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MARKOV PARTITIONS FOR
HYPERBOLIC TORAL AUTOMORPHISMS OF T2

E. RYKKEN

ABSTRACT. Using continued fractions, we give a direct
and constructive proof for the fact that every matrix in
GL(2,Z) whose eigenvalues lie off the unit circle is similar over
the integers to a matrix with all nonnegative or all nonpositive
entries. This was first proven indirectly by R.F. Williams in
1970 [8]. Using this result, we give a constructive proof that
there always exists a Markov partition with two connected
rectangles for a hyperbolic toral automorphism on the two-
dimensional torus.

0. Introduction. Our goal is to construct and study Markov par-
titions with two connected rectangles for all hyperbolic toral automor-
phisms on the two-dimensional torus. In their paper, Similarity of au-
tomorphisms of the torus, [1], Adler and Weiss give different construc-
tions for specific cases of these automorphisms. They do not, however,
include one for the case when the determinant of the automorphism
is positive and the trace is negative. We present this in Section 4. In
order to do this, we give a constructive proof in Section 2 that, if A is
a matrix in GL(2,Z) whose eigenvalues lie off the unit circle, then A is
similar over the integers to a matrix with all nonnegative or all nonpos-
itive entries. The proof uses the following fact: given such a matrix,
we can consider the convergents of the continued fraction expansion
of the slope of the unstable eigenvector as lattice points. Under the
map A, they will eventually map to other convergents. We prove this
in Section 3. In fact, the desired similarity matrix is given by a con-
secutive pair of these convergents. Section 1 provides some necessary
background. Adler has also continued his work in this area and has
different unpublished proofs of the same results.

1. Hyperbolic toral automorphisms. Let Tn = Rn/Zn be
the n-dimensional torus. An automorphism of Tn is determined by
a linear automorphism Φ of Rn whose matrix has integer entries and
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2 E. RYKKEN

determinant equal to ±1, that is, Φ ∈ GL(n,Z). A toral automorphism
Φ is called hyperbolic if none of the eigenvalues of the matrix has
modulus 1, that is, |λ| �= 1 for every eigenvalue λ. For definitions,
see [5].

Let A : T2 → T2 be a hyperbolic toral automorphism. Let us call the
eigenvalues λu and λs. They are both real and irrational and satisfy
|λu| > 1 > |λs|. The slope of the unstable eigenvector, mu, is also real
and irrational (since λu is).

Lemma 1.1. Let A : T2 → T2 be a hyperbolic toral automorphism.
Let π : R2 → T2 be the projection from R2 → R2/Z2. Let x ∈ T2.
Then Wu(x), the unstable manifold of x, is the projection of a line
through π−1x parallel to vu, where vu is an unstable eigenvector for A.
Likewise, W s(x), the stable manifold of x, is the projection of a line
through π−1x parallel to vs, where vs is a stable eigenvector for A.

Proof. See [5].

We are interested in looking at Markov partitions with two rectangles
for hyperbolic toral automorphisms of T2. We would like to define
rectangles differently than Bowen [2] did in order to allow us to use
larger rectangles to partition T2. Let R be a closed, connected region
in T2, and let R̃ be a closed, connected region in R2 such that
π : int R̃ → int R is one-to-one and onto and π : R̃ → R is finite-
to-one and onto. Suppose x ∈ R with x̃ ∈ R̃ such that π(x̃) = x, define
Wu(x, R) = π(Wu(x̃)∩R̃) and W s(x, R) = π(W s(x̃)∩R̃). Note that, if
x ∈ ∂R, then Wu(x, R) and W s(x, R) may depend on the choice of lift
for x. Choose a consistent lift. If more than one choice for Wu(x, R) or
W s(x, R) exists, then the rectangle is wrapping around in T2 and two
of its ends meet (see Figure 1). A closed, connected set R is a rectangle
if R = int R and, given x, y ∈ int R, then W s(x, R)∩Wu(y, R) is exactly
one point and this point is in R. This is equivalent to saying that R is a
rectangle if R lifts to a parallelogram with sides in the directions of the
stable and unstable eigenvectors, R̃, in R2 such that π : int R̃ → int R
is one-to-one and onto.

Definition 1.2. A Markov partition of T2 is a finite covering
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{R1, . . . , Rn} of T2 by rectangles such that:

1. For i �= j, int Ri ∩ int Rj = ∅.

2. If x ∈ int Ri, f(x) ∈ int Rj , then f(Wu(x, Ri)) ⊃ Wu(f(x), Rj))
and f(W s(x, Ri)) ⊂ W s(f(x), Rj)).

Definition 1.3. We define the Markov matrix for a Markov partition
P with n rectangles to be the n × n matrix given by

Mij = the number of times intA(Rj) crosses int Ri

for 1 ≤ i, j ≤ n.

Proposition 1.4. Let P be a Markov partition for A, a hyperbolic
toral automorphism, with Markov matrix M . Then P is a Markov
partition for A−1 with Markov matrix MT .

Proof. Left to reader.

Proposition 1.5. Let Φ ∈ GL(n,Z) be such that Φ−1AΦ = B where
A and B are hyperbolic toral automorphisms. Then, if P is a Markov
partition for B with Markov matrix M , ΦP will be a Markov partition
for A with Markov matrix M .
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Proof. Left to reader.

Let R be a rectangle. Define ∂uR ≡ {x ∈ R : x /∈ int (W s(x, R))}
and ∂sR ≡ {x ∈ R : x /∈ int (Wu(x, R))}. Interior here refers to the
interior of W s(x, R) relative to W s

2ε(x) and the interior of Wu(x, R)
relative to Wu

2ε(x), where ε is chosen such that W s(x, R) ⊆ W s
ε (x) and

Wu(x, R) ⊆ Wu
ε (x). Let P = {R1, . . . , Rn} be a partition for T2.

Define the unstable boundary of a partition P to be ∂uP = ∪n
i=1∂uRi

and the stable boundary of a partition P to be ∂sP = ∪n
i=1∂sRi.

Definition 1.6. A point where ∂uP and ∂sP intersect is called a
crossing if the line segments cross each other completely. If they do
not, then this point is called an endpoint.

Snavely has also done work with finding Markov partitions for hyper-
bolic toral automorphisms on T2 with two rectangles. From his thesis
[6] we have the following proposition.

Proposition 1.7. If P is a partition of T2 with connected rectangles,
then the number of rectangles is equal to the number of crossings plus
two.

From the definition of a Markov partition, we have that:

1. A(∂uP) ⊃ ∂uP and

2. A(∂sP) ⊂ ∂sP.

The following proposition is also known and not difficult to prove.

Proposition 1.8. If we partition the torus into rectangles such
that int Ri ∩ int Rj = ∅ if i �= j, then in order to show that this
partition is a Markov partition, it suffices to show A(∂uP) ⊇ ∂uP and
A(∂sP) ⊆ ∂sP.

From Proposition 1.5, it is clear that, if we can prove that every
hyperbolic toral automorphism on the two-dimensional torus is similar
over the integers to a matrix with all nonnegative or all nonpositive
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entries, then we are free to restrict our attention to such matrices.

2. Conjugacy to a nonnegative or a nonpositive matrix.

Theorem 2.1. Every A ∈ GL(2,Z) whose eigenvalues lie off the unit
circle is similar over the integers to a matrix B, all of whose entries
have the same sign (0 allowed). A similarity is given by consecutive
convergents of the continued fraction expansion of the slope of the
unstable eigenvector.

In order to prove this, we will need some results about continued
fractions. Given any real, irrational number α, we can write α in the
form

α = a1 +
1

a2 + 1
a3+

1
a4+···

where a1 ∈ Z and ai ∈ Z+ for i ≥ 2. This is called the simple
continued fraction expansion of α. We can write α = [a1, a2, a3, . . . ].
The finite simple continued fraction [a1, a2, . . . , an] has a rational value
cn = (pn/qn) and is called the nth convergent to α.

Lemma 2.2.
pi+1qi − piqi+1 = ±1.

Proof. Left to reader.

Following [3], we say that a fraction p/q, q > 0, is a best approx-
imation to a real, irrational number α if, for all fractions p′/q′ with
0 < q′ ≤ q, |qα − p| < |q′α − p′| unless q = q′ and p = p′. In his
paper, Irwin proves that the best approximations are precisely the nth
convergents, where either n ≥ 1 or n ≥ 2. Since qi+1 > qi for i ≥ 2,
we have that if pn/qn and pn+i/qn+i are convergents with n ≥ 2, then
|qn+iα − pn+i| < |qnα − pn| for all i ∈ Z+. This also gives us the
inequality |α − pn+i/qn+i| < |α − pn/qn|, so each convergent is nearer
to the value of α than the preceding convergent.

Convergents have the following geometric significance. Given a
convergent pn/qn for α, we can associate it with the lattice point
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(qn, pn). Consider the line y = αx. If we imagine pegs at each of
the lattice points and consider two strings lying on y = αx that are
fixed at infinity in one direction, then if we pull one string to the right
to the first convergent (q1, p1) and the other to the left to the second
convergent (q2, p2), the pegs that are touched by the string pulled to the
left are exactly the upper convergents (those greater than α) and the
pegs that are touched by the string pulled to the right are exactly the
lower convergents (those less than α). This fact was given by F. Klein,
Ausgewaehlte Kapitel der Zahlentheorie, in 1907. The explanation can
be found in Olds [4, pp. 77 79].

Consider the simple continued fraction expansion of mu, the slope of
the unstable eigenvector. We need the following theorem which we will
prove in the next section.

Theorem 2.3. Let A be an element of GL(2,Z) such that the
eigenvalues of A lie off the unit circle and such that trA > 0. Let
pn/qn be the convergents for mu. Then there is an M ∈ Z+ such that,
if m ≥ M , then A

[
qm

pm

]
corresponds, in the manner described above,

to another convergent of mu, pm+i/qm+i for some i ≥ 1. There is also
an M̃ ∈ Z+ such that A−1

[
qm

pm

]
is another convergent for all m ≥ M̃ .

Using these results, we are able to prove the theorem.

Proof of Theorem 2.1. If trA < 0, then P−1AP has all nonpositive
entries if and only if P−1(−A)P has all nonnegative entries. Since
det (−A) = detA, and tr (−A) = −trA, if we prove the case when
trA > 0, then the case when trA < 0 will follow. Assume trA > 0, in
which case we will have λu > 0.

We want to find P ∈ GL(2,Z) such that P−1AP has all nonnegative
entries, that is, P−1AP (first quadrant) ⊆ (first quadrant) or AP (first
quadrant) ⊆ P (first quadrant). P =

[
q q̃

p p̃

]
with qp̃ − pq̃ = ±1 can be

thought of as a sector in the plane that is bounded by two rays that
originate at the origin and pass through (q, p) and (q̃, p̃) and hence have
rational slopes p/q and p̃/q̃, respectively. The first quadrant can thus
be represented by the identity matrix, hence P (first quadrant) = P
and we want AP ⊆ P where P and AP are thought of as sectors. So,
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if we can find such a sector that maps into itself under A, then we will
be done. Consider an unstable eigenvector that lies in the x > 0 half
plane; call it vu. Let vs be the stable eigenvector with slope ms. The
line y = msx divides the plane into two halves. We need a sector that
contains vu and lies completely within one of the half planes determined
by y = msx. This is necessary since points in this sector are a linear
combination of vu and vs with a positive coefficient for vu. Under A the
component in the unstable direction will be stretched by λu > 1 and
the component in the stable direction will be shrunk by λs = ±1/λu. In
order to pick p/q and p̃/q̃, consider the convergents to mu = slope of vu.
Since |α − pi+1/qi+1| < |α − pi/qi| for every i ≥ 1, we can find
consecutive convergents pn/qn and pn+1/qn+1 such that the rays that
originate from the origin and pass through (qn, pn) and (qn+1, pn+1) lie
completely within the half plane determined by y = msx that contains
vu. Moreover, since the convergents are consecutive, the rays will lie on
opposite sides of vu, hence the sector they form will contain vu. (See
Figure 2.) By Lemma 2.2, we have qn+1pn − pn+1qn = ±1. Moreover,
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by Theorem 2.3, there is an M ∈ Z+ such that

A
[

qn

pn

]
=

[
qn+i

pn+i

]

is another convergent of α for some i ≥ 1 for every n ≥ M . Since
|α − pn+i/qn+i| ≤ |α − pn+1/qn+1|, we have that AP ⊆ P , thus

P =
[

q qn+1

pn pn+1

]

will satisfy our requirements and P−1AP will have all nonnegative
entries.

3. Convergents will eventually map to other convergents. In
order to prove Theorem 2.3 we will need the following background.

Notice that the distance |qα − p| can be thought of as the vertical
distance from the point (q, p) to the point (q, αq). We also have the
following theorem from Stark [7, p. 214].

Theorem 3.1. Suppose that α is irrational and pn/qn and pn−1/qn−1

are consecutive convergents that satisfy 0 < qn−1 < qn (this is always
true if n ≥ 3). If (q, p) is a lattice point that is not one of the lattice
points associated with these convergents and 0 < q ≤ qn, then the ver-
tical distances of (q, p) and (qn−1, pn−1) from the line y = αx satisfy
the inequality |qn−1α − pn−1| < |qα − p|.

In addition, we have the following two lemmas.

Lemma 3.2. Let A ∈ GL(2,Z) with eigenvalues that lie off the unit
circle and trA > 0. Let α = mu. Consider a convergent p/q for α. Let

A
[

q
p

]
=

[
q′

p′

]
.

Then p′ and q′ are relatively prime.

Proof. Given a convergent p/q we know by Lemma 2.2 that (p, q) = 1.
Hence, if we consider y = (p/q)x, (q, p) must be the closest integer
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lattice point to the origin that y = (p/q)x passes through. Now A
maps the line y = (p/q)x to the line y = (p′/q′)x. Thus (q′, p′) must be
the closest integer lattice point to the origin that y = (p′/q′)x passes
through. If not, then there is another point (q̃, p̃) that is closer, but
then A−1

[
q̃

p̃

]
would be closer to the origin than (q, p) is on the line

y = (p/q)x and this would be a contradiction. Hence, (p′, q′) = 1.

Lemma 3.3. Let A ∈ GL(2,Z) with eigenvalues that lie off the unit
circle and trA > 0. Let α = mu. Consider the convergents pm/qm for
α. Let

A
[

qm

pm

]
=

[
q′m
p′m

]
.

Then there is an M ∈ Z+ such that q′m+1 > q′m > qm if m ≥ M ,
that is, the order of the x-coordinates of consecutive convergents will be
preserved by their images under A, and the image of the x-coordinate
will be greater than the x-coordinate.

Proof. The convergents can be written as a linear combination of
vu and vs, that is, (qn, pn) = anvu + bnvs. The line y = msx divides
the plane into halves. Consider the half plane that contains vu where
vu lies in the x > 0 plane. Since the convergents have the property
that qn+1 > qn for n ≥ 2 and |α − pn+1/qn+1| < |α − pn/qn|,
after some N1 all the convergents will lie in this half plane and
hence an > 0 for n ≥ N1. Furthermore, by similar triangles, since
|αqn+1 − pn+1| < |αqn − pn|, |bn+1| < |bn| for all n, see Figure 3.
Hence, the bn are bounded in absolute value. Let x(vs) denote the
x-coordinate of vs and x(vu) denote the x-coordinate of vu. We know
that limn→∞ qn = ∞, and qn = anx(vu) + bnx(vs). Since the bn’s
are bounded, we must have limn→∞ an = ∞. We have (q′n, p′n) =
anλuvu +bnλsvs. We would like to show that anλux(vu)+bnλsx(vs) >
anx(vu) + bnx(vs), that is, an(λu − 1)x(vu) + bn(1 − λs)(−x(vs)) > 0.
But limn→∞ an = ∞, λu > 1, x(vu) > 0, and the bn are bounded
so this is clearly true after some M1. Next we would like to show
that an+1λux(vu) + bn+1λsx(vs) > anλux(vu) + bnλsx(vs). It will
suffice to show that (an+1 − an)λux(vu) > (|bn+1λs| + |bnλs|)x(vs).
Since qn+1 − qn ≥ qn−1, we know that limn→∞(qn+1 − qn) = ∞. Now
qn+1 − qn = (an+1 − an)x(vu) + (bn+1 − bn)x(vs) and since bn+1 and
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bn are bounded so is their difference, hence limn→∞(an+1 − an) = ∞.
Because λu > 1, and x(vu) > 0, this shows that the inequality will hold
after some M2. Choose M = max{M1, M2}.

We now proceed with the proof of Theorem 2.3.

Proof of Theorem 2.3. We will first show that eventually the inverse
images of the convergents are convergents. Consider the region, R,
of the plane determined by the segments connecting the upper con-
vergents, the segments connecting the lower convergents, the vertical
segment from the first convergent (q1, p1) to y = αx, the vertical seg-
ment from the second convergent (q2, p2) to y = αx, and the part of
the line y = αx that connects (q1, αq1) to (q2, αq2) (see Figure 4). By
Klein’s observation with the strings, the interior of this region contains
no lattice points. Consider its image under A. Since lattice points and
only lattice points map to lattice points, its image must also contain
no lattice points.

We can write (qn, pn) = anvu + bnvs, where the bn’s for the lower
convergents all have the same sign and the bn’s for the upper conver-
gents all have the opposite sign. Since (q′n, p′n) = anλuvu + bnλsvs, we
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have the images of all the lower convergents lie on one side of the line
y = αx and the images of all the upper convergents lie on the opposite
side.

Consider the trapezoid formed by (q1, p1), (q3, p3), (q1, αq1) and (q3,
αq3). Its image will be another trapezoid, with the segment from
(q1, αq1) to (q3, αq3) mapping to another segment on the line y =
αx, the two vertical segments mapping to two parallel segments, the
segment between (q1, p1) and (q3, p3) mapping to the segment between
their images and the interior mapping to the interior of the new
trapezoid (see Figure 5). This is true for all trapezoids formed this
way by two consecutive lower convergents or two consecutive upper
convergents. The trapezoid formed by (qn, pn) and (qn+2, pn+2) and
the one formed by (qn+2, pn+2) and (qn+4, pn+4) will share the vertical
segment from (qn+2, pn+2) to (qn+2, αqn+2); hence their images will
share the image of this segment. Since the trapezoid maps to another
trapezoid and x(A(qn, αqn)) = λuqn < λuqn+2 = x(A(qn+2, αqn+2)),
we have that q′n < q′n+2 for every n ≥ 1. Furthermore, since the images
of adjacent trapezoids share a boundary, there exist Q > 0 such that
the image of our region will completely contain the vertical line segment
from the boundary to the line y = αx for segments of vertical lies x = q
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where q ≥ Q.

By Lemma 3.3, after some N the image of the convergents (qn, pn)
with n ≥ N will have the property that they lie further to the right than
their preimage and, given two convergents (qn, pn) and (qn+i, pn+i), the
order of their x coordinate will be preserved by their images under A
if n ≥ N .

Suppose (q, p) is an upper convergent with q ≥ max{q′2, q′N , Q} = M̃ ;
then A−1(q, p) is another convergent. This can be seen as follows.
Suppose not. Since q > q′2, q will lie between the x-coordinates of the
images of either two consecutive lower convergents or two consecutive
upper convergents. Pick the images that lie above the line y = αx
and call them (q′n, p′n) and (q′n+2, p

′
n+2). (q′n, p′n) and (q′n+2, p

′
n+2) are

lattice points and hence they must lie outside or on the boundary of
our original region, R. Since q > q′N , we have q′n ≥ q′N ≥ q2. By Klein’s
string argument, the line segment joining (q′n, p′n) and (q′n+2, p

′
n+2) will

lie outside or on the boundary of our region, R. Moreover, since (q, p)
is a vertex of R, the segment between (q′n, p′n) and (q′n+2, p

′
n+2) will

not contain (q, p). This segment will, however, be on the boundary of
the image of R. Finally, since q ≥ Q, the vertical line segment of the
line x = q from the boundary of the image of the region to the line
y = αx will contain (q, p) and be completely contained in the image
of the region (see Figure 6). Since the interior of the image cannot
contain any lattice points, this is a contradiction. Thus A−1(q, p) must
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be a convergent. By a similar argument, the same will be true if (q, p)
is a lower convergent with q ≥ max{q′1, q′N , Q}.

By Lemma 3.3 there exists a Q∗ ∈ Z+ such that, if (q′, p′) and
(q̃′, p̃′) are images of convergents with q′ > q̃′, then x(A−1(q′, p′)) >
x(A−1(q̃′, p̃′)) for every q′, q̃′ ≥ Q∗. This can be seen as follows.
There are only a finite number of convergents such that q′m+1 ≤
q′m, at most the set {(q1, p1), . . . , (qN−1, pN−1)}. If we take Q∗ >
max{q′1, q′2, . . . , q′N−1}, then we are done. Let Q∗ = q′N+1 since
q′N+1 > q′N and q′n+2 > q′n for all n, this satisfies our condition.

Let (qF , pF ) be the first convergent with qF ≥ max{q′2, q′N+1, Q}; then
A−1(qf , pf ) is another convergent for every f ≥ F . Let A−1(qF , pF ) =
(qM , pM ); then

A
[

qm

pm

]
=

[
q′m
p′m

]

must be another convergent for every m ≥ M . This can be seen as
follows. Suppose not; then there is an m̃ ≥ M such that (q′m̃, p′m̃) is
not a convergent. Consider the convergent (qL, pL) such that qL <
q′m̃ < qL+1. Since qF ≥ q′N+1 = Q∗, we have m̃ ≥ M ≥ N + 1, and
hence q′m̃ > qF , and thus (qL, pL) = A(qK , pK) for some convergent
(qK , pK) with K < m̃ (since q′m̃ > qL ≥ qF ≥ Q∗). Thus, |qKα−pK | >
|qm̃α−pm̃|. Consider the triangle formed by a convergent (q, p), (q, αq),
and a segment from (q, p) to the line y = αx in the direction of the
stable eigenvector (this will intersect y = αx since the slope of the
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stable eigenvector is (λs − a)/b which is not equal to α), and the one
formed by the convergent’s image (q′, p′), (q′, αq′), and a segment from
(q′, p′) to the line y = αx in the direction of the stable eigenvector.
These two triangles are similar. Since the side in the first triangle
that lies in the stable direction must contract by |λs| = 1/|λu| under
A, all sides of the second triangle must have length 1/|λu| times
the length of their corresponding sides in the first triangle. Thus,
|q′α−p′| = (1/λu)|qα−p|. Hence, |q′Kα−p′K | = |qLα−pL| > |q′m̃−p′m̃|.
But this contradicts Theorem 3.1. Hence (q′m, p′m) must be a convergent
for every m ≥ M . Moreover, since |q′mα − p′m| = (1/λu)|qmα − pm| <
|qmα − pm|, for every m, we must have p′n/q′n = pn+i/qn+i for some
i ≥ 1.

4. Markov partitions with two rectangles.

Theorem 4.1. Let A : T2 → T2 be a hyperbolic toral automorphism.
Then there exists a Markov partition for A with two rectangles.

Proof. By Theorem 3.1, we know that A is conjugate by Φ ∈
GL(2,Z) to a matrix with all nonnegative or all nonpositive entries.
By Proposition 1.5, it suffices to find a Markov partition with two
rectangles for such matrices. Hence, without loss of generality, assume
either A ≥ 0 or A ≤ 0. If A ≥ 0, then by the Perron-Frobenius
theorem, we have ms < 0 < mu. If A ≤ 0, then A2 ≥ 0 and we
are back with the previous case. We will consider four cases. When
trA < 0, we may assume A ≤ 0. In this case, let A =

[
−a −b

−c −d

]
where

a, b, c, d ≥ 0. When trA > 0, we may assume A ≥ 0. In this case, let
A =

[
a b

c d

]
where, again, a, b, c, d ≥ 0. Given x̃, ỹ ∈ R2, let [x̃, ỹ] denote

the unique point W s(x̃) ∩ Wu(ỹ).

Case 1. detA = −1, trA < 0. In this case we have λu < −1 <
0 < λs < 1. Consider the partition of T2 shown in Figure 7. We
obtain this partition by considering two segments in R2: one from
(0, 0) to [(0, 0), (−1, 1)], which lies in the stable direction and one from
[(1, 0), (0, 0)] to [(0,−1), (0, 0)], which lies in the unstable direction. We
then project these segments to T2. The projection of the first segment
will be ∂sP, and the projection of the next segment will form ∂uP.
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Note that the ends of ∂uP lie in ∂sP. While it is clear that the ends
of the stable segment lie in the unstable manifold of the origin, it is also
true that the ends of the stable segment lie in ∂uP. This can be seen
by considering Figure 8, where it is clear that in both cases d′ < d since
ms < 0 < mu. Also note that the unstable segments and the stable
segments do not cross since, considering these segments through any

2

<1  |  | m s   | > 1  |m s

R2 R

(0,0) (1,0)

(0,1)
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d

d’
d

FIGURE 8.
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y =  m u x

y
R

2

FIGURE 9.

other lattice points does not produce any new crossings (again, since
ms < 0 < mu). Hence, by Proposition 1.7, this partition forms two
rectangles on T2.

Since the origin is a fixed point and the stable segment will contract
by 1 > λs > 0, we will have A(∂sP) ⊂ ∂sP. Again, since the origin is a
fixed point, if we show that A(1, 0) = (−a,−c) satisfies the inequality
y ≤ msx−1 and A(0,−1) = (b, d) satisfies the inequality y ≥ ms(x−1),
then we will have shown that ∂uP ⊂ A(∂uP) (see Figure 9). The
first inequality can be written as c ≥ 1 + ams which clearly holds
since ms < 0 and c ≥ 1 (b = 0 or c = 0 would imply that the
eigenvalues are the integers a and d). The second inequality can be
written d ≥ ms(b − 1) which also clearly holds since ms < 0 and
b − 1 ≥ 0. Hence, this partition is a Markov partition.

Case 2. detA = −1, trA > 0. In this case we have λs < 0 < λu.
Consider A−1. A−1 has λu < 0 < λs, tr (A−1) < 0, det (A−1) = −1.
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Now A−1 is conjugate to an integer matrix M with all nonpositive
entries, that is, M = Φ−1(A−1)Φ for some Φ ∈ GL(2,Z). From Case 1,
we have a Markov partition P for M, hence by Proposition 1.5, Φ(P)
will be a Markov partition for A−1. By Proposition 1.4, Φ(P) will
also be a Markov partition for A. We could also directly construct a
partition as in Case 1.

Case 3. detA = 1, trA > 0. We can use the construction in Case 1
to partition T2 into two rectangles. Since the origin is a fixed point
and the unstable segments will expand by λu > 1 and the stable
segments will contract by 1 > λs > 0, we will have A(∂uP) ⊇ ∂uP
and A(∂sP) ⊆ ∂sP, as desired, and the partition will be Markov.

Case 4. detA = 1, trA < 0. In this case we have λu < −1 < λs < 0.
Since both eigenvalues are negative, the previous partition will fail to
partition the 2-torus into two rectangles. By the Lefschetz fixed point
theorem, the sum of the indices of the fixed points of A is equal to the
alternating sum of the traces on homology, in this case, 2 − trA ≥ 5.
This implies that there exists a fixed point other than the origin. Let
(p, q) be a fixed point that is not the origin with 0 ≤ p, q < 1, then

[−a −b
−c −d

] [
p
q

]
=

[
p + m
q + n

]

for some m, n ∈ Z where m ≤ −1 and n ≤ −1.

Consider the following partition of T2 shown in Figure 10. We obtain
this partition by considering a segment in R2 from [(p, q), (1, 0)] to
[(p, q), (0, 1)] (note that this segment has slope ms), and a segment in
the direction of vu from [(p− 1, q − 1), (0, 0)] to [(p, q), (0, 0)]. We then
project these segments to T2. The projection of the first segment will
be ∂sP and the projection of the next segment will form ∂uP. Note
that the ends of ∂uP lie in ∂sP. It is also true that the ends of the
stable segment lie in ∂uP. This can be seen in Figure 11, where we
consider the four possible ways in which the stable segment can cross
through the unit square given that ms < 0.

Also note that the unstable and stable segments do not cross, since
considering the unstable segments through any other lattice points or
the stable segments through translates of (p, q) does not produce any
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new crossings (again, since mu > 0 > ms). Hence this partitions T2

into two rectangles.

Consider the image of the segment from (0, 0) to [(p, q), (0, 0)]; call
it (∂uP)+. Next, consider the image of the segment from (0, 0) to
[(p − 1, q − 1), (0, 0)]; call it (∂uP)−. Since the origin is a fixed
point and λu < 0, we must show that A(∂uP)+ ⊇ (∂uP)− and
A(∂uP)− ⊇ (∂uP)+. If we can show that A(p, q) = (p + m, q + n)
satisfies the inequality y ≤ ms(x− (p− 1))+ (q− 1), then all points on
y − (q + n) = ms(x− (pm)) will satisfy it and we will have A(∂uP)+ ⊇
(∂uP)−. So we must show that q + n ≤ ms(p + m − (p − 1)) + q − 1,
that is, n + 1 ≤ ms(m + 1). Since n + 1 ≤ 0 and m + 1 ≤ 0, we have
ms(m + 1) ≥ 0, hence the inequality holds.

Now (1 − p, 1 − q) is also a fixed point for A since

[−a −b
−c −d

] [
1 − p
1 − q

]
=

[
(1 − p) − (m + a + b + 1)
(1 − q) − (n + c + d + 1)

]
.

This means that we could have used (1− p, 1− q) as our original fixed
point. But then the length of the new (∂uP)− would be the length of
the old (∂uP)+, and the length of the new (∂uP)+ would be the length
of the old (∂uP)−. By what we have shown above, |λu| times the length
of the new (∂uP)+ is greater than or equal to the length of the new
(∂uP)−. This implies that |λu| times the length of the old (∂uP)− is
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greater than or equal to the length of the old (∂uP)+. This shows that
A(∂uP)− ⊇ (∂uP)+.

Next consider the image of the segment from (p, q) to [(p, q), (1, 0)];
call it (∂sP)+, and consider the image of the segment from (p, q) to
[(p, q), (0, 1)]; call it (∂sP)−. Since (p, q) is a fixed point and λs < 0,
we must show that A(∂sP)+ ⊆ (∂sP)− and A(∂sP)− ⊆ (∂sP)+.

If we can show that A(1, 0) = (−a,−c) satisfies the inequality
y ≤ mux+1, then all points on y = mu(x+a)− c will satisfy it and we
will have A(∂sP)+ ⊆ (∂sP)−. We must show −c ≤ mu(−a) + 1 = 1 −
a(−a+d+

√
(a + d)2 − 4))/(2b) = (2b+a2−ad−a

√
(a + d)2 − 4))/(2b);

in other words, 2b+a2 +2bc ≥ ad+a
√

(a + d)2 − 4. Since bc = ad−1,
this is equivalent to 2b + a2 + 2ad − 2 ≥ ad + a

√
(a + d)2 − 4, or

2b + a2 + ad ≥ 2 + a
√

(a + d)2 − 4. Since a(a + d) ≥ a
√

(a + d)2 − 4
and 2b ≥ 2, the inequality is true.

If we can show that A(0, 1) = (−b,−d) satisfies the inequality
y ≥ mu(x−1), then all points on y = mu(x+b)−d will satisfy it and we
will have A(∂sP)− ⊆ (∂sP)+. We must show −d ≥ mu(−b−1), that is,
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d ≤ ((−a + d +
√

(a + d)2 − 4)/(2b))(1 + b), or (b + 1)
√

(a + d)2 − 4 ≥
bd+ab+a−d = b(a+d)+(a−d). Since both sides of the inequality are
positive, we can square both sides to get the equivalent inequalities,

(b2 + 2b + 1)((a + d)2 − 4)
≥ b2(a + d)2 + 2b(a + d)(a − d) + (a − d)2

b2(a + d)2 + 2b(a + d)2 + (a + d)2 + 2bd2

≥ b2(a + d)2 + 2ba2 + (a − d)2 + 4(b + 1)2

2ba2 + 4abd + 2bd2 + 2ad + 2bd2 ≥ 2ba2 − 2ad + 4b2 + 8b + 4
4abd + 4bd2 + 4ad ≥ 4b2 + 8b + 4

abd + bd2 + ad ≥ b2 + 2b + 1
b2c + b + bd2 + bc + 1 ≥ b2 + 2b + 1 (since ad = bc + 1)

b2c + bd2 + bc ≥ b2 + b

bc + d2 + c ≥ b + 1.

This last inequality is obvious since c > 0. Thus this partition forms a
Markov partition and we are done with all possible cases.
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