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Biconsequence Relations:
A Four-Valued Formalism of Reasoning with
Inconsistency and Incompleteness

ALEXANDER BOCHMAN

Abstract We suggest a general formalism of four-valued reasoning, called
biconseguencerelations, intended to serve as a logical framework for reasoning
with incomplete and inconsistent data. The formalism is based on a four-valued
semantics suggested by Belnap. As for the classical sequent calculus, any four-
valued connective can be defined in biconsequence relations using suitable in-
troduction and elimination rules. In addition, various three-valued and partial
logics are shown to be special cases of this formalism obtained by imposing ap-
propriate additional logical rules. We show also that such rules are instances of
asingle logical principle calledoherence. The latter can be considered a gen-
eral requirement securing that the information we can infer in this framework
will be classically coherent.

1 Introduction There seems to be no need to argue for the importance of studying
reasoning in contexts of possibly incomplete and/or inconsistent information. Nev-
ertheless, so far, there is no general formal framework that could serve as common
ground for representing reasoning of this kind. In most cases, logical systems sug-
gested for this purpose have an essentially language-dependent character that makes it
difficult to compare them. In addition, they do not reach, in general, a level of sophis-
tication comparable to the development of classical logical formalisms. What seems
to be lacking is a uniform and versatile syntactic representation of such reasoning, a
representation that will be language-independent and gitrectural description for

it.

There are a number of desirable features such a formal representation should
have, in our view. First of all, it should have the form of iafierence system that
provides a primary syntactic representation of the corresponding reasoning. A sec-
ond, more specific requirement is that such a representation should show clearly how
this kind of reasoning is connected with ordinary classical reasoning. Reasoning with
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possibly incomplete or inconsistent data should be seenasral extension of clas-

sical reasoning. In particular, it should coincide with the latter in cases where there is

no incompleteness or inconsistency involved. In addition, in order to be user-friendly,
the language and semantics of such reasoning ought to be reasonably close to that for
classical logic. Changes are inevitable, since classical logic is inappropriate for rea-
soning of this kind, but the basic principles of rationality and reason should remain
the same.

In this paper we suggest a general formalism for this kind of reasoning that is
intended to meet the above requirements. The formalism employs a well-known and
widely-used interpretation of contexts involving inconsistent or incomplete data in
terms of four-valued semantics suggested by BelBpThis interpretation allows
propositions to be not only true or false, but also undetermined (neither true nor false)
or contradictory (both true and false). On this understanding, the above kind of rea-
soning can be seen as four-valued, in the same sense as classical reasoning is consid-
ered to be two-valued.

Wewill introduce a formalism callediconsequence relations that gives a natu-
ral syntactic representation for Belnap’s four-valued semantics. The formalism pro-
vides a purely structural description of four-valued reasoning that does not depend on
aparticular choice of connectives. Moreover, any four-valued connective can be de-
fined in it using suitable introduction and elimination rules as in the ordinary classical
sequent calculus.

Biconsequence relations permit introduction of additional structural rules. In
this way, for instance, a formalization of partial logic, as well as of different kinds
of three-valued logics, can be obtained. We will show also that many such rules can
be seen as special instances of a single logical principle czdlesience. The latter
can be considered as a general requirement securing that the informationiwkecan
in a biconsequence relation will be classically coherent. A number of important bi-
consequence relations can be obtained by restricting the applicability of the principle
to different languages.

The formalism developed in this paper has been shown to provide a logical basis
for logic programming involving negation as failure and for nonmonotonic reasoning
in general—sedq] and [B]. The main content of the paper, however, is independent
of these applications (though they certainly contribute to the significance of dealing
with these issues).

1.1 Preliminaries. Scott consequence relations It is convenient to start with a
brief description of a general sequent calculus called Scott consequence relations. We
refer the reader to Gabbd¥4] and Bochman[g]for a more detailed exposition.

Scott consequence relations involve rules or sequents of theaérin, where
a andb are finite sets of propositions. An informal reading of such rules is “If all
propositions frona are true, then one of the propositions frorshould also be true.”

Definition 1.1 A set of sequents is calledSott consequencerelation if it satisfies
the following conditions.

(Reflexivity) AF A
(Monotonicity) Ifak-bandaca,bcb, thena b
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akb, A a A-b
akFb

As usual, the notion of a sequent can be extended to include infinite sets of premises
and conclusions by requiring that, for any sets of propositioaadv, u - v if and

only if at b, for some finitea C u, b C v. This requirement will also secure that the
resulting consequence relation will satisfy ttuenpactness property.

(Cut)

Definition 1.2 A setof propositions will be called aheory of a Scott consequence
relationt if u¥ U, wheret denotes the complement of

Theories could also be defined as sessich that ifu - a, thenun a # &, for any set
of propositionsa. Such sets can be seemadtiple-conclusion analogues of ordinary
logical theories, that is, of sets of formulas closed with respect to logical consequence.
As usual, by anodel we will mean an assignment of truth or falsity to all propo-
sitions of the language. Ifis such an assignment, we will denoteily A the fact
that a propositiorA is true with respect td. Note that any such assignment can be
identified with a set of propositions that are true with respect to it. This identification
will be extensively used in what follows.
A set of models will be called semantics. Any semanticsS determines a Scott
consequence relationg defined as follows.

Definition 1.3 aksb = foranyie S ifi k= A, foreveryA e a, theni = B,
for someB € b.

The basic result about Scott consequence relations, called Scott Completeness Theo-
rem in [14], says that theories can servecasonical models of the latter. LetS_ be

a et of models corresponding to all theories of a Scott consequence retfatidren

we have

Theorem 1.4 (Completeness) If - isa Scott consequence relation, then =g .

An immediate consequence of this theorem is that Scott consequence relations are
complete for the above semantics.

Finally, a Scott consequence relation can be transformed into the usual classi-
cal sequent calculus by extending the language to include classical connectives and
adding appropriate introduction and elimination rules for them. As is well known,
such rules can be used also to eliminate all occurrences of connectives in sequents.
In other words, they allow one to reduce any sequent to a set of sequents that involve
only atomic propositions.

The above description will be sufficient for our present purposes. Now we will
turn to defining a similar system for a four-valued inference.

2 Biconsequence relations and four-valued inference  We introduce here a logi-

cal formalism, callediconsequence relations, that provides a syntactic representa-
tion for a four-valued inference based on Belnap’s interpretation of the four truth-
values (see]). The latter amounts to their identification with the subsets of the
set of classical truth-valugg, f}. According to this interpretation, the four truth-
valuesT, t, f, L are identified, respectively, witf, f}, {t}, { f} and@. Accordingly,

T means that a proposition is both true and false (i.e., contradictam@ans that it

is classically true (that is, true without being faldeeans that it is classically false
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(without being true), whereals means that it is neither true nor false (undetermined).
This representation allows us to see any four-valued interpretatiopais af ordi-

nary classical assignments, corresponding, respectively, to assignments of truth and
falsity to propositions. To be more exact, for any four-valued interpretat{@mder

the above representation), we can define the following two assignments.

vE A iff tev(A)
veA iff fev(A)

Clearly, the source 4-assignment can be restored from the above two valuations as
follows:

v(A)=T iff vgE AandvgA
v(A)=t iff vE AandvAA
v(A)=f iff v AandvgA
v(A)=1 iff v AandvAA

The equivalence of these two representations shows thhiriey representation is
fairly general and does not restrict the set of possible four-valued interpretations.

Taking into account the above representation of the four truth-values, a four-
valued reasoning in general can be seen as reasoning about truth and falsity of propo-
sitions, the only distinction from classical reasoning being that the assignments of
truth and falsity are independent of each other. Consequently, inference rules for such
reasoning would have the form of constraints on possible assignments, for example,
‘If Aistrue, thenB is either true or false’, and so on. As can be seen, any constraint
of this kind is expressible via a set of disjunctive clauses constructed from elemen-
tary assertions of the formA'is true’ and ‘A is false’, the only distinction from the
classical case being that these two assertions are independent of each other. These
considerations lead to the following construction that will provide a syntactic coun-
terpart for such a reasoning.

By a bisequent we will mean a rule of the form

a:bl-c:d,

wherea, b, c, d are finite sets of propositions. The intended interpretation of such
rulesis

If all propositions froma are true and all propositions frolmare false, then
either one of the propositions froais true or one of the propositions froths
false.

In accordance with this interpretation, propositions framndb will be called, re-
spectively,positive andnegative premises, whereas that frona andd will be called
positive andnegative conclusions. The following definition provides a primary char-
acterization of such bisequents in accordance with their intended interpretation.

Definition 2.1 A biconsequence relation is a set of bisequents closed with respect
to the following rules:
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a:bl-c:d
a:bl-c:d,

(Positive Reflexivity) AlFA:

(Monotonicity) faca,bcb,ccc,dcd

(Negative Reflexivity) Al A

a:bl-FAc:d Aa:blFc:d
a:blkc:d

a:blc:A,d a:ADblFc:d
a:blc:d

(Positive Cut)

(Negative Cut)

A biconsequence relation can be seen dsubled version of a Scott consequence
relation reflecting the independence of truth and falsity assignments. Abusing the ter-
minology somewhat, we will use the symbb) possibly with indices, for denoting
biconsequence relations.

Again, the definition of a biconsequence relation is extendable to arbitrary sets
of propositions by accepting the followirapmpactness requirement.

(Compactness) u:vlkw:z iff a:blFc:d,

for some finite seta, b, ¢, d suchthab Cu,b< v,c C wandd C z

Weare going to show now that biconsequence relations provide an adequate for-
malization of four-valued inference. The following definition describes#menical
models of biconsequence relations.

Definition 2.2 A pair of sets of proposition@l, v) is abitheory of a biconsequence
relationl- if
u:ovkFu:v.

The following lemma describes bitheories as objects thatlased with respect to
the bisequents of a biconsequence relation.

Lemma?2.3 (u,v)isabitheory of a biconsequencerelationi+ ifandonlyifu: v+
c:dimpliesthat either cNu = @ or dNv # &, for any setsc, d.

Proof: Ifu:vlFc:d,butc Cuandd C v, thenu: vl U: v by monotonicity and
compactness, and hen@e v) is not a bitheory. In the other directionf vIFU: v,
then, due to compactness, there are finitecatsuch that C U, d C v, andu: v I+
c:d. O

The followingRepresentation Theorem shows that biconsequence relations are deter-
mined by their bitheories.

Theorem 2.4 (Representation Theorem)If I isa biconsequencerelation, then a :
bl c: difandonlyif, for any bitheory (u, v), ifaC uand b C v, then either cNu #
gordNv # 2.

Proof: The implication from left to right follows from the definition of a bitheory.
Assume now tha& : b ¥ ¢ : d. Note that, for any fixedy anddy, we can define a
Scott consequence relation as follows:

akFc = a:bglkc:d.
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Consequently, the completeness theorem for Scott consequence relations implies that
thereisasatsuchthab C u,cC U, andu: bl U: d. Let us define now the following
Scott consequence relation:

akFc = wu:clku:a

This time, the same completeness theorem gives us the result that therelisadet
thatb C v,d Cvandu: v u: v. Clearly, (u, v) is a bitheory oft-, and hence the
implication from right to left also holds. O

Definition 25 A bisequenta: b I ¢ : d will be said to bevalid with respect to a
four-valued interpretation, if v = A, for every A € a, andv =| B, for everyB < b,
imply that eithen = C, for someC < ¢, orv 5D, for someD e d.

If | is a set of 4-interpretations, we will denote Iby a set of all bisequents that are
valid with respect to every interpretationlinlt is easy to show that this set forms a
biconsequence relation.

Finally, notice that any bitheorgu, v) can be identified with a four-valued in-
terpretation by taking to be the set of true propositions anthe set of propositions
that are not false. Then the completeness theorem immediately implies that any bi-
consequence relation is determined by some set of 4-interpretations.

Corollary 2.6 I+ isa biconsequence relation if and only if IF=IF, for some set of
4-interpretations | .

This result shows that biconsequence relations provide an adequate formalization of
four-valued reasoning.

Remark 2.7 As can be seen, our representation of four-valued reasoning trades
upon a (highly specific) possibility adecomposing 4-interpretations into a pair of
two-valued ones. From a purely technical point of view, this construction can be
traced back to tukasiewicz’s idea of multiplication of logical matrices. Apart from
the intuitive justification, this gives a significargpresentation economy, since oth-
erwise we would have to use 4-sequents instead of our bisequents for representing
four-valued inference rules. Notice also that this immediately distinguishes our bi-
consequence relations from the general approach to formalization of many-valued
logics initiated by Sctister in (see, e.g., Carniell[d), Rousseauls], Taka-

hashi p2], and Zach's thesi] for a survey). Though many authors in this trend
usen-component sequents for describimgalued logics, such sequents do not cor-
respond to inference rules in our sense; rather, they provide a syntactic description
for associated semantic tableaux.

3 Introducing connectives  Note that our formalism does not depend on a patrtic-
ular choice of four-valued connectives. Moreover, we will now show that any such
connective is definable in it via introduction and elimination rules as in the classical
sequent calculi, the only distinction being that we should have a pair of introduction
rules and a pair of elimination rules corresponding to two premise sets and two con-
clusion sets, respectively.
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Due to the correspondence between four-valued interpretations and their bicom-
ponent representations, any four-valued connectivg # . ., A,) can always be de-
termined by a pair of conditions describing, respectively, when it is true and when it
is false. Consequently, it can be described by a pair of definitions.

#(A1, ..., A = FIAL .. A
v=a#(AL ..., A = FTAL .. AN
where F[Aq, ..., An] and % [Aq, ..., Ay] are classical logical formulas in the

metalanguage generated by elementary propositions of theufgerdy andv = A;.
We will show that introduction and elimination rules for such a connective can
always be given in the following form:

{a,a :b,bilFc,c:d d} 1<i<kp)

H#HET

( ) a,# (A, ....,A):blkc:d

(#1+) {a,g :b,biIFc,c:d,di} (1<i<ky)
a:blFc,#(Aq, ..., Ay :d

(HE) {a,q;:b,bjI-c,c:d,d} 1<i<ky)
a:blFc:d,#(Aq,..., Ay

(#1°) {a,a :b,blFcc:d, d} 1<i<ky

a:b,#(A,...,An)IFc:d

wherea;, bi, ¢;, andd; are subsets dfA, ..., Anl.

The following theorem shows that any four-valued connective can be character-
ized by such rules added to a biconsequence relation. This theorem can be seen as
aparadigmatic completeness theorem for biconsequence relations in languages con-
taining four-valued connectives.

Theorem 3.1 Let#(Aq4, ..., Ay) beafour-valued connective determined by D (#).
Then there are four rules of the above form such that any biconseguence relation
satisfying these rules is generated by a set of four-valued interpretations satisfying
D#).

Proof: Let us assume that"[Ay, ..., An] isrepresented in a disjunctive normal
formG V...V le, where eaclT; is a conjunction ofiterals of the formv = A},

v i~ Aj, v =Aj, orv AA;. Then we will introduce a rule of the formE# such that
Aj belongs tag; (respectively, tdj, ¢, ord;) ifand only if v = A; (v 5 A}, v = Aj,
orv #AA)) belongs taC;.

Assume now thatZ;"[Ay, ..., An] is transformed into aonjunctive normal
form Dy A --- A Dy, Where eachD; is a disjunction of the same literals. Then we
will introduce a rule #* such thatA; belongs tos; (respectively, tdy, ¢i, or d;) if
and only ifv = Aj (v AAj, v = Aj, orv = Aj) belongs taD;.

In the same way, a disjunctive normal form®f [Ay, ..., Ayl generates a rule
of the form # —, whereas its conjunctive normal form generates a rule of the form
#E™.

Assume thatt- is a biconsequence relation satisfying the above rqles) is its
bitheory, andv, ) afour-valued interpretation corresponding(ia v). Then #™"
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implies that if £ A, ..., An) belongs tau, at least one of the conjunct§ of a dis-
junctive normal form ofZ;*[Aq, ..., An] should be such tha C u, b C v, ¢ C T,
andd; C v. Consequentlyy ) = #(Aq, ..., Ay) implies FH[Aq, ..., An] for v =
Vu,v)- Similarly, # * implies that ifvy ) = #(Aq, ..., An), one of the disjuncts of a
conjunctive normal form ofFF[ Ay, ..., An] forv = V(u,v) Should be false, and hence
F[A ..., An] itself is false with respect to this interpretation. Thug,.,, satis-
fies the first condition oD (#). In the same way it can be shown that the other two
rules imply the validity of the second condition frob#) for v ,,. Consequently,

all canonical interpretations of satisfy D (#). Now the result follows from the rep-
resentation theorem, since any biconsequence relation is generated by its canonical
interpretations. O

An application of the procedure given in the proof of the above theorem to a particu-
lar class ofclassical four-valued connectives will be presented below. Just as in the
case of classical logic, the rules corresponding to four-valued connectives allow us
to reduce any bisequent involving such connectives to a set of bisequents containing
atomic propositions only (even without the use of the two cut rules). This is simply a
syntactic expression of the fact that the value of any proposition involving only truth-
functional connectives in an interpretation is uniquely determined by the values of its
atomic propositions.

Bisequents that involve only atomic propositions will be calkssic ones.

Thus, for any given language containing only four-valued connectives, there is a one-
to-one correspondence between biconsequence relations and their restrictions to the
basic bisequents. Note that the latter can be considered biconsequence relations in
their own right, namely, as biconsequence relations in the language without connec-
tives. Such biconsequence relations will also be cdiksic. Thus, any biconse-
guence relation involving only four-valued connectives is equivalent, in a sense, to
some basic biconsequence relation.

In what follows, by danguage £ we will mean a subset of four-valued connec-
tives. Generalizing the above considerations a bit, we will say that two biconsequence
relations, possibly in different languages, ageivalent if they have the same basic
subrelations. As can be easily seen, any equivalence class under this relation contains
exactly one biconsequence relation for every four-valued languageccordingly,
for any biconsequence relation(in some languagé) and any languagé, we will
denote byl [ L] the unique biconsequence relationdrthat is equivalent td-. In
particular,l- [@] will denote the basic biconsequence relation equivaleitt. téVe
will use this notation later when describing logical rules for biconsequence relations.

Finally, we will briefly describe still another general way of characterizing four-
valued connectives in biconsequence relations, namely, by a set of bisequents having
one of the forms:

(#Eg) a,#(A,...,A)  bl-c:d
#7) a:blFc,#A, ..., Ay :d
(#E;)  a:blFc:d,#(As ..., A

#g) a:b,#(A,...,Anlkc:d
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wherea, b, ¢, andd are subsets dfA;, ..., An}. This characterization is actually a
four-valued generalization of the corresponding description of classical connectives
in the framework of Scott consequence relations given in SegerfBé}gdee also

[14]). The next theorem shows that any four-valued connective can be characterized
in this way.

Theorem 3.2 Let#(Aq, ..., Ay) beafour-valued connective determined by D (#).
Then there arerules of the above form such that any biconsequence rel ation satisfying
these rules is generated by a set of four-valued interpretations satisfying D (#).

Proof: As in the proof of the preceding theorem, assume first #jetA,, . . ., An]
is represented in a disjunctive normal fo€éq - - - v de, where eaclt; is a conjunc-
tion of literals of the formv |= Aj, v = Aj, v 5 Aj, orv AA,. Then, for evenC;, we
will introduce a bisequent of the formgi such thatA; belongs taa (respectively, to
b, c, ord) if and only ifv = Aj (v = Aj, v = Aj, orv AA) belongs toC;.

Assume now that?,"[Ay, ..., An] is transformed into aonjunctive normal
form Dy A --- A Dy Then for everyD;, we will introduce a bisequent of the form
#Eg such thatA; belongs toa (respectively, tao, ¢, or d) if and only if v B= A;

(v AAj, v = Aj, orv =|Aj) belongs taD;. Inthe same way, a disjunctive normal
formof %7 [Aq, ..., Aj] generates bisequents of the forilgz# whereas its conjunc-
tive normal form generates bisequents of the forq.#

Assume now thalt is a biconsequence relation satisfying the above rules and
Vv IS a four-valued interpretation corresponding to some bith€ary). Then
each bisequent%gr implies that ifv, ) = #(A4, ..., An), then the correspond-
ing disjunct®; of a conjunctive normal form off;"[Ay, ..., An] is true forv =
vu.v)- Consequently, all such bisequents imply jointly tHat[Aq, ..., An] istrue
for v =v,.,). Similarly, all bisequents of the forml# jointly imply that if v, b
#(A1,..., An), EA4, ..., Aj] should be false for = vy .. Thus,v ) satisfies
the first condition ofD (#). In the same way it can be shown that the bisequents of
the other two kinds imply the validity of the second condition fr@n#) for vy ..
Consequently, all canonical interpretationg-afatisfy D (#). Now the result follows
from the representation theorem. O

3.1 Classical connectives A patrticular class of four-valued functions turns out to
be of special interest in our intended application of Belnap’s semantics. If we are pri-
marily interested in what information a four-valued reasoning can give us about ordi-
nary, classical truth and falsity, that is, abbandf, we can require that a four-valued
reasoning must agree with a classical one in cases when the context does not involve
inconsistent orincomplete information. To secure this requirement, we should restrict
our attention to connectives that atassical in the sense that they give classical val-
ues when their arguments receive classical values.

It turns out that there are four mutually independent connectives that are jointly
sufficient for defining all such classical four-valued functions. The first is the well-
knowndisgjunction connective:

vE=AvB iff vEAorvEB
vAvB iff v=A andv=B
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Next, there are two unary connectives that can be seen as natural extensions of a clas-
sical negation to the four-valued setting:

veE~A iff vHA
v=~A iff vEA

vE-A iff vEA
v=—-A iff vAA

Note that these are the only connectives that coincide with the classical negation on
the classical truth-values and satisfy the double negation rule. The difference between
the two is that the first one switches the context between truth and falsity, whereas
the second one retains the context. Accordingly, we will calitnd— a switching
negation and alocal negation, respectively. Note also that each of them can be used
together with the disjunction to define a natwahjunction connective:

AAB = ~(~Av ~B),

or, equivalently,
AAnB = —-(—-Av -B).

Finally, the following unary connectivie can be seen as a kind of a modal operator.
It determines a (rudimentary) modal logic definable in the four-valued setting (and
becomes trivial in the classical context).

vELA iff vEA
v=lLA iff vEA

Remark 3.3 Even for classical logic, the choice of a natural functionally complete
set ofbasic connectives is not unique. We have even fewer reasons for reaching
agreement about what could be seen as a natural functionally complete set of clas-
sical four-valued functions. Nevertheless, the advantages of the suggested choice of
the basic connectives for our study are twofold. First, ingglular in the sense that
anumber of important subclasses of four-valued connectives, discussed below, are
obtained simply by removing some of the basic connectives. Second, it allows us to
give a very natural transformation of the bisequent calculus into an ordinary Hilbert-
type axiomatic system which is an extension of classical logic (see Section 3.2). In
particular, the (slightly unusual) local negation turns out to be essential for this rep-
resentation, since it will function asraal classical negation in this context.

The following proposition shows that any classical four-valued function is repre-
sentable via our four basic connectives.

Proposition 3.4 Theset{v, —, ~, L} isfunctionally completefor the set of all clas-
sical four-valued functions.
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Proof: Letv be a 4-interpretation restricted to atomic propositipps. . ., p,. We
will define a propositionA, corresponding te as follows:

A, = PLAPLA- A PnA Pn,

wherep; is eitherp; or —p; whenv = p; or v = pj, respectively, whereg§; is either
~ p; or =~ p; when, respectivelyy = p; or v A p;. Itis easy to check that, for any
4-interpretationu restricted to the same atomic propositions= A, if and only if
wu coincides withv. For a finite set of 4-interpretationg, we will define Ay as a
disjunction of allA,,, wherev € U. Thenitis easy to see that= Ay ifand only ifv €
U. Now, for any classical four-valued functidf(p, ..., pn), wewill denote byUg
(VE) the set of all 4-valuationsrestricted tops, ..., pnsuchthav = F(pq, ..., pn)
(respectivelyy AF(p1, ..., pn))-

SinceF is a classical function, i € (Ug \ VE), there must exisp; that has a
nonclassical value in. If the value isT, we will denote byAU the formulaA, A L p;.
Otherwisep; has the valuel, andA,, will denote the formulaA, A L—p;. It iseasy
to check that in both casgs A, is equivalent td= A,, whereas= A, always holds.
We will define alsoAy similarly to A.

Finally we define a formulag corresponding td- as follows:

Ar = L AUFQVF \ AUF\VF \ N_'AVF\UF .
It is easy to check that = Af holds if and only if

v |= AUFﬁVF Vv AUF\VF
if and only if either
veUrNVE or ve (Ug\Vp)

if and only if
Ve U|:.

Similarly, v 4 Ar holds if and only if either

v '= AUFmVF or vV #N_‘A\_/F\UF
if and only if either
veUerNVE or ve(VE\Up)

if and only if
NS V|:.

ThereforeAg determines the same four-valued functiorFagnd we are done. O

The following introduction and elimination rules provide a characterization of the
above four connectives for biconsequence relations. Just as in the classical case, the
rules are easily discernible from the above definitions given the intended interpreta-
tion of the premises and conclusions of a bisequent.

Rules for disunction
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a,A:blFc:d aB:blkc:d a:blkc, A,B:d
a,AvB:blkc:d a:bl-c, AvB:d
a:blkc:d,A a:blkc:d, B a:b,A,Bl-c:d
a:blFc:d, AvB a:b,AvBIFc:d
Rules for ~
a,A:bl-c:d a:AblFc:d
a:~Abl~c:d a,~A:bl-c:d
a:blkc, A:d a:blkc: Ad
a:blkc:~A,d a:blkc,~A:d
Rulesfor —
a,A:blkc:d a:AblFc:d
a:blF—-Ac:d a:blFc:—A,d
a:blkc A:d a:blkc: A d
a,—-A:bl-c:d a:b,—-Alrc:d
Rulesfor L
a,A:bl-c:d a:bl-Ac:d
aLA:blkc:d a:LA blc:d
a:bl-Ac:d A,a:blFc:d
a:blFLA,c:d a:blFc:LA,d

Theoreni3_1lcan be used to show that the above rules provide a complete character-
ization of the corresponding connectives.

As we said above, there is another general way of characterizing four-valued
connectives in biconsequence relations, namely, via a set of bisequents. For the above
connectives, these bisequents are as follows.

Axioms for digunction
A:lFAv B: B:IFAv B: AvB:IFA B:
cAvBIF: A :AvBIF: B A BIF: AV B
Axioms for a switching negation
~A:lFT A AllF:~A

~AIF A cAlF~A:
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Axioms for alocal negation

A A:lF IH A, —A:

-AA R IF: A —-A
Axioms for L

LA:IFA: AlFLA:

A:LAI- IFA:LA

As for the preceding representation, Theol&kto be more exact, the procedure of
constructing the relevant bisequents) can be used to show that the above bisequents
provide a complete characterization of the classical connectives.

3.2 A Hilbert-type axiomatic representation  Having the above connectives at our
disposal, we can transform bisequents into more familiar rules. For any set of proposi-
tionsu, wewill denote by~uthe se{~A| A € u}. The notation-u, L u (or their com-
binations) will have a similar meaning. The following representation of bisequents
can easily be obtained from the characteristic rules for the relevant connectives.

Lemma3.5 Anybisequenta: bl c: disequivalent to each of the following:

1. a,~b:IFc, ~d;
2. IF—a, =~b, ¢, ~d;
3. IF~La, ~L~b, c, ~d.

Bisequents of the form in (1) can be considered as ordinary sequents. In fact, this is
a common trick used for giving a representation of four- and three-valued logics in
the form of a sequent calculus. As can be seen, it heavily depends on the presence of
switching negation in the language. Notice that occurrences of this negation are not
eliminable in this setting. In all other respects, each of these formalisms is translatable
into the other.

Since the set of positive conclusions can be replaced by its disjunction, we can
transform bisequents into usual Tarski-type rules using only the switching negation
and disjunction. As is shown by Belnap and others, the resulting-}-system will
coincide with a (flat) theory afelevant entailment (see, e.g.[d, Dunn [Ld)). Finally,
using either a local negation br, we can transform each bisequent into a formula as
in the classical sequent calculus. Moreover, it is easy to see that the disjunction
and a local negatior behave in an entirely classical way in this context. In fact,
they generate a class of connectives we will badhl ones that behave as ordinary
classical connectives with respectearh of the two contexts.

The above considerations lead to the following definition that provides a stan-
dard Hilbert-type axiomatization of our logic. To be more exact, it can be shown that
the systeniL§, described below, provides a strongly sound and complete axiomatiza-
tion of a four-valued logic in the language of classical four-valued connectives.

In the definition below we use an equivalence connective defined in a usual
classical way in terms dfv, —}.
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Definition 3.6 A systemlj of four-valued logic in the language containing
{v,—, ~,L}is determined by the following axioms and rules:

1. the axioms and rules of classical logic {or, —};
2. the following axioms for-:

~~A <«— A,
N—|A <« _1NA’

~(AAB) «— ~AvV~B.
3. the following axioms foL:

LA «— A
~LA <«— —A

The logiclLg can be seen as an extension of the classical logic by two new connectives.
Notice, however, that the switching negatietacks the usual feature of replacement

of provable equivalents, so, in particular, the equivaldnée<— A does not imply

that A andL A are interchangeable in all contexts.

3.3 Invariant connectives  An interesting additional requirement that can be im-
posed on possible four-valued connectives is that they should behave similarly with
respect to truth and nonfalsity (after all, both have the same meaning for us in the
classical case). To be more exact, we can require that the definition of a connective
with respect to falsity can be obtained from that for the truth through a simultaneous
replacement of= by 4 and vice versa. We will call such connectivagariant. The
following definition gives a corresponding formal description. A four-valued func-
tion =~ below switches the context between truth and nonfalsity. (This function cor-
responds to theonflation connective from[[1].)

Definition 3.7 A four-valued connectiv& (pa, ..., pn) Will be calledinvariant if,
for any valuation, the value ofF (pq, ..., pn) with respect ta is equal to the value
of ~=F(~=pqg,...,~=pn).

As an immediate consequence of this definition, we obtain the following characteri-
zation of invariant connectives.

Lemma3.8 Afour valued connective F(Ay, ..., Ay) isinvariant if and only if, for
any valuation v, v = F(Aq, ..., Ay) ifandonly if v AF (A4, ..., An), wherev* is
a valuation obtained from v by a simultaneous replacement of = by A and = by ~.

Itis easy to check that any invariant connective is already classical. Note also that all
our basic connectives, excdpt satisfy this property. Furthermore, it turns out that
invariant connectives are precisely connectives that are expressiljle, via~}.

Proposition 3.9 Theset {A, =, ~} isfunctionally complete for the set of invariant
connectives.

Proof: Let F(p1,..., pn) be an invariant connective and a set of all
4-interpretations such that = F(py, ..., pn). Let Ay be the formula correspond-
ing toU as defined in the proof of PropositiBntl Notice that this formula uses only
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connectives fromMA, —, ~}. Moreover, it is easy to show that any composition of in-

variant connectives is invariant. Consequently,determines an invariant function.
We will show now thatF can be defined a8y. To begin with,v = F is equiv-

alent tov = Ay, since the latter holds if and only if e U. Now, v = F if and only

if v* p& F (sinceF is invariant) if and only ifv* & Ay if and only if v = Ay (since

Ay is invariant). Consequentl¥; is expressible ady. O

Note that in view of Lemm@&.5 invariant connectives allow us to replace bisequents
by formulas, so we can define the corresponding Hilbert-type axiomatization. Thus,
afour-valued logic in the language with invariant connectives, that we will denote by
]L‘4, is obtainable froniL; by simply deleting the axioms fdr.

3.4 Conservative connectives  Another possible constraint on the class of four-
valued connectives is that they should not produce contradictionsrincomplete-

ness (L) unless some of their arguments are such. In other words, we could require
our connectives to beonservative on the subset§t, f, L} and{t,f, T}. Note that

this immediately implies that such connectives are classical. It turns out that all such
functions are expressible in terms{of, ~, L }.

Proposition 3.10 Theset {V, ~, L} isfunctionally complete for the set of all con-
servative four-valued functions.

Proof: For any 4-interpretation opy, ..., pn, wewill denote byA, the following
formula in the languagév, ~, L}:

A, = P1APLA-APrA Pn,

wherep; is L p; or ~L pj, if, respectively,y &= pj orv = p;, whereas; is L~p; or
~L~pi, if, respectivelyy = p; or v Ap;.

Let F(ps, ..., pn) be a conservative connective. As before, we will denote by
Ur (Vi) the set of all 4-interpretations for whidhis true (respectively, nonfalse).

SinceF is conservative, ib € Ug \ VE, then there must exigt that has the value
T in v. Then Ay, will denote the formulaA, A pi. It iseasy to check that Ay, is
always equivalent t¢= A, Whereas=| A,, always holds (due to the fact that both
L pi andL~ p; belong toA,). Similarly, if v € Vg \ Ug, there must exisp; that has
the valuel in v. Then Anu will denote the formulalA, A ~p;. Thenk Av always
holds, whereas Av is equivalent to=| A,. For a finite set of interpretationg, we
will denote byAy the disjunction of allAn,, wherev € U. Ay andAy will be defined
similarly.

Finally, we will define &V, ~, L }-proposition corresponding t6 as follows:

A|: = AUFQ\/F Vv AUF\VF \ AVF\UF'

Thenv = A ifand only if v = Aypnye Orv = AUF\VF if and only if v € Ug. Sim-
ilarly, v 4 Ag if and only if v A Ay-nve Or v A AVF\UF if and only if v € Vg. Thus,
Ar determines the same four-valued functiorFas O

Again, Lemmd3.5lshows that conservative connectives allow us to replace bise-
guents by formulas, so we can define the corresponding Hilbert-type axiomatization.
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The following definition gives a corresponding axiomatization for a four-valued logic
based on conservative connectives. The axiomatization uses definable implication
and equivalence connectives expressible as follows (see Arieli and Aijjon [

A=—B = ~LAVBA&=B = (A= B)A(B= A)

Definition 3.11 A four-valued logid.j in the language with conservative connec-
tives is characterized by the following axioms and rules:

1. the axioms and rules of classical logic for the languagen, =—};
2. the following axioms for-:

’\/’\/A <:> A,
~(AAB) < ~AV~B,

3. the following axiom for:
LA A

An appropriate completeness theorem can be easily obtained from the corresponding
result for the languaggv, ~, =} proved in [l As we will see, this axiomatization

can serve as a basis for axiomatics of three-valued logics in the language of classical
connectives.

4 Coherence Belnap’s interpretation can help us once more, this time in determin-
ing some further plausible constraints on biconsequence relations.

4.1 Logical rulesandstructural rules A distinctive feature of four-valued reason-
ing, a feature that does not hold for classical logic, is the possibility of imposing some
nontrivial structural constraints on the set of possible interpretations. For example,
we can restrict our valuations to those that do not assign the Vatagropositions,

and in this way obtain, in effect, a system of three-valued reasoning. Similarly, we
can exclude both nonclassical valuesand T and thus obtain ordinary classical val-
uations. In this way, both three-valued and classical two-valued reasoning will be
shown below to be special cases of our formalism.

On the syntactic side, the above-mentioned constraints can be imposed by
adding certain rules to biconsequence relations. However, an important point that
should be kept in mind in what follows is that the actual constraint implied by a gen-
eral rule can vary with the underlying language, that is, with what connectives belong
to it. Generally speaking, the more expressive the language, the stronger the corre-
sponding constraint imposed by a rule.

By alogical rule we will mean (in what follows) a rule for biconsequence rela-
tions that does not involve explicit occurrences of connectives. The following def-
inition gives a language-dependent characterization of validity of logical rules with
respect to biconsequence relations.

Definition 4.1

1. A biconsequence relatioh (in some languagé) will be said tosatisfy
alogical rule p for the language £, if p is a valid rule inl- [ £].
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2. Alogical rulep will be said to be atructural rulefor |- if it is a valid rule
inl-[2].

The five rules involved in the definition of a biconsequence relation are logical rules
in the above sense, for any biconsequence relation and any set of four-valued connec-
tives L. However, we will consider below logical rules with varying strength depend-
ing on the languagé. Note also that the validity of a logical-rule is independent
of the underlying language’g) of a biconsequence relation. So, in particular, a bi-
consequence relation satisfies a logical rule with respectit@and only if its basic
subrelation satisfies it with respectio

Structural rules can be seen as logical rules for the associated basic biconse-
guence relations. Note that the real constraint imposed by a logicale can be
measured in terms of what restrictions it imposes on the associated basic biconse-
guence relation. And it will turn out that logical rules considered below can be always
characterized in terms of some structural rules implied by it.

4.2 Coherent biconseguence relations  Recall that our main objective in using
four-valued reasoning in this study is to discover what information such reasoning
can give us about ordinary (classical) truth and falsity. The main benefit of Belnap’s
interpretation is that it allows us to use four-valued reasoning as a general framework
for logical reasoning in the presence of inconsistent or incomplete information. How-
ever, this generality has a weak side in that it completely ignores the distinction be-
tween ordinary truth and falsity on the one hand, and inconsistency and incomplete-
ness on the other. All four truth-values have equal status in the context of such rea-
soning. Consequently, what seems to be missing is a mechanism that would allow us
to infer classical information in the framework of biconsequence relations.

We will suggest in what follows a natural and rather strong requirement saying
that, though truth and falsity are largely independprayability and refutability with
respect to the positive context must coincide with provable classical truth and falsity.
If this condition holds for a biconsequence relation, the information wedanusing
it will be of the usual classical kind.

Biconsequence relations satisfying the above requirement will be calted
ent. The strength of the requirement, however, can vary depending on what proposi-
tional formulas are susceptible of coherence. Consequently, it will be expressed using
appropriate logical rules imposed on a biconsequence relation.

Definition 4.2 A biconsequence relation will be callgdcoherent if it satisfies the
following two logical rules with respect ta:

. -A: . A:lF
(Positive Coherenge AR (Negative Coherenge A

The results that follow provide an equivalent structural description of the above co-
herence rules for different languages. To begin with, the next two results describe
some general features of coherent biconsequence relations.

Lemma4.3 If L contains —, positive and negative L-coherence rules are equiva-
lent.
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Proof: If A:lF, thenlF —A: . By positive coherence, we have~A I . But the
latter is reducible td-: A. Thus, positive coherence implies negative coherence. The
reverse implication is proved similarly. O

Lemmad4.4 |If I isa coherent biconseguence relation in a language £ that con-
tains ~, then for any proposition Ain L,

1. IFA: iff Al
2. A:lFiff I A

Proof: If: Al then~A :IF in the language extended with connectives fram
and hencé-: ~ A by negative coherence. The latter bisequent is reduciliiteAa .
Similarly, it can be shown thdt : Aimplies A : I+ . O

Thus, for biconsequence relations that are coherent in languages contajiiruy-
able truth coincides with provable classical truth and provable nontruth (refutability)
coincides with provable falsity.

As a preparation for what follows, we will give below a structural description
of coherent biconsequence relations in some rather weak languages. As is shown in
Bochman[f], however, such biconsequence relations provide also a primary classi-
fication for a number of known semantics of logic programs involving negation as
failure.

Description 4.5 ({\v, A}-coherence)  If the language contains no connectives, the
coherence rules coincide with their structural counterparts. If the language con-
tains disjunction, positive coherence is already equivalent to a multiple structural
rule given below, though negative coherence is still reducible to its singular variant.
Adding conjunction will give a corresponding multiple variant of negative coherence:

Proposition 4.6  Abiconsequencerelation I is{v, A}-coherentif and onlyifit sat-
isfies the following structural rules:

IFa: a:l-

Proof: Since any finite set of propositions is replaceable by its conjunction in pos-
itive premises and negative conclusions, and by its disjunction in negative premises
and positive conclusions, the implication from left to right is obvious. To prove the
reverse implication, we will show a stronger result that the above structural rules, if
they hold with respect to a biconsequence relation, are{alsa}-logical rules with
respect to it. This can be proved by induction on the total number of conjunctions
and disjunctions occurring in these rulesHf, AA B, thenlFa, A: andi-a, B ;,
and therefore by the inductive assumptioa, ‘A |- and :a, B IF. Consequently,
. a, AA Bl by the properties of conjunction. If a, Av B, thenl- a, A, B: bythe
properties of disjunction. Hence; A, B I- by the inductive assumption (notice that
aU {A} U {B} contains fewer connectives that {Av B}). Butthen :a, Av Bl

In the same way it can be proved that the second structural rule implies its
{Vv, n}-logical counterpart. Now, the relevat, A}-coherence rules are simply spe-
cial cases of such logical rules, and hence the implication from right to left also holds.

O
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Description 4.7 ({\, A, L}-coherence) The following result describes structural
equivalents fofv, A, L }-coherence rules.

Proposition 4.8 {v, A, L}-coherence rules are equivalent, respectively, to the fol-
lowing structural rules:

Fa,b: ab:IF

ral-b: a:lF:b
Proof: We will consider only positive coherence here; the proof for negative co-
herence is completely analogous.Hfa, b : thenl- \/(aU Lb) : by the properties
of disjunction andL. Hence :\/(aU Lb) I by positive coherence, which is equiv-
alent to :a I b : . Thus, positive coherence implies the corresponding structural
rule. To show the reverse inclusion, we will prove that this structural rule implies
its {Vv, A, L}-logical counterpart. Again, this can be done by induction on the total
number of connectives occurring in propositions of the rule. We will consider only
the case of..

If IFLA, a b:thenlk A, a b:. Applying the inductive assumption, we obtain

ralk A, b: . Therefore, bothL A, al-b:and: alF b, L A: hold due to the properties
of L. This gives us the two cases of the rule depending on whethgs adjoined to
aortob. O

Description 4.9 (Local Coherence) For{v, —}-coherence, that is, coherence
with respect to all local connectives, positive coherence and negative coherence are
already equivalent. Moreover, we have the following proposition.

Proposition 4.10  {v, —}-coherenceis equivalent to a structural rule

a:lkc:
‘clka

Proof: If a:lFc:, thenlk —a, c:, and hencé- \/(—auUc) : . Applying positive co-
herence, we obtain\/(—aU c) I, which is reducible to c It-: a. Thus, positive co-
herence implies the above structural rule. In the other direction, it can be proved that
this structural rule implies the corresponding —}-logical rule (again, by induction

on the complexity of propositions occurring in it). Since both positive and negative
coherence are special cases of such a logical rule, this will complete the praof.

The above structural rule corresponds to an interesting semantic constraint on possi-
ble interpretations. It says that, for any bitheduy v) there is a bitheory of the form

(v, w). In other words, any negative part of an admissible interpretation should also
serve as a positive part of some other interpretation. A strengthening of this constraint
to the requirement that ifu, v) is a bitheory, ther{v, u) is also a bitheory will give

us a semantic description of invariant biconsequence relations considered later in the
paper.

5 Three-valued and classical biconsequence relations Let us now consider the
following logical rule.

(Consistency) A: Al-
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A biconsequence relation satisfying the above rule will be calbedistent. As can

be easily seen, the rule amounts to a semantic requirement that, for any four-valued
interpretatiory, v = Ais inconsistent with = A. In other words, any such interpre-
tation must be consistent in the sense that any true proposition is classically true (and
hence any false proposition is classically false). This means that such biconsequence
relations are based on three-valued interpretations in which the inconsistentvalue

is missing. Note also that the basic semantic settinmudfal logic (see, e.g., Blamey

[4]) can be identified with this interpretation, since it (usually) deals only with possi-
ble incompleteness of information.

We will show now that consistent biconsequence relations provide an adequate
formalization of a three-valued inference witls the only distinguished value. To
begin with, note that any consistent four-valued interpretatiagturally corresponds
to athree-valued interpretatiegon the truth-valueg, L, f }, and vice versa. By this
correspondence,

1. v = Aiff Ahasthe valuéin vs;
2. v Aiff Ahasthe valuéin vs.

Wewill say that a bisequent tsvalid with respect to a three-valued interpretatigiif
itis valid with respect to the above four-valued interpretation corresponding $ee
Definition2.5). Notice that validity of bisequents in accordance with this definition
amounts to preservation of classical trtith

Again, any set of three-valued interpretatidggenerates a biconsequence re-
Iatioan3 determined by bisequents that &nealid in all three-valued interpretations
from I3. The following theorem shows that any biconsequence relation satisfying
consistency is generated in this way by a set of three-valued interpretations.

Theorem 5.1 I+ is a consistent biconsequence relation if and only if |F=|H3, for
some set of three-valued interpretations | 5.

Proof: As we said, it is easy to check that any biconsequence relation of the form
IH is consistent. Now let be a consistent biconsequence relationlaaebt of four-
valued interpretations corresponding to its bitheories. By the representation theorem,
I[F=IF,. But any interpretation from | is consistent, that is; = A impliesv # A,

for any propositionA. Hence, any such interpretation can be represented by a three-
valued interpretatioms. Hence the result. O

Thus, consistent biconsequence relations constitute an adequate formalism for three-
valued inference. We should note again that our formalization is fairly general and is
independent of a particular choice of three-valued connectives.

Finally, the following result shows that consistency is also a kind of a coherence
rule. Let us say that a languages conservativeif it contains only conservative con-
nectives. Then the next result shows that for such languages consistency is equivalent
to positive coherence.

Proposition 5.2 Abiconsequencerelation in a conservative languageis consi stent
if and only if it satisfies positive coherence with respect to {v, ~, L}.

Proof: SinceA:IF A: by reflexivity, we havel ~L Av A : by Lemmd3.5]3, and
hence ~L AV Al by positive coherence. The latter bisequent is reduciblg to



BICONSEQUENCE RELATIONS 67

A I, and therefore positive coherence in our case implies consistency as a logical
rule. In the other direction, it is easy to show that consistent biconsequence relations
make valid bisequenta : A+ for all {vv, ~, L }-propositionsA (by induction on the
complexity of A). Consequently, ift A : holds, we obtain A I- by positive cut.

Thus, positive coherence holds. O

Let us consider now a rule dual to consistency.
(Completeness) I A: A

A biconsequence relation will be calledmpleteif it satisfies completeness. The rule
says, in effect, that any four-valued interpretation is complete, that is, any proposition
is either true or false with respect to it (though it still can be both true and false). Such
biconsequence relations can also be considered as three-valued ones, though the third
value isinconsistent rather tharundetermined. As we will see now, such biconse-
guence relations correspond to three-valued logics based on a weak notion of truth.
The latter use the two truth-values distinct fréms distinguished values (instead of
one distinguished valuein the case of consistency).

Any three-valued interpretatiors with respect to the truth-valugs, T,f} is
equivalent to a four-valued interpretatiomletermined by the following pair of truth
and falsity valuations.

1. v = Aiff Ahas eithet or T as its value in;
2. v Aiff AhasthevaluéorT inv.

Clearly, such valuations make any proposition either true or false (or both). We will
say that a bisequent fsvalid with respect to a three-valued interpretatignf it is

valid with respect to the above valuations. As can be segn A holds if and only if

A does not have the valdén v3. Consequently, this notion of validity corresponds
to preservation of nonfalsity.

Any set of three-valued interpretatiohgenerates a biconsequence relaﬂ'rcﬁn
determined by bisequents that &realid in the latter. Any such generated biconse-
guence relation will satisfy completeness. Moreover, the following theorem shows
that any complete biconsequence relation is generated in this way by a set of three-
valued interpretations. The proof of this theorem is perfectly analogous to the proof
of the preceding theorem.

Theorem 5.3 I+ is a complete biconsequence relation if and only if IF:H, for
some set of three-valued interpretations| .

The following result shows that the completeness rule is equivalent to negative coher-
ence in the conservative language. The proof of this result is completely analogous
to the case of consistency and will be omitted.

Proposition 5.4 A biconsequence relation in a conservative language is complete
if and only if it satisfies negative coherencein {v, ~, L}.

A biconsequence relation will be calleldssical if it is both consistent and complete.
Clearly, the joint effect of consistency and completeness amounts to identification of
truth with absence of falsity. All bitheories of such a biconsequence relation have
the form (u, u), and any bisequerd : b I ¢ : d in this case will be equivalent to
a,d:IFb,c: (aswellasto b,cl-: a d). Infact, it is easy to see that a classical
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biconsequence relation is already equivalent to a Scott consequence relation. More-
over, in this case will correspond to a classical disjunctior,and— will coincide
and both amount to a classical negation, whilgill be trivial, thatis,L Awill always
be equivalent tAA. As a esult, we have that the resulting biconsequence relation in
the classical language is reducible to an ordinary classical sequent calculus.

Since consistency and coherence are equivalent, respectively, to positive and
negative coherence in the conservative language, we immediately obtain the follow-
ing proposition.

Proposition 5.5 A biconsequence relation is classical if and only if it is coherent
with respect to the conservative language.

The following result shows that classicality is equivalent also to coherence in the lan-
guage{v, —, L}.

Proposition 5.6 A biconsequencerelationis {V, —, L}-coherent if and only if it is
classical.

Proof: SinceA :IF A: by reflexivity, we have- L—A v A : by theproperties of

the connectives involved, and hende—+A v Al by positive coherence. The latter
bisequent is reducible té : A I-. Since the latter bisequent holds for all proposi-
tions Ain our languager A : —A |- also holds. The latter bisequent is reducible to

I A: A. Thus, coherence for this language implies classicality. Inthe other direction,
itis easy to show that, for a classical biconsequence relatioly IF andlF A: Aare

logical rules with respect to the full language of classical connectives. Now, applying
positive cut toA: Al and A : I, we obtain positive coherence. But since the lan-
guage contains a local negation, it satisfies also negative coherence, since the latter
is equivalent to

IF—=A:

Al
Thus, any classical biconsequence relation is coherent with respect to the whole lan-
guage of classical connectives. O

As is shown in the above proof, any classical biconsequence relation is already co-
herent with respect to all the classical four-valued connectives. Thus, classical coher-
ence is the strongest form of coherence possible: it reduces biconsequence relations
to ordinary classical sequent calculus.

5.1 Ordered biconsequencerelations The following logical rule:
(CO) A:Al-FB:B

can be seen as@mmon part of consistent and complete biconsequence relations,
since it holds in both. Biconsequence relations satisfying this rule will be cadled
dered. The semantic condition corresponding to the rule is that each interpretation
should be either consistent or complete. As an immediate consequence of this fact,
we have this lemma.

Lemmab.7 Abiconsequencerelationisordered if and only if it isan intersection
of a complete and a consistent biconsequence relation.
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Proof: Clearly, if a biconsequence relation is an intersection of a complete and a
consistent biconsequence relation, then it satisfies (CC), since it holds in both. Now
if I is an ordered biconsequence relation, we will denotébi+-") abiconsequence
relation determined by all consistent (respectively, complete) bitheories dhen

it is easy to see thdt is an intersection of these two biconsequence relationd.]

Thus, ordered biconsequence relations could be also considered three-valued ones.

5.2 Three-valued logics Here we will briefly discuss how the above three-valued
biconsequence relations can be extended to ordinary three-valued logics. To begin
with, note that conservative four-valued connectives generate isomorphic classical
three-valued functions when the set of truth-values is restricted to éttHerl.} or

to {t, f, T}. Moreover, it immediately follows from the known results on functional
completeness for three-valued functions (see, e.g., van Berf@nHat the result-

ing set of connectives is functionally complete for the class of all three-valued clas-
sical (closed) functions. As a result, alternative versions of three-valued logics based
on classical three-valued connectives can be obtained simply by imposing appropri-
ate structural rules on biconsequence relations in the conservative language. More-
over, as we have said earlier, a four-valued logic in the conservative language admits a
Hilbert-type axiomatization. Consequently, appropriate axiomatizations for its three-
valued counterparts can be obtained, respectively, by adding one of the following ax-
ioms (see AvronZ]).

(Consistency) ~LAV~L~A
(Completeness) Av ~A
(CO) AA~A=— Bv~B

6 Invariant biconsequencerelations The last logical rule we consider here is the
following.
a:blFc:d
d:clkb:a
Biconsequence relations satisfying this rule will be cailedriant. The correspond-
ing semantic constraint is that(i, j) is a bitheory, therij, i) is also a bitheory. Con-
sequently, this rule reflects an informal requirement we already mentioned in the pre-
ceding section that the reasoning shouldymemetrical with respect to truth and non-
falsity. We will show now that such an invariant four-valued reasoning amounts to a
preservation of &ruth order among the truth-values$:<; 1, T < t.

Let v be a four-valued interpretation. For a set of proposit@mse will denote
by infy v(a) (sug v(a)) the least upper bound (respectively, g.l.b.) of the valuas of
ona in the truth order. Then we will say that a bisequeritvalid with respect to a
four-valued interpretation, if inf; v(aU ~b) < sug v(cU ~d). (Notice that we do
not require that- should actually belong to the underlying language.) Again, for any
set of four-valued interpretatiomswe will define IH as the set of all bisequents that
are i-valid in all interpretations frorh

(Invariance)

Theorem 6.1 I isan invariant biconsequence relation if and only if Isz, for
some set of four-valued interpretations | .
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Proof: To begin with, note that syp(a) and int v(a) are equal, respectively, to
the values of\/aand /\ ain v. (Again, A andv are not required to belong to our
language.) Note also thatif A) <; v(B), thenv(~B) <; v(~A). These two facts
are sufficient to establish thataf: b I ¢ : d isi-valid with respectto,d:cl-b:a

will also bei-valid with respect ta.. Consequently, any biconsequence relation of
the formH will be invariant. Finally, notice that(A) <; v(B) holds if and only if

v = Aimpliesv = B andv =B impliesv = A.

Now, letl be a set of four-valued interpretations corresponding to bitheories of
an invariant biconsequence relatibnand assume that: b I- c : d. Let us denote
propositions/\ (aU ~b) and\/(c U ~d) by A and B, respectively. Then the latter
bisequent is equivalent tA: |- B : . By the representation theorem, this holds if and
only if v = Aimpliesv = B, foranyv € |. But we have alsdl : cI- b: a by invari-
ance. The latter bisequent is equivalenttB : |- ~A :, and hence = ~B implies
v = ~A, for anyv € |. But this is equivalent to the condition thatd B always im-
pliesv = A, and hencev(A) <; v(B). Thus, a bisequent belongsltoif and only if
it is i-valid in all interpretations fronh. O

Finally, we will show that invariance is equivalent to coherence with respect to the
language of invariant connectives.

Proposition 6.2 A biconsegquence relation in a language with invariant connec-
tivesisinvariant if and only if it is coherent in {v, =, ~}.

Proof: Ifa:blFc:d,then
I \/(ﬁau —~bUcU~d):

(see Lemm.5I2). Applying positive coherence, we obtain
\/(ﬁau —~bUcU~d) IF.

But the latter bisequent is reducibledo cI- b : a. Thus,{Vv, =, ~}-coherence im-
plies invariance. To prove the reverse implication, we can show, just as in the pre-
ceding proofs, that invariance with respect to propositional atoms implies invariance
with respectto al{v, —, ~}-propositions. Clearly, the coherence rules will be special
cases of such g/, —, ~}-logical invariance, and hence the implication from right to
left also holds. O

7 Conclusions In this paper we suggested a general four-valued formalism in-
tended to serve as a common framework for reasoning with incomplete and incon-
sistent data. We have shown also how various three-valued and partial logics can be
seen as special cases of this formalism obtained by specifying the language and im-
posing appropriate coherence constraints on biconsequence relations.

Our framework can serve as a basis for various extensions and generalizations
of Belnap’s semantics. Thus, the set of interpretations is naturally ordered, and hence
gives rise to a straightforward dynamic extension of the basic semantics obtained
by introducing connectives and operators that are definable on this ordered structure
(see, e.g., JaspelE)). This perspective reveals, in particular, the importance of the
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so-calledpersistent four-valued connectives that preserve their truth-values with the
growth of information. A detailed study of such connectives lies, however, beyond
the scope and purposes of the present paper.

An algebraic representation of Belnap’s semantics can be traced back to the no-
tions of de Morgan lattice andquasi-Boolean algebra (see Rasiowdl[7] and rder-
ences). An important generalization of these structures has been provided by the no-
tion of abilattice suggested by Ginsberdq and developed further by FittinfL.T],

2], [13] (see alsd]). The latter notion has found interesting applications in non-
monotonic reasoning and logic programming.

A further generalization of Belnap’s bicomponent interpretation arises when we
realize that biconsequence relations can be seen as providing a general framework
of reasoning with respect foairs of contexts. For example, we can assume that the
positive context reflects what is actually true, whereas the negative one—what is be-
lieved (or assumed) to hold. Such systems have turned out to be common in different
approaches to formalization abnmonotonic reasoning. Seelf] for details.

Our final remark concerns the use of many-valued logics for formalizing var-
ious applied kinds of reasoning. At first sight, many-valued logics have an obvious
advantage over, for example, purely syntactic ones in possessing a clear semantics by
their very definition. Moreover, in most cases they are easily axiomatizable, so they
apparently have all the features a decent logic should have. Many authors, however,
have found it desirable to avoid the use of many-valued logics as a way of expressing
their ideas. Perhaps the best case in pointis Scott’s remdiKJithat so far he hasn't
seen a useful three-valued logic with which it is pleasant to work.

As it seems, the main problem with common many-valued logics is that a set
of truth-values does not usually give a clue to a natural system of logical reasoning
about them that would proceed in accordance with our intuitions. In particular, the
knowledge of truth-values alone gives us no answer as to what we can count as a log-
ical connective (i.e., conjunction, disjunction, negation, and implication) of a corre-
sponding logic. Generally speaking, not all sets of many-valued connectives gener-
ate a human-friendly framework of logical reasoning, though they always generate a
many-valued logic.

In this respect, Belnap’s interpretation of the four truth-values gives us two
things. First, it connects four-valued reasoning with actual problems of commonsense
reasoning that usually proceeds on the basis of incomplete or inconsistent informa-
tion. On the other hand, it provides a natural connection between classical and four-
valued reasoning and allows thereby to transfer many of our logical intuitions to the
latter. In other words, it allows us to see four-valued reasoning as a natural extension
of classical ones to more realistic contexts. There is no magic in the number four,
apart from the fact that it is an immediate result of seeing the relevant truth-values as
combinations of classical ones.
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