitively be described as the pos-
itive fragment of Dummett's C (seell]) minus the contraction axiom. There are es-
sentially two possibilities for extendir@with a negation connective. The firstone, a
kind of “semiclassical negation,” gives as a result Lukasiewicz’s infinite-valued logic
Lw. The second, a kind of semi-intuitionistic negation, generates a @igiehich
is, from a intuitive point of view, Dummett’s C without the contraction or reductio
(i.e.,(A— —=A) — —A) axioms (a complete semantics fot is offered in Mendez
and Salto[}]).

But there is still a third possibility left, namely adding the reductio axioi@to
The resulting system (let us refer to it B}r) is, intuitively, Urquhart’sC with in-
tuitionistic negation or, alternatively, Dummett’<C without the contraction axiom.
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SoClr is a prominent component in the class of super-intuitionistic logics Ono and
Komori refer to.

In what follows, we shall slightly modify the standard techniques of Routley-
Meyer type semantics (sé€] so as to deal witiCI r-nonrelevant consistent theories.
We shall introduce negation as a primitive connective, but it would be easy to define
it by means of a falsity constant (ség)| In the development of these semantics a
point of interest is, we think, to show that the contraction axiom is not derivable from
Clr. So ing5lthe reader can find the simplestr-model falsifying the contraction
axiom. The results off] are not presupposed in this paper as fa€ksis concerned.

2 Urquhart’sC with semi-intuitionistic negation: thesystemCl  Urquhart'sC can
be axiomatized as follows.
Axioms:

Al. (B— C)— [(A— B) - (A— Q)]
A2. [A—- (B—- C)]—[B— (A— Q)]
A3. (AAB)—> A (AAB)— B
Ad. A—[B— (AAB)]
A5. A— (Av B) B— (Av B)
A6. [[A— B A(A— O] —[(AvB)— C]
A7. (A—- B)v(B— A
Rule:
modus ponens: ¥ Aand- A — B, thent B.

In order to formulateCl we add to the sentential language®the unary connective
— (negation) and the following axioms.

A8. (A— —B) » (B— —A)

A9. A— (-A— B)

3 Semanticsfor CI A Cl-model is the structuréK, R, =) whereK is a set and
Ris aternary relation oK subject to the following definitions and postulates for alll
a, b, ¢, d € K with quantifiers ranging oveX.

dl. a < b=4;3Ix Rxab

d2. R%abcd=,, Ix]RabxandRxcd

Pl.a<a

P2. a <bandRbcd= Racd

P3. R’°abcd= 3x[ Rbcxand Raxd

P4. Rabc= Rbac

P5. RabcandRade= b <eord <c.

Finally, = is a valuation relation frorK to the sentences @f satisfying the following
conditions for alla € K:

1. For each propositional variabfeanda, b € K, al=panda<b= bk p;
2. aE= AABiff aE Aanda = B;
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3.aE AvBiffaE Aorak B;
4, al= A— Biffforall b,c e K, Rabcandb = A= c = B;
5. aE —Aliffforall b, c e K not-Rabcorb j& A.

A formula isvalid iff a = Afor all a € K in all models. We have shown i] that
Ais a theorem o€l if Ais valid.

4 Adding thereductio axiomto Cl: thesystem Clr  To formulateClr we add to
CI the reductio axiom:

Al10. (A— —-A) - —A.
Now, we note:

1. CIr and the Lukasiewicz's-valued logic are independent systerAd0 is not
atheorem ofLn; Clr does not count with nonintuitionistic principles such as,
e.g., strong De Morgan Laws.

2. CIr clearly includesClI (which is, of course, included ihn) but for pur-
poses of comparison only (s@&lbelow), we describe &1-model falsifying
the reductio axiom. Consider@ -model (K, R, =) with K = {a, b} and let
Rabh Raag but notRabg not-Rbba not-Rbbh b = A, buta |£ A. ltis
clear thata = — A, and it is not difficult to show thah = A — —A. Thus,
at (A— —A) - —A and scA10is not valid.

3. As shown ing5]below, the contraction axiom is not a theorenGif .

5 Semanticsfor Clr together with a model falsifying the contraction axiom
A Clr-model is just like &Cl-model but with the addition of the postulate:

P6. Rabc= IxRcbx

Now, semantic consistency is easy. As an illustration, we show the validl0f
for which we use the equivalence between the propositiéri®‘is valid” and “if
al= A— —A thena = —Aforall ac K in all models” (seelfj). So suppose for
reductio a model with soma& € K such thaa = A — —Aanda [~ —A. By clause
(5) there are somb, c € K such thatRabcandb = A. Thus,c = —A (sincea =
A — —A, Rabc b = A), which contradictRcbd(since Rabg P6) andb &= A (by
clause (5)). Therefor&10is valid.
Now, we provide &l r-model falsifying the contraction axiom. ConsideCk -
model (K, R, =) whereK = {a,b,c,d}; aE A, bE A, cE A dE A ak
B, b}~ B, c = Bandd }~ B; Raah Raac Rada Rabc Racc Radh Radg
Rbac Rbbc Rbdh Rbcc Rbdc Rccg Rcac Rcbg Rcdc Rdaa Rdbh
Rddd Rdah Rdac Rdda Rdbc Rdcc Rddh andRddc
It is an easy but certainly tedious task to prove that P1-P6 are verified. It is no
more difficult either to show tha = A — (A — B) (notethab = A— Bandc =
A— B)andthaa s A— B(RaabhakE A, b~ B). So[A— (A— B)] - (A—
B) is not true in this model, which is the smallest falsifying the contraction axiom,
since there is no model witk = {a, b, c} falsifying the principle under consideration.
We finish this section by noting that the postulate,P6

P6. 3x Raax(for eacha € K),
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is equivalent to P6 in presence of the intuitionistic postulate.

6 Completenessof Clr We begin with some definitions and then we prove some
previous lemmas.
A theory is a set of formulas @I r closed under adjunction and provable entail-
ment (that isa is atheoryif wheneverA, B € a, thenA A B € a; if wheneverA — B
is a theorem and\ € a, thenB € a); a theorya is null iff no wff belongs toa; prime
iff wheneverAv B € a, thenA € aor B € a; regular if all theorems ofClr belongs
to g; finally, ais consistentf a does not contain the negation of a theorenCof.
We now define theClr-canonical structure as the pak®, R®) whereK® is the
set of all nonnull prime consistent theories, aRfdis defined orK® as follows: for
all formulasA, B anda, b, c € K€, Rabciffif A— BecaandA < a,thenB e c.

Lemma6.1 If ais a nonnull theory, then a is regular.

Proof: Supposé\is atheorem, andId® € a. By the theoremtA— (B— A), B—
Ais atheorem. TherB € a. O

Lemma6.2 For any wif A and theory a, a is inconsistent ififA- A € a.

Proof: (=) Supposea is inconsistent. Ther;B € a for some theoren. By A9,
-B— (AA—A)isatheorem. ThuAA —A € a. («) SupposeAA —A € a. Given
Clr, =(AA—=A) and(A —- —A) — —Aare interchangeable. S&(A A —A) and
(AA—A) — —B (with B atheorem) are theorems. ThusB € a. O

Lemma6.3 If Ais not provable inClr, then there is a nonnull prime consistent
theory T which does not contain A.

Proof: ClIr is anonnull consistent theory; by Zorn’s lemma, there is a maximal non-
null consistent theory without A. If T isnot prime,theBv Ce T, B¢ T,andC ¢

T. Define [T, B] ={E|3D[D € Tand(BA D) - E€CIr]},[T,C]={E|3D[D e T
and(C A D) — E € CIr]}. Itiseasy to show thafl], B] and [T, C] are nonnull the-
ories that strictly includg’. By the maximality ofT, there are three possible cases.

Case 1. [T, B] and [T, C] are inconsistent.

By definition and Lemmi&.2 (BA D) — (EA—E’), (CAD') - (EA—-FE) €
Clr for some wffsg, E' andD, D’ € T. By elementary properties of, v, and—,
[((BVC)A(DAD)]— (EA=E)eClIr. Then,~(EA—=E) - =[(BVC)A (DA
D")] e Clr by contraposititon. But ther[(B v C) A (D A D)] € ClIr. Now, since
——=[(BVC)A(DAD)] eT(by(BvC)A(DAD) e Clr and double negation),
we conclude thal is inconsistent, which is impossible.

Case2: Aec|[T,BlandAc<|[T,C].
By definition, (BA D) - A, (CA D) - A e CIr for someD, D’ € T. Then,
[(BvC)A(DAD) — AeClr,henceA € T, which is impossible.

Case 3: [T, B] isinconsistent andA € [T, C], or [T, C] is inconsistent andA €
[T, B].

We consider the first alternative, the second being similar. By definitiBm, D) —
(EAE), (CAD')— AeClrforsome wffsEandD, D’ € T. Now, itis clear that
(BAD)— AecClIr. SoA e T, which is impossible (as in Case (2) above).



URQUHART'S C 411

Each of Cases (1), (2), and (3) is untenable. Therefbris,prime, which ends the
proof of Lemmd6.3] O

Lemma6.4 Let(K¢, R be the canonical structure. For all,® € K¢, a < b iff
ach.

Proof: Suppose < b. By definition, Rxabfor somex € K®. SinceA — A€ x,
wheneverA € awe haveA € b, i.e.,a C b. Suppose nova C b. It isclear that
RClab (becauseRClaaanda C b). Soa < b by definition.

Next we prove thak can be extended to a prime nonnull consistent thebry
such thatRxXab. Thus, consider the set of all nonnull consistent thegyiesch that
X C yand Ryah By Zorn’s Lemma, there is a maximal elemenin this set such
thatx C X' andRXab. If X" is not prime, thelAv Be X, A¢ X, B ¢ X for some
wffs A, B. Then, define the nonnull theories' [ A], [X, B] that strictly includex’
(cf. Lemmd6.3].

By the maximality ofx/, there are three possible cases.

Case 1: [X, A] and [x, B] are inconsistent.
Thenx is inconsistent (cf. LemniaZ).

Case 2: not-R[x/, A]Jaband notR[x, B]ab.

By definition, (AA E) - (C— D), (BAFE)— (C — D) eClr, C,C €
a, E,E'ex, D¢b, D' ¢ bforsomewffsC,C’, E, E’, D, D'. Hence, [AV B) A
(EAE] — [(C— D) v (C'— D] e Clr by elimination of disjunction and dis-
tribution. Then, [C — D) v (C' — D’)] € X (since(Av B) A (EA E') € X), and
so(CAC)— (Dv D) ex. Thus,Dv D’ € b(sinceRXab,CA C’ € a). Butb
is prime. ThereforeD € b or D’ € b, contradicting our hypothesis.

Case 3: not-R[X/, Alaband [x’, B] isinconsistent, or noR[x’, Blaband [x, A] is
inconsistent.

Suppose hoR[ X', Alaband [, B] isinconsistent. By definitiol(AA E) — (C —
D), (BAE) > (HA—=H) eCl, E,E € X, Cea, D¢ bfor some wifs
E, E/,C, D, H. Now, itisclearthatBA E’') - (C— D) e Clr. SoC — D e x as

in Case (2) above, and thitse b by RXab, contradicting the hypothesis. The proof
that notR[X/, Blaband [x’, A] isinconsistent leads also to contradiction is similar.

Each of Cases (1), (2), and (3) is untenable, therefdegprime, which ends the proof
of Lemmals.4] O

Lemma6.5 The canonical structure is indeed a model structure.

Proof: We have to prove that the postulates P1-P6 hold in the canonical structure.
Now, P1 and P2 are trivial by Lemniiad] P4 is easy using the theorerA — [(A —
B) — B], and P5 is inmediate b7 and Lemmdb.4] Thus, it remains to be proved
that P3 and P6 hold.

P3. R?°abcd= 3x[ Rbcxand Raxd.
Given Rabyand Rycd we have to show that there is a prime nonnull consistent the-
ory X' such thatRbcx and Raxd. Thus, define the nonnull theory= {B|JA[A € C
andA — B e b]}. Now, Rbcxis trivial and Raxdeasily follows from the hypothesis
andA1l. Next, we prove thak is consistent. Suppose it is not. Théha —B € X.
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But, as(BA —B) — —A(Ais atheorem)is atheorerfB A —B) — —A € a, whence
—A e d by Raxd contradicting the consistency df

Consider now the set of all nonnull consistent theosiesich thatx € y and
Rayd By Zorn's Lemma, there is a maximal elemehin this set such thaRaxd and
Rbcx (Rbexandx € x'). If X' is not prime, define the nonnull theories,[A], [X, B]
strictly includingx’. By the maximality ofx’, there are three possibilities:

1. [X, Al and[X/, B] are inconsistent;

2. notRgx’, Ald and notRg X', B]d;

3. not-Rd X/, Ald and [x’, B] isinconsistent, or noRgx’, B]d and [x', A] is in-
consistent.

As in the proof of LemmE.4] it can be shown that each one of these possibilities is
impossible. Therefore(' is a prime nonnull consistent theory, which ends the proof
that P3 holds in the canonical model.

P6. Rabc= 3xRcbx
SupposeRabc Define the nonnull theoryx = {B|[FA[Ae bandA — C e ¢]}. It
is clear thatRcbx Thus, it remains to be proved how to extexntb a prime con-
sistent theory. We begin by proving thais consistent. Suppose it is not. Then,
by definition,B — (AA —=A) € C, B € b. Contraposing~(AA —-A) - =B e,
and so—-B € c (sinceRcxcby P1 and P4, anei(A A —A) € x by x € K¢ cf. Lem-
masb.1land6.2). Now, B — —(B — B) € a by RabcandB € b. Contraposing,
——(B — B) - ——B € ¢, and thus——B € c. Therefore,~B A =B € ¢, contra-
dicting the consistency a.

Consider now the set of all nonnull consistent theogiesich thatx € y and
Rcby By Zorn's lemma there is a maximal elemetitsuch thatRcbX. If X' is not
prime, define, as in previous lemmas, the nonnull theoked], [ X, B] that strictly
includex’. Now, we note thaRcHl X/, A] and Rcl{x/, B] trivially hold, sinceRcbx
andx’ C [X, A], [X, B]. So [¥, A] and[X/, B] are inconsistent by the maximality of
x'. Butif [ X', A] and[x/, B] are inconsistent, thexi is inconsistent (cf. Lemnia3),
which is impossible. Therefore; is a prime nonnull consistent theory; this ends the
proof that P6 holds in the canonical structure, and Lerfaraks proved. O

Lemma6.6 Let(KC® R® =°) be the canonical model whetK®, R®) is the canon-
ical structure and=° is a relation from K to the sentences @I r such that for each
wff A and ac K¢, a = Aiff A € a. Then, the canonical model is indeed a model.

Proof: We have to prove that the canonidal® satisfies the conditions (1)—(5) of
the valuation relation. Now, clauses (1)—(3) are trivial. It remains to prove clauses
(4) and (5).

Clause (4)al= A— Biffforall b, c € K¢, if Rabcandb = A, thenc = B.
Proof from left to right is simple. So suppoag~ A — B. We show that there are
b’, ¢’ € K¢ such thatRabic’, b’ = Aandc’ = B. Then, defineb = {C|A— C ¢
Cir}, c={C|3D[D € bandD— C € a]}. Itis easy to prove thab andc are non-
null theories such thaRabc We now prove thab andc are consistent. Suppose that
bisinconsistent. TherA — (C A —=C) € Clr whence, contraposings(C A =C) —
—A e Clr,and so—~A € ClIr. Thus,A— B € a, and thera = A — B, which con-
tradicts the hypothesis. The proof tltat consistent is similar.
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Now, consider the sef of all nonnull consistent theoriessuch that C x and
B ¢ x. An agument similar to that in the proof of Lemr@@3lshows that there is
a prime nonnull consistent theory such thatc € ¢’ andB ¢ c’. By definition of
R, Rabd. LetnowY be the set of all consistent theorigsuch thab C yandRayc.
Reasoning as in the proof of Lemifial] it is easy to show that there is a prime con-
sistent theoryp’ such thab C b’ andRabc. But since clearlyA € b, wehaveA € b'.
Hence, there are prime consistent theobies’ such thatRabic’, Aeb’,andB ¢ c'.
By definition of =, b = A andc (& B, which ends the proof of clause (4).

Clause (5)a = —Aiff there areb, c € K such that notRabcor b (£ A.
Proof from left to right is easy. So suppasg= —A. We how thatthere arb’, ¢’ € K
such thatRabic’ andb’ = A. Defineb = {B|A— B e CIr}, c={C|3B[B e band
B — C € a]}. The proof is similar to that of clause (4). O

Finally we prove, the following.
Theorem 6.7 (Completeness) If Ais valid, then A is a theorem dZlr.

Proof: Suppose thaf is not a theorem. TherA ¢ T by Lemmd6.3] So A is not
valid by Lemmafs.4land6.5] O
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