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BIHARMONIC HOPF CYLINDERS

ANGEL FERRANDEZ, PASCUAL LUCAS AND MIGUEL A. MERONO

0. Introduction. This paper concerns curves and surfaces, into
indefinite space forms, whose mean curvature vector field is in the kernel
of certain elliptic differential operators. It has been inspired by the
paper of M. Barros and O.J. Garay [2], where the Riemannian version
of this question is solved. We first consider the Laplacian to study
indefinite submanifolds with harmonic mean curvature vector field in
the normal bundle. This problem is closely related to a conjecture
of B.-Y. Chen [5], on Riemannian submanifolds, stated as follows:
harmonicity of the mean curvature vector field implies harmonicity of
the immersion. Submanifolds with harmonic mean curvature vector
field were called by Chen biharmonic submanifolds. In the realm of
indefinite submanifolds, counterexamples to that conjecture have been
given by the two first authors, see [1]. Biharmonic submanifolds are a
special class of submanifolds for which its mean curvature vector is an
eigenvector of A, that is, AH = AH for some real constant \. First
we describe the family of curves whose mean curvature vector field is
proper for the Laplacian. This problem has been solved for Euclidean
curves by M. Barros and O.J. Garay [2]. We have to think of a different
Laplacian if we want to characterize curves others than those of both
constant curvature and torsion. Since H is a normal vector field, it
seems natural to consider the Laplacian associated to the connection
in the normal bundle. Then we show that the indefinite Cornu spirals
are the only nonstandard curves in a semi-Riemannian manifold that
are biharmonic in the normal bundle. As for surfaces, we deal with the
semi-Riemannian Hopf cylinders we introduced in [4]. Then we show
that the biharmonicity of them strongly depends on the biharmonicity
of the curves to which they are associated. In fact, a nonstandard Hopf
cylinder in H3(—1) is biharmonic in the normal bundle if and only if it
is associated to a Cornu spiral in H2(—4). Then we extend the results
in [2].
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The second operator considered is the Jacobi operator, which was
introduced by J. Simons [9] and involves the Laplacian in the normal
bundle. A normal vector field is called a Jacobi field if it belongs to the
kernel of the Jacobi operator. This operator appears when one studies
the second variation of the area functional for compact Riemannian
minimal submanifolds. It has been recently used by Barros and Garay
[3] to classify Hopf cylinders into S® with Jacobi mean curvature vector
field. In [4] we have made, following [7], a qualitative description of
elastic curves into indefinite space forms to be used as a tool to find
Lorentzian Willmore tori in H(—1). Now the Jacobi operator allows us
to get a characterization of elastic curves, as well as a characterization
of semi-Riemannian Hopf cylinders in H$(—1), in terms of elasticae
in H2(—4), s = 0,1. We show that a curve in an indefinite real space
form has Jacobi mean curvature vector field if and only if it is curvature
homothetic to a free elastica. As before, this characterization leads to
find Hopf cylinders into H3(—1) with Jacobi mean curvature vector
field.

1. Curves with harmonic mean curvature vector field. Let
v be an arclength parametrized curve isometrically immersed in an
indefinite real space form M of constant curvature c. As usual, the
metric on M will be denoted by (,) and the Riemannian connection
by V. Assume that v does not lie in a two-dimensional totally geodesic
submanifold of M. Let k > 0 and 7 be the curvature and torsion
functions of vy and {T = v/,£3,&3} a Frenet frame along . The Frenet
equations for vy can be partially written as

(1.1) V1T = g3k,
(1.2) Vrés = —e16T — 3783,
(1.3) Vs = €212 + 0,

where & € span {T,&2,&5}+ and €;, i = 1,2, 3, are the causal characters
of T, & and &3, respectively. The Laplacian operator along «y is given
by A= —ElvTvT.

Let o be the second fundamental form associated to 7. Then the
mean curvature vector field H is defined by

H=tr(o) =¢e10(T,T) = &1 V1T = e162kEs.
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Taking covariant derivative of H with respect to 7', and using the Frenet
equations, we obtain

VrH = —e36°T + e162k'€s — £16283K7Es.
The second covariant derivative of H yields

AH = (3e16266" )T + (—e26” + €163 + e3672) &y

(1.4) , ,
+ €263(2K'T + KT')E€3 + £263KT6.

Then AH = AH, X € R, if and only if the following equations hold

(1.5) kK =0,

(1.6) eok! — g1k — e3672 + Aerear = 0.
(1.7) 26'T + k7' =0,

(1.8) k76 = 0.

From the assumption on «, equation (1.8) implies that § = 0 and so
the curve 7 lies in a three-dimensional totally geodesic submanifold of
M. Hence we can assume without loss of generality that n = 2 or
n = 3. On the other hand, from (1.7) we deduce that %7 is a constant.
As a consequence we have the following result.

Proposition 1. Let vy be a unit speed curve in M. Then AH = \H
if and only if one of the following statements holds:

(1) v is a geodesic.

(2) v is a small pseudocircle or pseudohyperbola in a two-dimensional
totally geodesic submanifold of M.

(3) v is a heliz in a three-dimensional totally geodesic submanifold of

M.

Proof. From (1.5) we can assume that « is constant. If x = 0, then
is a geodesic; otherwise, since k27 is constant then 7 is also constant.
Therefore we obtain (2) or (3) according to 7 = 0 or 7 # 0, respectively.
Conversely, it is easy to show that all curves in the proposition satisfy
the required condition for appropriate . ]
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This proposition shows that we must work with a different Laplacian
if we want to characterize curves others than those of constant curva-
ture. Since H is a normal vector field, it is natural to think of the
Laplacian AP associated to the connection D in the normal bundle,
defined by AP = —¢; Dy Dr.

A straightforward computation leads to
(1.9) AP H = (—eak” + e3k7?)€a + £263(26'T + KT') €3 + €063 TF.

Then APH = \H, )\ € R, is equivalent to the set of equations (1.7),
(1.8) and the following

(1.10) eak” — e3kT? + £169AK = 0.

Recall that a curve v : I — M is said to be a Cornu spiral if its
curvature k is a nonconstant linear function.

Proposition 2. Let v be a unit speed curve in M2. Then APH =
AH, X € R, if and only if one of the following statements holds:

(1) A =0 and & is a linear function. So v is a geodesic, a pseudocircle,
a pseudohyperbola or a Cornu spiral.

(2) e1X > 0 and K is given by k(s) = acos(ve1As) + bsin(v/e1As).
(3) €1\ < 0 and & is given by k(s) =a exp(v/—c1As)+bexp(—v/—e1As).

Proof. Since the torsion 7 = 0, then APH = MH if and only if
k" 4+ €1 Ak = 0. Then it suffices to integrate that differential equation.
]

The behavior of these curves in HZ(—1) can be sketched as in Figures
la, 1b and 1c.

The curves characterized in Proposition 2 are quite different in the
Lorentzian plane L? with respect to the Euclidean plane R2. In fact,
the curvature function (s) in R? gives the rate of change of the
Euclidean angle between the tangent vector and a fixed vector, whereas
in L2 it gives the corresponding rate of change for the hyperbolic angle.
The Figures 2a—2d show those differences.
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FIGURE 1la. Cornu spiral.

R

FIGURE 1b. k(s) = cos(s).

=1

FIGURE 1c. k(s) = exp(s).
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FIGURE 2a. Cornu spiral in L2.

FIGURE 2b. Cornu spiral in R2.
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FIGURE 2c. &(s) = exp(s) in L2.

FIGURE 2d. &(s) = exp(s) in R2.
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To solve the n-dimensional case, we can suppose that v lies in a
three-dimensional totally geodesic submanifold of M. Then if we take
u = k2, (1.10) can be rewritten as

(1.11) (u')? + 4(e1 Mu? — e2bu + e2e3a%) = 0,

where b is a constant. By integrating (1.11) we obtain the following
solutions:

(i) If e1 A < 0, then u is a root of Au?+ Bu+C = 0, where A = 48)\?,
B = 16e1\(exp(2v/—e1s) — 3e2b) and C = (exp(2y/—e1As) — 4eab)? —
16818283@2)\.

(ii) If esA > 0, then u is a root of Au®? + Bu + C = 0, where
A = 4X*(1 + tan?(2y/e1)s)), B = —4e1e20b(1 + tan?(2y/e1s)) and
C =b? + 46162630,2)\ tan2(2\/ 81)\8).

(iii) If A =0, then x and 7 are given by

a2
k(8) = 4/e2bs? + e3—,
(1.12) b

( ) 82ab
T\S) —m (77 577/m/m/8/8™ = .
b2s2 + e9e3a2

The integration of (1.11) shows that the case A = 0 is the most
interesting one, so that working on the equations in (1.12) we obtain

E2€3 (HI)Z o Egb

(1.13) S+ 5

K T2K4 a?’

provided that k7 # 0.

Lemma 3. Let~ be a curve with curvature k and torsion T satisfying
the equation (1.13). Then v lies in a hyperquadric @ defined by the
equation (x — po, T — po) = e2e3b/a’.

Proof. Let 4 be the curve defined by

8182/4:/

2 £3'

~ &
F=~+Le 4
k TK
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Then we get

. &\ T
7'—81[82( 2) —83—]63,
TR KR

so that taking covariant derivative in (1.13) we deduce that 4" = 0.
Hence there exists a point pg such that 5(s) = pg, for any s. Now it is
easy to show that v(s) € Q, for any s. O

Proposition 4. Let v be a unit speed curve in M]. Then the
curvature £ and the torsion T of v in M are given by (1.12) if and
only if v is a Cornu spiral in a totally umbilical hypersurface of M.

Proof. Let P be the totally umbilical hypersurface of M, obtained
by taking the intersection with the hyperquadric @ given in the above
lemma. Then the shape operator S of P in M} is given by S = a/\/WI.
Let p denote the curvature of v in P, that is, p? = L(V’TJT, V¥T>, where
V7 stands for the Levi-Civita connection on P and ¢ denotes the causal
character of VET. The Gauss formula and (1.13) lead to

a K

P TH

showing that p(s) linearly depends on s.

Assume now that v : I — P C M) is a Cornu spiral. Let
Q = {z: (x — po,r — po) = er?}, ¢ = £1, be the hyperquadric such
that P = M N Q and put p(s) = as +b. Then we have (1.13) along
with

p =

-
These equations imply (1.12). o

The following theorem classifies all biharmonic curves in the normal
bundle and extends a result in [2, Theorem 1].

Theorem 5. Let v be a unit speed curve in M)}. Then the mean
curvature field of vy is harmonic in the normal bundle if and only if one
of the following statements holds:

(1) n =2 and v is a geodesic.
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(2) n =2 and v is a pseudocircle or a pseudohyperbola.
(3) n =2 and v is a Cornu spiral.

(4) n =3 and v is a Cornu spiral in a totally umbilical surface.

Proof. If v lies in a two-dimensional totally geodesic submanifold,
then it reduces to Proposition 2. Otherwise, we may assume n = 3.
Moreover, the curvature x and the torsion 7 are given by (1.12), so we
apply Proposition 4. The converse is clear. ]

To finish this section, let z; : M; — Mi, i =1,...,m, be isometric
immersions, and consider £ = xy X - X &, : M = [[, M; — [, M;
the product isometric immersion with mean curvature vector field H.
Let AP be the Laplacian in the normal bundle associated to z; and
consider AP the corresponding operator for . Then we have

AD(gla' .. agm) = (AlDé.la . aAggm)a

where &; is a normal vector field to M; in M;. As a consequence of
Theorem 5, we have the following.

Corollary 6. Let~; : I; = My}, i =1,... ,m, be unit speed curves
in indefinite real space forms, and consider the isometric immersion
T =7 X+ XYn- Then H is harmonic in the normal bundle if and
only if, for any index i, we have either n; = 2 and ~y; is a geodesic, a
pseudocircle, a pseudohyperbola or a Cornu spiral, or n; = 3 and ~y; is

a Cornu spiral in a totally umbilical surface of Mfi

Proof. Tt reduces to show that mH = (Hy,...,H,,), H; being the
mean curvature vector field associated to ;. O

Now we are going to characterize the hypercylinders with harmonic
mean curvature field H in the normal bundle, which is an extension of
[2, Corollary 1].

Corollary 7. Let~y : I — M) be a unit speed curve, and consider the
hypercylinder x = v x Id : I x R]* = M} x R{*. Then H is harmonic
in the normal bundle if and only if either n < 3 and v is a geodesic, a
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pseudocircle, a pseudohyperbola, a Cornu spiral, or a Cornu spiral in
a totally umbilical surface.

2. Curves with Jacobi mean curvature vector field. Let
v : I — M} be as in the above section, and consider the following
functional

() = /0 (VoT,VoT) + ) ds,

where p, L and ds stand for a real constant, the length and the
arclength on 7, respectively.

Definition 8. Let v be a unit-speed curve in M?; v is said to be an

elastica (or elastic curve) if it is an extremal point of the functional §#
for some p. It is called a free elastica if p = 0.

The Euler-Lagrange equation associated to the variational problem
given by §* is

VAT + 61V ((3e2k% — p)T) — 2R(V T, T)T = 0,

where R stands for the curvature tensor, provided that - is closed or
satisfies given first order boundary data, see [4,7] for details. Since
M} is of constant curvature ¢, the Euler-Lagrange equation can be
rewritten as follows

(2.1) 2e9k" + e1k% — 2e3k7% + £169(2¢ — p)k = 0,

along with (1.7) and (1.8). From these equations we can assume
without loss of generality that n =2 or n = 3.

Let P* be a semi-Riemannian submanifold of M and denote by TP
and MNP the tangent and normal bundles on P, respectively. Consider
the Simon operator A : TP — NP defined by (A¢, ¢) = trace (S¢oSe),
where S¢ is the shape operator associated with £. Let R* : 91P — 9P
be the transformation given by R*¢ = > ;(Rg,¢E;)*, where {E;}
is a local orthonormal frame, with ¢; = (F;, E;), and () denotes
normal component. The Jacobi operator is the second order differential
operator defined by

J:MP = NP,  JE= (AP — A+ R*)E.
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When P is compact then J arises from the second variation formula.
A normal vector field £ € P is said to be a Jacobi field if it belongs
to the kernel of J.

A straightforward computation yields
AE = (A8 + JE + 248 - R*,

where ()T denotes tangential component. Since M is of constant
curvature ¢, then R* = —mcl, I being the identity on 9TP.

In this section we want to characterize the curves v in M’ whose
mean curvature vector field is a Jacobi field. More generally, we are
going to classify those curves with mean curvature vector field proper
for the Jacobi operator, that is, JH = AH, A € R. A straightforward
computation leads to

(2.2) AH = £1536,.

From here and (1.9), JH = AH if and only if the set of equations (1.7),
(1.8) and

(2.3) e2k” +e1k% — e3k7? +€169(c+ Nk = 0,

holds. As before, we can assume without loss of generality that n = 2
or n = 3. The following definition is given in [3].

Definition 9. Let v(s) and 7(s) be two unit speed curves in M
with curvature functions x and &, respectively. v and 7 are curvature
homothetic if there is a constant a such that &(s) = ak(s).

Proposition 10. Let v : I — M] be a unit speed curve. Then
JH = M\H, for some real constant X\, if and only if n < 3 and v is
curvature homothetic to an elastica with a = /2.

Proof. Let 7 be a curve with curvature &#(s) = v/2x(s) and torsion
7(s) = 7(s). Then ~ satisfies JH = AH if and only if 4 is an elastica.
This completes the proof. a

As a consequence, we classify the curves in M* whose mean curvature
vector field is a Jacobi field.
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Proposition 11. Let v : I — M} be a unit speed curve. Then
JH = 0 if and only if n < 3 and v is curvature homothetic to a free
elastica with a = v/2.

Let ; and x = 1 X -+ X T, be as in Section 1. Let J; be the
Jacobi operator in the normal bundle associated to z; and consider J
the corresponding operator for . Then we have

J(fla" . afm) = (Jlgla" . 7Jm§m)a

where £; is a normal vector field to M; in M;. As a consequence of
Proposition 10 we have the following.

Corollary 12. Letv; : I; = M}, 1 =1,... ,m, be unit speed curves
in indefinite real space forms and consider the isometric immersion
T =791 X+ - XYy. Then H is a Jacobi vector field if and only if n; < 3
and vy; is curvature homothetic to a free elastica in M)'?, for any index
i.

The hypercylinders with Jacobi mean curvature vector field are char-
acterized as follows. For Euclidean curves that characterization can be
found in [3].

Corollary 13. Let v : I — M, be a unit speed curve, and consider
the hypercylinder x = v x Id : I x R® =+ M} x R{*. Then H s a
Jacobi vector field if and only if n < 3 and 7 is curvature homothetic
to a free elastica.

3. Hopf cylinders with proper mean curvature vector field.
In [4] we have just constructed a new class of submanifolds in H3(—1),
the so-called semi-Riemannian Hopf cylinders, defined by means of two
semi-Riemannian submersions 75 : H(—1) — H2(—4), s = 0,1. Let
us recall how those surfaces were defined. First we identify H3(—1)
with an appropriate subset of maps R3 — Rj. To do that, let P be a
two-dimensional subspace in R4 and {x,y} an orthonormal basis of P.
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We define the following maps:

f:P_>P7 f(x):yaf(y):_ma

g:P—=P, g(@)=y, 9(y) ==,

h:P_>Pa h(ﬂ,‘):—y, h(y):—x,
that will be called rotation, first reflection and second reflection on P,
respectively. Let {ey, e, e3,e4} be the canonical basis of R, for which
the matrix of the metric is given by (g;;) = diag[—1,—1,1,1]. Let P;,
i = 2, 3,4, be the two-dimensional linear space spanned by {e1,€;}, so
that R3 = P; @ P7-. Consider the following maps:

p=fxf:P,®P — P,® Py,

(3.1) oc=gxh:Ps®P; — P;@ P;,
L:ng:P4EBP4J' —>P4EBP4J‘,

and let 1 : R3 — R} denote the identity map. It is clear that the set

F =span.{l,p,0,t} is a four-dimensional vector space over R and the
following identities hold:

2

p = 71) op= -4 Lp =0,
pPo =1, o’ = ) Lo = p,
pL = —o, oL= —p, 2 =1.

This shows that F is closed under composition.

Now, let ¢ : F — Rj be the isomorphism given by ¢(1) = ey,
o(p) = ez, p(0) = e3, p(t) = e4. Then ¢ becomes an isometry when F
is endowed with the metric ¢*(go), go being the standard scalar product
on Rj3. Throughout this paper, both metrics will be denoted by (, ).

Let w = a + bp + co + dv be an element of F, where we write
a for a -1, a, b, ¢ and d being real numbers. Then we define
@ = —a+bp+co+d and it is easy to show that (w,w) = wo = @w.

In general, (wy,ws) = p1(wi@2), p1 denoting the projection over the
subspace spanned by the identity map. As an immediate consequence
we deduce wiwz = —wz w1 and 0 (wiwe,wijws) = — (w1, w1 ){wa, ws).

Now we identify H3(—r2) with the set {w € F : ww = —1/r%},
H?(—r?) with the subset of H}(—r?) spanned by {1, 0, ¢}, and H?(—r?)
with the subset of H$(—7?) spanned by {1, p,0}.
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Define 7, : H3(—1) — H2(—4) by

ms(w) = 0w,

2
where w — @ denotes the antiautomorphism of F given by

w=a—bp+co+d, or w=a+bp+co—d,

according to the base manifold is H?(—4) or H?(—4), respectively. It
is easy to show that 01wy = W W1, (w,w) = (©, @) and 7 is surjective.
Moreover, mo(e?*w) = mo(w) and 71 (e*w) = 7y (w) for all w € H3(—1),
z € R. As usual, we define ¢®, § € F, by cos z +sinzf if #? = —1, and
cosh z + sinh 26 if #? = 1. That means that the fibers are topologically
St and H!, respectively.

Remark 1. Notice that if in (3.1) we put 0 = f X fand ¢ = f X f,
then we obtain in the Euclidean space R* the standard quaternionic
structure, which was already used by U. Pinkall, see [8], to describe
the usual Hopf fibration of S3(1) over S?(1).

By pulling back via 7, a non-null curve v in H2(—4) we get the total
horizontal lift of , which is an immersed flat surface M, in H}(—1),
that will be called the semi-Riemannian Hopf cylinder associated to
. Notice that, if s = 0, M, is a Lorentzian surface, whereas if s = 1,
M., is Riemannian or Lorentzian, according to whether v is spacelike
or timelike, respectively.

Let v : I — H2(—4) be a unit speed curve with Frenet frame {T, &>}
and curvature function . Let ¥ be a horizontal lift of v to H3(—1)
with Frenet frame {T', {2, &5}, curvature & = k o 7, and torsion 7 = 1.
Recall that &3 is nothing but the unit tangent vector field to the fibers
along 4. Then the Hopf cylinder M, can be orthogonally parametrized

» cos(2)3() + sin(2)E3(8)  if s =0,

X(t,z) =

(t,2) {cosh(z)a(t) +sinh(2)E5(t), if s = 1.

Setting, as usual, X; = 0X/0t and X, = 0X/0z , then {X;, X,} is an
orthonormal frame of T'x (; ;) M, along X. A direct computation shows
that the shape operator S of M, in this frame can be written as

S(Xt) = EXt - sta
S(X,) = X,
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where ¢ = —1 if M,, is Riemannian and € = +1 if M, is Lorentzian.

Notice that a unit normal vector field to M., into H$(—1) is obtained
from the complete horizontal lift of &, and it is, of course, &, along each
horizontal lift of y. As a consequence, we have that M, is a flat surface
and its mean curvature function « is given by o = €(1/2)&. Then a Hopf
cylinder in H3(—1) associated to a curve v in H2(—4) is isoparametric
if and only if v is of constant curvature. So as a consequence of [1,
Lemma 2.1] we have

Proposition 14. Let v : I — H2(—4) be an immersed curve and
ms : H3(—1) — H2(—4) the Hopf fibrations. Let H be the mean
curvature vector of the Hopf cylinder M, = 7 1(y) associated to the

curve v. Then AH = AH if and only if v is of constant curvature in
H2(-4).

All Hopf cylinders classified in that proposition are of constant mean
curvature in H3(—1). So if we want to obtain Hopf cylinders with
non constant mean curvature we must work with the Laplacian AP
associated to the normal connection D, which is given by AP¢ =
— Y1 €i(Dg,Dg,§ — Dy, g,€), where {E;} is a local orthonormal
frame, with ¢; = (E;, E;). As for semi-Riemannian hypersurfaces
M, let N be a unit vector field normal to M’ and let o denote the
mean curvature function with respect to N. Then a straightforward
computation shows APH = (Aa)N, where the Laplacian A is given
in (t, z)-coordinates by A = (—1)*{—¢(8%/0t?) + (0?/02*)}. Hence the
following result is clear.

Proposition 15. Let v : I — H2(—4) be an immersed curve and
ms + H3(-1) — HZ(—4) the Hopf fibrations. Let H be the mean
curvature vector field of the Hopf cylinder M., = n;'(vy) associated
to the curve yv. Then APH = XH if and only if one of the following
conditions holds:

(1) A =0 and &(t) = at +b.

(2) 0 = (—1)%\ > 0 and x(t) = acos(v/6t) + bsin(v/6t).

(3) 8 < 0 and k(t) = aexp(v/—6t) + bexp(—v/—6t).
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Proof. It is a straightforward computation, because APH = \H is
equivalent to the differential equation £ + (—1)*¢Ax = 0. o

As a special consequence of that result, we obtain that H is in the
kernel of AP if and only if the curvature function k(t) is a linear
function. So we have proved the following.

Theorem 16. Let v : I — H2(—4) be an immersed curve and
ms : H3(—=1) — H2(—4) the Hopf fibrations. Then the mean curvature
vector field H of the Hopf cylinder M., is harmonic in the normal bundle
if and only if one of the following statements holds:

(1) v is a geodesic.
(2) v is a pseudocircle or a pseudohyperbola.

(3) v is a Cornu spiral.

That theorem has been obtained in [2] by using the usual Hopf
fibration S* — S2.

Now we want to get another relation between the Hopf cylinders M,
and the curves v to which they are associated. To do that, let A,IY)
and H, be the normal Laplacian and the mean curvature vector of the
curve 7 in H?(—4), respectively.

Proposition 17. Let m, : H3(—1) — H2(—4) and v : I — H%(—4)
be as before. Then APH = MH if and only if A$H7 = \H,.

Proof. Let v : I — H2(—4) be a unit speed curve and suppose
(v',7"y = €1. Then A,?Hy = AH, if and only if k" + 1Ak = 0, £ being
the curvature function of the curve v in HZ(—4). So the result follows
from Proposition 15. O

To finish this section we are going to characterize the Hopf cylinders
whose mean curvature vector field is an eigenvector of the Jacobi
operator. Before that, we first state a general result.

Let PI’]_I be a hypersurface of M. Let N denote a unit normal
vector field to Pg_l in M7, and let o be the mean curvature with
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respect to N, so the mean curvature vector field can be written as
H = aN. A direct computation shows the following.

Proposition 18. Let x : P’Z’_l — M be a hypersurface in an
indefinite space form of constant curvature c. Then H is an eigenvector
of J, that is, JH = M\H, for some real number X\, if and only if
Aa = (A +etr (S2) + (n — 1)c)a, where e = (N,N) and S stands
for the shape operator associated to N .

As a consequence we deduce that

Proposition 19. Let 7, : Hi(—1) — H2(—4) be the Hopf fibrations
and vy : I — H2(—4) an immersed curve. Let H be the mean curvature
vector field of M., in H3(—1). Then JH = AH, X € R, if and only if
the following differential equation holds

(3.2) K"+ (=1)*{k® + (A — 4)K} = 0.

The differential equation given in this proposition can be solved by
standard techniques in terms of elliptic functions, see [6] for more
details.

These curves are related to elastic curves in H?(—4) in the following
sense. Bearing in mind the differential equation of the elastic curves
in H%(—4), if v is a curve satisfying (3.2), then a curve 4§ with
#(t) = V2k(t) is an elastica. In particular, if the constant \ in (3.2)
is equal to 0, then ¥ is a free elastica. Hence Proposition 19 can be
rewritten as follows.

Theorem 20. Let 7s : H}(—1) — H2(—4) be the Hopf fibrations
and y : I — H2(—4) an immersed curve. Let H be the mean curvature
vector field of M., in H3(—1). Then JH = AH, X € R, if and only if
v is curvature homothetic to an elastica 5 with &(t) = /2x(t). In
particular, H is a Jacobi vector field if and only if v is curvature
homothetic to a free elastica.

As a consequence of Proposition 19 we obtain the following result,
whose proof is similar to that of Proposition 17.
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Proposition 21. Let 7, : H}(—1) — H2(—4) and v : I — H2(—4)
be as before. Then JH = MH if and only i«f J,H, = \H,, where J,
and H., stand for the Jacobi operator and the mean curvature vector of

5.
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