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A RELATION BETWEEN SMALL AMPLITUDE
AND BIG LIMIT CYCLES

ARMENGOL GASULL AND JOAN TORREGROSA

ABSTRACT. There are two well-known methods for gener-
ating limit cycles for planar systems with a nondegenerate
critical point of focus type: the degenerate Hopf bifurcation
and the Poincaré-Melnikov method; that is, the study of small
perturbations of Hamiltonian systems. The first one gives the
so-called small amplitude limit cycles, while the second one
gives limit cycles which tend to some concrete periodic orbits
of the Hamiltonian system when the perturbation goes to zero
(big limit cycles, for short). The goal of this paper is to relate
both methods. In fact, in all the families of differential equa-
tions that we have studied, both methods generate the same
number of limit cycles. The families studied include Liénard
systems and systems with homogeneous nonlinearities.

1. Introduction and main results. One of the most interesting
and difficult problems in the theory of planar differential equations is
the control of the number of limit cycles that a differential equation or
a family of differential equations can have. Two well-known methods
used for generating limit cycles and hence for giving lower bounds for
this number for a given family are: degenerate Hopf bifurcation and
the Poincaré-Melnikov method; that is, the study of perturbations of
Hamiltonian systems.

Although the above two methods are usually considered as indepen-
dent, there have been several attempts to relate both for concrete fami-
lies of differential equations. See the results of [3] on quadratic systems
and the results of [4] on Liénard systems.

The main goal of this paper is to relate both approaches when we
study the number of limit cycles surrounding a nondegenerate critical
point. To be more precise, we need to introduce some notation.
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Let F be a family of systems of the form

(1)
ẋ = αx− y + p(x, y, λ),
ẏ = x+ αy + q(x, y, λ),

where λ ∈ Rm and the lowest order terms of the analytic functions
p(x, y, λ) and q(x, y, λ) are second order.

Remember that when α = 0 it is said that F has a weak focus at the
origin. We say that a weak focus at the origin of (1)λ0 has cyclicity
c(λ0) inside F if:

(i) it is possible to find numbers ε0 > 0 and δ0 > 0 such that every
system of the form (1)λ with ‖λ − λ0‖ < ε0 cannot have more than
c(λ0) limit cycles within the δ0-neighborhood of the origin in R2, and

(ii) for any choice of positive numbers ε < ε0 and δ < δ0, there exists
λ ∈ Rm satisfying ‖λ − λ0‖ < ε and such that (1)λ has c(λ0) limit
cycles within the δ-neighborhood of the origin in R2.

Finally we define C(F) = supλ∈Rm{c(λ)}.
In the sequel we describe the usual approach for the computation of

C(F). Bautin proved that the return map associated to the OX+-axis
can be written as

Π(x, α, λ) = x+
∞∑

n=1

Vn(α, λ)xn,

where each functionVn is an entire function in (α, λ), the coefficients of
equation (1). Moreover, if α = 0, the function Vn := Vn(λ) := Vn(0, λ)
is a polynomial of degree n−1 and V1 = V2 = 0. Yakovenko [15] defined
the Bautin ideal, I, to be the ideal generated by these coefficients, that
is,

I = 〈V3, V4, . . . , Vn, . . . 〉 ∈ R[λ].

Since the family F has finitely many coefficients, λ ∈ Rm, from Hilbert
Basis Theorem, I is finitely generated and hence there exists a minimum
b ∈ N such that I = 〈V3, V4, . . . , Vb〉.
In general it is difficult to find explicit expressions for the Vn. Usually

instead of these polynomials, people search for corresponding polyno-
mials vn such that

v3 = V3
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and

vn − Vn ∈ 〈V3, V4, . . . , Vn−1〉 = 〈v3, v4, . . . , vn−1〉 for n ≥ 4.

The method that we develop to obtain an expression for vn (see
Theorem 2.8) implies that for each l ≥ 2, v2l = 0, or in other words
that

V2l ∈ 〈v3, v5, . . . , v2l−1〉.
We call the polynomials vn the Lyapunov constants of (1).

We consider the set {v3, v5, . . . , v2L+1} where 2L+1=b and we elimi-
nate from this set the polynomial v2l+1 if v2l+1 ∈ 〈v3, v5, . . . , v2l−1〉.
In this way, we obtain I = 〈v2l1+1, v2l2+1, . . . , v2lB+1〉. It is easy to see
that B does not depend on the choice of vn, and we call it the Bautin
number of F , B(F) = B. In this situation

(2) Π(x, 0, λ) = x+
B(F)∑
j=1

v2lj+1x
2lj+1(1 +O(x)).

For fixed λ = λ0, the return map in a neighborhood of the origin is
either Π(x, 0, λ0) ≡ x or Π(x, 0, λ0) = x+ v2K+1(λ0)x2K+1(1 +O(x)),
with v2K+1(λ0) �= 0. This K is called the order of the origin as a weak
focus of (1)α=0,λ=λ0 . It is clear that the maximum order of the origin
inside our family is smaller or equal than lB(F) (this value is not always
attained, see Proposition 5.2).

Note that from expression (2) and the works of Roussarie [13] or
Zuppa [16], it is easy to see that the cyclicity of the origin for our
family, C(F), is also bounded above by B(F) − 1 (B(F) varying also
α). If v2l1+1, . . . , v2lB(F)+1 can take arbitrary values, then

(3) C(F) = B(F)− 1.

This is the situation for the families F = H2,H3 and Ln, defined as
follows:

(i) Hn, the family of vector families with homogeneous nonlineari-
ties, whose members are differential equations

ẋ = −y + Pn(x, y),
ẏ = x+Qn(x, y),
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where Pn and Qn are homogeneous polynomials of degree n > 1, and

(ii) Ln, the family of Liénard systems given by

(4)
ẋ = −y + pn(x),
ẏ = x,

where pn(x) is a polynomial of degree n without constant and linear
terms.

In fact, C(H2) = 2, C(H3) = 4 and C(Ln) = [(n − 3)/2], where [ ]
denotes the integer part function. These values are calculated in [1],
[14] and [2], [16], respectively. We want to stress that (3) is not always
true as shown in Proposition 5.2 where there is a family with C(F) = 2
and B(F) = 4.

From now on, we consider families F of the form (1), with α = 0, for
which p and q satisfy

p(x, y, aλ+ bµ) = ap(x, y, λ) + bp(x, y, µ),
q(x, y, aλ+ bµ) = aq(x, y, λ) + bq(x, y, µ),

for all λ, µ ∈ Rm and a, b ∈ R. Notice that this is true for Hn and Ln.

We define the kth order Melnikov number of F , Mk(F), as the
maximum number of limit cycles for system

ẋ = −Hy + p(x, y, λk(ε)),
ẏ = Hx + q(x, y, λk(ε)),

which bifurcate from the closed orbits of H = (x2 + y2)/2 = h, when ε
is small enough and λk(ε) = λ1ε+ λ2ε

2 + · · ·+ λkε
k, varying λi ∈ Rm

for i = 1, . . . , k.

Note that the above differential equation is equivalent to

(5)
ẋ = −Hy + εp(x, y, λ1) + ε2p(x, y, λ2) + · · ·+ εkp(x, y, λk),
ẏ = Hx + εq(x, y, λ1) + ε2q(x, y, λ2) + · · ·+ εkq(x, y, λk).

From Poincaré’s work it is well known that the first Melnikov number,
M1(F), coincides with the maximum number of positive simple zeros
of

L1(ρ) :=
∫

H=ρ

(p(x, y, λ1) dy − q(x, y, λ1) dx).
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In Theorem 2.2 we give a generalization of Françoise’s results [5] (see
also [13, Chapter 4]) which allows us to compute the first nonzero term,
Lk(ρ), of the ε-expansion of the return map associated with system (5)
and the OX+-axis so that

L(ρ, ε) = ρ+ εkLk(ρ) +O(εk+1).

Furthermore, we prove that Lk(ρ) is a polynomial in ρ.

For each k ∈ N, define M̃k(F) to be one less than the number of
nonzero ρ-monomials that appear in Lk(ρ). In general, Mk(F) ≤
M̃k(F). As far as we know there are few results about the computation
of Mk(F). In [3], all Mk(H2) are computed, and it is proved that
Mk(H2) = 2 for k ≥ 6. In [11] it is proved that M1(Ln) = [(n− 3)/2].
If

M(F) := sup
k∈N

Mk(F) ∈ N ∪ {∞}

and F is a family with a bounded number of limit cycles, then

M(F) = Mk0(F)

for some k0 and all k ≥ k0 since Mk(F) does not decrease with k. We
also define

M̃(F) = sup
k∈N

M̃k(F).

In generalM(F) ≤ M̃(F). When we can guarantee that the coefficients
of Lk(ρ) are such that it has at least as many zeros as one less than
coefficients, then M(F) = M̃(F).

Remark 1.1. A more general perturbation of ẋ = −Hy, ẏ = Hx than
(5) would be

(6)
ẋ = −Hy + ε1p(x, y, λ1) + ε2p(x, y, λ2) + · · ·+ εkpk(x, y, λk),
ẏ = Hx + ε1q(x, y, λ1) + ε2q(x, y, λ2) + · · ·+ εkqk(x, y, λk),

where εi are small parameters and λi ∈ Rm for i = 1, 2, . . . , k.
Note that if we know M(F) for some family F , this number also
bounds the number of limit cycles that bifurcate from the level curves
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of H = (x2 + y2)/2 for each perturbation of the form (6) where
(ε1, ε2, . . . , εk) is on some analytic curve in Rk passing through zero.

The goal of this paper is to determine the numbers B(F), C(F),
M̃k(F), Mk(F) and M(F) for several families F .
Our first result is a complete solution of our problem for polynomial

Liénard systems.

Theorem A. Consider the family of Liénard differential equations,
Ln, defined by

ẋ = −y + pn(x),
ẏ = x,

where the polynomial pn(x) has no constant or linear terms. If k ≥ 1,
then

B(Ln)− 1 = C(Ln) = M(Ln) = Mk(Ln) =
[
n− 3
2

]
.

Observe that the above result reinforces the well-known Lins-Melo-
Pugh conjecture that [(n−3)/2] is the maximum number of limit cycles
for system (4) (see also Remark 1.1).

On the other hand, we have the following result that reduces the
relation between the Melnikov and Bautin numbers for Hn to an
algebraic problem.

Theorem B. Let v2k+1 for k ≥ 1 be the Lyapunov constants of the
system Hn given by

ẋ = −y + Pn(x, y),
ẏ = x+Qn(x, y),

where Pn and Qn are homogeneous polynomials of degree n. Assume
that the ideal generated by the Lyapunov constants v2k+1 is generated
by the first M nonzero constants, i.e.,

〈vn, v2n−1, . . . , vn+i(n−1), . . . 〉 = 〈vn, v2n−1, . . . , vn+M(n−1)〉
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if n is odd;

〈v2n−1, v4n−3, . . . , vn+(2j−1)(n−1), . . . 〉
= 〈v2n−1, v4n−3, . . . , vn+(2M−1)(n−1)〉

if n is even; and that these constants vk can take arbitrary values. Then

B(Hn)− 1 = C(Hn) = M(Hn).

For n = 2, Bautin [1] proved that

〈v3, v5, . . . , v2k+1, . . . 〉 = 〈v3, v5, v7〉,

and for n = 3, Sibirskii [14] proved that

〈v3, v5, . . . , v2k+1, . . . 〉 = 〈v3, v5, v7, v9, v11〉.

In both cases expressions for the constants were given. Hence we have
the following corollary of the above theorem.

Corollary C. For the family Hn of differential equations with ho-
mogeneous nonlinearities of degree n,

M(H2) = C(H2) = 2,
M(H3) = C(H3) = 4.

In Section 4 we will prove Theorem 4.1; it gives results analogous to
Theorem B for several different families.

In Section 2 we give a generalization of the Françoise algorithm [5];
see also [9], [10], [12] and [13]. This result is useful to get the Poincaré-
Melnikov functions and the Lyapunov constants, see Theorem 2.8.
Finally, Theorem 2.3 is the main tool to relate the number of small
and big limit cycles, and hence to prove Theorems A and B.

This work was motivated by a quest for a family F where M(F) is
different than C(F). However, we have not been able to construct such
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a family. In fact, in all cases for which we have obtained both numbers,
they coincide.

2. General Françoise’s algorithm. Consider the differential
equation given by

(7) dH + εω = 0,

where H(x, y) = (x2 + y2)/2 and ω is an analytic 1-form. In every
compact region containing the origin, and for ε sufficiently small, it
is possible to define, given a transversal section Σ, the map L which
associates to each point ρ of Σ the first return L(ρ, ε) induced by the
flow of system (7):

L : ρ −→ L(ρ, ε).

By choosing H(x, y) as a parametrization of Σ, L can be expanded as
a series:

(8) L(ρ, ε) = ρ+ εL1(ρ) + ε2L2(ρ) + · · ·+ εkLk(ρ) +O(εk+1).

Poincaré already proved that the first derivative of L(ρ, ε) with respect
to ε, at ε = 0, is

L1(ρ) = −
∫

H=ρ

ω.

This last integral expression is sometimes called first Poincaré-Melnikov
function. Françoise in [5] developed a new method to compute the first
nonzero term in the expansion with respect to ε of L(ρ, ε). The next
theorem states his main result.

Theorem 2.1. Let L denote the return map associated with the
solution of system (7), and the transversal section Σ. If L is given
as the series (8) and L1(ρ) ≡ · · · ≡ Lk−1(ρ) ≡ 0, then there exist
polynomials g1, . . . , gk−1 and S1, . . . , Sk−1 such that −ω = g1 dH+dS1,
−g1ω = g2 dH + dS2, . . . ,−gk−2ω = gk−1 dH + dSk−1, and

Lk(ρ) = −
∫

H=ρ

gk−1ω.

We remark that the definition of gk in Theorem 2.1 does not coincide
exactly with the definition in [5]; they differ by a minus sign. We



SMALL AMPLITUDE AND BIG LIMIT CYCLES 1285

have made this nonessential change to have a simpler statement of the
following generalization.

Theorem 2.2. Let L(ρ, ε) = ρ+ εL1(ρ) + ε2L2(ρ) + · · ·+ εkLk(ρ) +
O(εk+1) be the return map associated with the differential equation

(9) dH + εω1 + ε2ω2 + · · ·+ εkωk + · · · = 0

and the transversal section Σ. If L1(ρ) ≡ · · · ≡ Lk−1(ρ) ≡ 0, then there
exist polynomials h0 ≡ 1, h1, . . . , hk−1 and S1, . . . , Sk−1 such that

−
m∑

j=1

ωjhm−j = hm dH + dSm

for each m = 1, . . . , k − 1 and

Lk(ρ) = −
∫

H=ρ

k∑
j=1

hk−jωj .

The proof of the above theorem uses the same ideas as in the proof
of Theorem 2.1 (see also [9], [10], [12] and [13]).

Theorem 2.2 gives an algorithm which allows us to determine the
Melnikov number at every order. In other words, we have at least
theoretically, a method to determine M̃k(F), and sometimes Mk(F).
The above two theorems can be related. In fact, we will prove that

the computation of the derivatives of a general perturbation of dH = 0,
as in (9), can be obtained from the expressions given in Theorem 2.1 for
system (7). Hence both results are equivalent. This fact is formalized
in the next theorem. Before we state it, we note that our proof of the
equivalence is based on Theorem 2.2; and our computations for concrete
families seem to show that the use of Theorem 2.2 is in general more
efficient than the use of Theorem 2.1. Hence, from our point of view,
the next theorem is more useful theoretically than computationally.

Theorem 2.3. For k ∈ N, let

L(1)(ρ, ε) = ρ+ εL
(1)
1 (ρ) + ε2L

(1)
2 (ρ) + · · ·+ εkL

(1)
k (ρ) +O(εk+1)
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be the return map (8) associated with the differential equation dH+εω =
0. (Since L

(1)
j (ρ) depends on ω, we will denote it by L

(1)
j (ρ, ω).) Also

let

L(2)(ρ, ε) = ρ+ εL
(2)
1 (ρ) + ε2L

(2)
2 (ρ) + · · ·+ εkL

(2)
k (ρ) +O(εk+1)

be the return map associated with the differential equation (9).

Also, suppose that ωj, j = 1, 2, . . . , k are arbitrary 1-forms and n is
a positive integer. If ω = ω1 + εω2 + · · ·+ εk−1ωk +O(εk) and

L(1)
n (ρ, ω) = L(1)

n (ρ, ω1 + ω2ε+ · · · ) =
∞∑

k=0

Ln,k(ρ)εk,

then

L(2)
n (ρ) =

n−1∑
k=0

Ln−k,k(ρ).

This last result is the key point for this paper; it will allow us to
relate the two problems under consideration. Before we use it, we need
to prove some preliminary results.

As in [6], we can decompose a real polynomial 1-form in a very useful
way to compute

∫
H=ρ

ω.

Lemma 2.4. Let ω be a real polynomial 1-form,

ω =
∑

αj,kz
j z̄k dz +

∑
ᾱj,kz̄

jzk dz̄,

and suppose that ω is decomposed as follows:

ωh =
∑

k−j �=1

αj,kz
j z̄k dz +

∑
k−j �=1

ᾱj,kz̄
jzk dz̄,

and

ωl = ω − ωh.

Then there exist polynomials h and S such that
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(i) ω = ωl + ωh,

(ii)
∫

H=ρ

ω ≡
∫

H=ρ

ωl,

(iii) −ωh = h dH + dS.

Proof. From the definition of ωh and ωl, the proof of (i) is a simple
verification. To prove (ii), we have to see that

∫
H=ρ

ωh ≡ 0. Note that
the expression

− ∂

∂z̄

∑
k−j �=1

αj,k z
j z̄k +

∂

∂z

∑
k−j �=1

ᾱj,k z̄
j zk

has no terms of the form (zz̄)k. This fact, as in [5], allows us to prove
the existence of a polynomial function h such that d(−ωh) = d(h dH).
Hence, there is a polynomial S satisfying −ωh = h dH + dS.

In our study of Liénard differential equations, we need a more restric-
tive version of the above lemma in polar coordinates. We state it in
the following remark.

Remark 2.5. Let ω be a 1-form expressed in polar coordinates (r, θ)
as

ω = α(r, θ) dr + β(r, θ) dθ,

where α and β are 2π-periodic analytic functions in θ and H = r2/2.
If

∫
H=ρ

ω = 0, then there exists a function h given by h(r, θ) =

−(1/r) ∫ θ

0
[(∂α/∂ψ) − (∂β/∂r)] dψ such that d(ω) = d(hdH) or, in

other words, there exist functions h(r, θ) and S(r, θ) such that −ω =
hDH + dS.

Note that Lemma 2.4 allows us to give the following definition.

Definition 2.6. For a sequence of polynomial 1-forms, ω1, ω2, ω3, . . . ,
we define the following sequence of associated polynomials:

l1(ρ) = −
∫

H=ρ

ω1,

l2(ρ) = −
∫

H=ρ

(ω2 + h1ω1), where − (ω1)h = h1 dH + dS1,
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and

lk(ρ) = −
∫

H=ρ

( k∑
j=1

hk−jωj

)
,

where

−
( m∑

j=1

hm−jωj

)
h

= hmdH + dSm, for m=1, . . . , k−1 and h0=1.

Remark 2.7. (i) In the above definition, and in contrast with
Françoise’s method, the condition

∫
H=ρ

ω ≡ 0 is not needed to as-
sociate the functions h and S with ω.

(ii) If the above 1-forms, ωk, coincide with those in Theorem 2.2 and
furthermore, if l1(ρ) ≡ l2(ρ) ≡ · · · ≡ lk−1(ρ) ≡ 0, then the return map
associated with Σ for system (9) can be written as

L(ρ, ε) = ρ+ εklk(ρ) +O(εk+1).

In other words, L1(ρ) ≡ · · · ≡ Lk−1(ρ) ≡ 0 and Lk(ρ) = lk(ρ).

Proof of Theorem 2.3. In order to simplify the notation in this proof,
let us denote by dS every 1-form ω such that dω = 0. For instance, we
will write dS + dS = dS.

We will prove the theorem by induction. Consider first the case
n = 1. From Theorem 2.1 we know that L(1)

1 (ρ) = − ∫
H=ρ

ω. Hence,
by using the (h, l)-decomposition given in Definition 2.6, we have that
ω = ωh + ωl. Replacing ω by ω = ω1 + εω2 + · · · , we get

L
(1)
1 (ε) = −

∫
H=ρ

(ω1 + εω2 + · · · )

= −
∫

H=ρ

ω1 − ε

∫
H=ρ

ω2 − · · ·

= −
∫

H=ρ

ω1l − ε

∫
H=ρ

ω2l − · · ·

= L1,0 + εL1,1 + · · · .
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Furthermore, from the equality −ωh = h1dH + dS, we get

−ω1h − εω2h − · · · = h1(ε) dH + dS = (h1,0 + εh11 + · · · ) dH + dS.

By equating the terms of their ε expansions, we obtain that −ωjh =
h1,j−1 dH + dS for each j ∈ N.

Hence, from Theorem 2.2, it follows that

L
(2)
1 (ρ) = −

∫
H=ρ

ω1 = −
∫

H=ρ

ω1l = L1,0.

Furthermore, because −ω1h = h̃1dH + dS, we have that h̃1 = h1,0.
Hence the theorem follows for n = 1.

Before we consider the general case, to clarify the proof let us study
the case n = 2.

From Theorem 2.1 we have that L(1)
2 (ρ) = − ∫

H=ρ
ωh1. By applying

the (h, l)-decomposition to h1ω, it follows that h1ω = (h1ω)h+(h1ω)l.
Putting ω = ω1 + εω2 + · · · , we get

L
(1)
2 (ε) = −

∫
H=ρ

(ω1 + εω2 + · · · )(h1,0 + εh1,1 + · · · )

= −
∫

H=ρ

ω1h1,0 − ε

∫
H=ρ

(ω2h1,0 + ω1h1,1)

− ε2
∫

H=ρ

(ω3h1,0 + ω2h1,1 + ω1h1,2)− · · ·

= −
∫

H=ρ

(ω1h1,0)l − ε

∫
H=ρ

(ω2h1,0 + ω1h1,1)l

− ε2
∫

H=ρ

(ω3h1,0 + ω2h1,1 + ω1h1,2)l − · · ·

= L2,0 + εL2,1 + ε2L2,2 + · · · .
On the other hand, by using the equality −(h1ω)h = h2dH + dS, by
substituting in this last equation the expression of ω, and by equating
the ε terms, we find that

−
( j∑

k=0

ωj+1−kh1,k

)
h

= h2,j dH + dS,
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for every j ∈ N.

Define h̃1 := h1,0 and use Theorem 2.2 to see that

L
(2)
2 (ρ) = −

∫
H=ρ

(ω2 + ω1h1) = −
∫

H=ρ

(ω2 + ω1h̃1)l = L1,1 + L2,0.

Also, from the above decomposition we have that −(ω2 + ω1h̃1)h =
h1,1 dH +dS+h2,0 dH+dS = (h1,1+h2,0) dH+dS = h̃2dH+dS, and
therefore h̃2 = h1,1 + h2,0. Hence our result follows for n = 2.

In order to consider the general case, we will make the following
induction hypothesis:

h̃k =
k−1∑
j=0

hk−j,j,

−
( ∑

p+q=j

ωphk,q

)
h

= hk−1,j−1 dH + dS for j = 1, . . . , k,

and
Lk,j = −

∫
H=ρ

( ∑
p+q=j+1

ωphk−1,q

)
l

for j = 0, . . . , k,

for k = 1, . . . , n.

To prove it, first substitute ω = ω1 + εω2 + · · · in the equality

L
(1)
n+1(ρ) = −

∫
H=ρ

ωhn,

(which follows from Theorem 2.1) and note that

L
(1)
n+1(ρ, ε) =

∫
H=ρ

(ω1 + εω2 + · · · )(hn,0 + hn,1ε+ · · · )

=
∫

H=ρ

(ω1hn,0)l + ε

∫
H=ρ

(ω2hn,0 + ω1hn,1)l

+ · · ·+ εk

∫
H=ρ

( ∑
i+j=k+1

ωihn,j

)
l

+ · · ·

=
∞∑

k=0

Ln+1,kε
k.
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By defining h̃0 = 1 and by using the induction hypothesis and Theo-
rem 2.2, we have that

L
(2)
n+1(ρ) = −

∫
H=ρ

∑
i+j=n+1

ωihj = −
∫

H=ρ

∑
i+j=n+1

ωih̃j

= −
∫

H=ρ

(ωn+1)l + (ωnh1,0)l + · · ·+
(
ω1

∑
i+j=n

hi,j

)
l

= −
∫

H=ρ

( n+1∑
k=1

ωk

∑
i+j=n−k+1

hi,j

)
l

= −
∫

H=ρ

( ∑
k+i+j=n+1

ωkhi,j

)
l

= −
∫

H=ρ

( n+1∑
i=1

∑
k+j=i

ωkhn+1−i,j

)
l

=
n+1∑
i=1

Ln+2−i,i−1.

Moreover, we have that

−
( ∑

i+j=n+1

ωih̃j

)
h

= −
( n+1∑

k=1

ωk

∑
i+j=n−k+1

hi,j

)
h

= −
( ∑

k+i+j=n+1

ωjhi,j

)
h

=
( n+1∑

i=1

−
∑

k+j=i

ωkhn+1−i,j

)
h

=
n+1∑
i=1

(hn+2−i,i−1dH + dS) = h̃n+1dH + dS.

Hence h̃n+1 =
∑

i+j=n+1 hi,j , and therefore the theorem is proved.

Theorem 2.2 can also be used to compute the Lyapunov constants for
system (1) with α = 0. See [8, Theorem 1.1] for a proof of the following
result.
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Theorem 2.8. The differential equation (1) with α = 0 can be
written as

dH + ω1 + ω2 + ω3 · · · = 0,

where H = (x2+ y2)/2 and ωk = ωk(x, y) are homogeneous polynomial
1-forms of degree k + 1.

(i) The Kth Lyapunov constant of this differential equation is given
by

vK = − 1
(
√
2ρ)K+1

∫
H=ρ

K−1∑
l=1

ωlhK−1−l,

where h0 = 1 and, for m = 1, . . . ,K−1, the polynomials hm are defined
by the recurrence relation

d

( m∑
l=1

ωlhm−l

)
= − d(hmdH).

Also,

(ii) v2l = 0 for l ≥ 2.

It can be seen that, although in the expression of the Kth Lyapunov
constant given in the first statement of the above theorem there appears
the variable ρ, it cancels out once the formula is developed, see [8] again.

3. Liénard equations. Consider a new family F = Gn, which
includes the Liénard differential equations Ln. This family is given by
the differential equations
(10)

ẋ = −y + a1X1(x, y) +X2(x, y) + a3X3(x, y) + · · ·+ anXn(x, y),
ẏ = x+ a1Y1(x, y) + Y2(x, y) + a3Y3(x, y) + · · ·+ anYn(x, y),

where Xi(x, y) and Yi(x, y) are homogeneous polynomials of degree
i. Furthermore, X2j(−x, y) = X2j(x, y) and Y2j(−x, y) = −Y2j(x, y)
for each j = 1, 2, . . . . Here an = 1 if n is even. Note that if
a1 = a3 = · · · = a2k+1 = · · · = 0, then the origin of (10) is a reversible
center.
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Theorem 3.1. Let Gn denote the family of differential equations
defined in (10). Then M(Gn) = [(n − 1)/2], where [ ] denotes the
integer part function.

As an easy corollary of the above result, we can prove Theorem A.

Proof of Theorem A. Consider the subfamily Fn ⊂ Gn given by the
Liénard equations, where (Xj(x, y), Yj(x, y)) = (bjx

j , 0) for j = 1, . . . ,
and b2j+1 = 1 for j ≥ 0. Taking a1 = 0 (remember that Fn has no
linear terms) we get that M(Ln) = [(n− 3)/2].

Let us prove Theorem 3.1.

Proof of Theorem 3.1. In order to simplify the proof we introduce the
operator χ that acts on functions of the form f(r, θ) = ra cosb θ sinc θ
as follows:

χ : {Ara cosb θ sinc θ : A ∈ R \ {0}} −→ N × (Z/2Z)× (Z/2Z),
f −→ (a, b+ c, c).

It has the following properties:

(i) χ(fg) = χ(f) + χ(g);

(ii) χ[(∂/∂r)f ] = χ(f)− (1, 0, 0);

(iii) χ
(∫

f dθ
)
= χ(f) + (0, 0, 1);

(iv) if χ(f) = (∗, ∗, 1), then
∫

H=ρ

f dθ = 0;

(v) if χ(f) = (∗, 1, 0), then
∫

H=ρ

f dθ = 0;

(vi) if χ(f) = (2k, 0, 0), then
∫

H=ρ

f dθ = ρkC2k, with C2k �= 0.

In the above expressions ∗ denotes an arbitrary integer. Furthermore,
if f is given by f =

∑
Aa,b,cr

a cosb θ sinc θ, then

χ(f) =
∑

Aa,b,cχ(ra cosb θ sinc θ) =
∑

Aa,b,c(a, b+ c, c),
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and if ω = f dr + g dθ, then

χ(ω) = χ(f) dr + χ(g) dθ.

Let us start the proof. In polar coordinates the differential 1-form
associated with system (5) is

r dr + εω1 + ε2ω2 + · · · = 0,

where
ωi =

(
cos θQi(r cos θ, r sin θ)− sin θPi(r cos θ, r sin θ)

)
dr

− (
r cos θPi(r cos θ, r sin θ) + r sin θQi(r cos θ, r sin θ)

)
dθ.

For the family Gn given by (10), we have that

Pi(x, y) = a1,iX1,i(x, y) +X2,i(x, y)
+ a3,iX3,i(x, y) + · · ·+ an,iXn,i(x, y)

and
Qi(x, y) = a1,iY1,i(x, y) + Y2,i(x, y)

+ a3,iX3,i(x, y) + · · ·+ an,iYn,i(x, y).

Let us study how the function χ acts on the components of the vector
field defined by system (5). We have that

χ(Pi) = a1,i(1, 1, ∗) + (2, 0, 0) + a3,i(3, 1, ∗) + (4, 0, 0)
+ · · ·+ an,i

(
n,
1− (−1)n

2
,
1− (−1)n

2
∗

)
,

χ(Qi) = a1,i(1, 1, ∗) + (2, 0, 1) + a3,i(3, 1, ∗) + (4, 0, 1)
+ · · ·+ an,i

(
n,
1− (−1)n

2
,
1− (−1)n

2
∗+1

)
.

Hence, for its associated 1-form, we have that

χ(ωi) =
(
a1,i(1, 0, ∗) + (2, 1, 1) + a3,i(3, 0, ∗)

+ · · ·+ an,i

(
n,
1 + (−1)n

2
,
1− (−1)n

2
∗+1

))
dr

+
(
a1,i(2, 0, ∗) + (3, 1, 0) + a3,i(4, 0, ∗)

+ · · ·+ an,i

(
n+ 1,

1 + (−1)n
2

,
1− (−1)n

2
∗

))
dθ.
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From Theorem 2.2 and the fact that
∫

H=ρ
f dr = 0 for every regular

function f , we have that

(11)

L1(ρ) =
∫

H=ρ

ω1

= a1,1 ρC2 + a3,1 ρ
2C4 + a5,1 ρ

3C6

+ · · ·+ an,1C[(n+1)/2] ρ
[(n+1)/2],

and hence L1(ρ) is a polynomial of degree [(n+1)/2] without constant
term. Choosing suitable values for a2k+1,1, it is possible to construct
examples with ε as small as we like, and with [(n+1)/2]−1 = [(n−1)/2]
hyperbolic limit cycles as required.

Our objective is to show that for a perturbation of arbitrary order in
ε, all the polynomials appearing in the computation of the first nonzero
Poincaré-Melnikov function Lk(ρ) are like (11). In other words, and
since by Theorem 2.2

Lk(ρ) = −
∫

H=ρ

k∑
j=1

hk−jωj ,

when L1(ρ) ≡ L2(ρ) ≡ · · · ≡ Lk−1(ρ) ≡ 0, if we can prove that∫
H=ρ

hjωi = 0 for all even i and j �= 0, then Lk =
∫

H=ρ
ωk for each k

and the theorem will follow. To complete the proof, we will show that
Lk =

∫
H=ρ

ωk.

In the proof of the above fact, we will not take into account the degree
with respect to r of the involved functions hj , because this degree is
irrelevant to prove that some of the integrals that appear are zero. We
also introduce the notation e∗, respectively o∗, for an arbitrary even,
respectively odd, number.

Assume that L1(ρ) =
∫

H=ρ
ω1 ≡ 0, that is, ai,1 = 0 for all i. Remark

2.5 states that if ω1 = A1dr+B1dθ, then h1 = −(A1/r)+
∫
(B1r/r) dθ.

Hence, we have

χ(h1) = (1, 1, 1) + (3, 1, 1) + · · ·+ (o∗, 1, 1).
It follows that

χ(ω1) =
(
(2, 1, 1) + (4, 1, 1) + · · ·+ (e∗, 1, 1)

)
dr

+
(
(3, 1, 0) + (5, 1, 0) + · · ·+ (o∗, 1, 0)

)
dθ,
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and
χ(h1ω1) =

(
(3, 0, 0) + (5, 0, 0) + · · ·+ (o∗, 0, 0)

)
dr

+
(
(4, 0, 1) + (6, 0, 1) + · · ·+ (e∗, 0, 1)

)
dθ.

From the properties of the function χ,∫
H=ρ

h1ω1 = 0

and
χ(h2) = (1, 1, 1) + (2, 0, 0) + (3, 1, 1) + (4, 0, 0)

+ · · ·+ (o∗, 1, 1) + (e∗, 0, 0).
Hence we can assume as an induction hypothesis that

χ(hj) = (1, 1, 1) + (2, 0, 0) + (3, 1, 1) + (4, 0, 0)
+ · · ·+ (o∗, 1, 1) + (e∗, 0, 0)

and
χ(ωj) =

(
(2, 1, 1) + (4, 1, 1) + · · ·+ (e∗, 1, 1)

)
dr

+
(
(3, 1, 0) + (5, 1, 0) + · · ·+ (o∗, 1, 0)

)
dθ,

for j = 1, . . . , k − 1. To get χ(hk) and χ(ωk) we will again use
Theorem 2.2. Hence we have to study χ(ωk−jhj). We obtain that

χ(ωk−jhj) =
(
(3, 0, 0) + (4, 1, 1) + (5, 0, 0) + (6, 1, 1)

+ · · ·+ (o∗, 0, 0) + (e∗, 1, 1)
)
dr

+
(
(4, 0, 1) + (5, 1, 0) + (6, 0, 1) + (7, 1, 0)

+ · · ·+ (e∗, 0, 1) + (o∗, 1, 0)
)
dθ,

and, as a consequence,
∫

H=ρ
ωk−jhj = 0 for every j = 1, . . . , k − 1.

From the above equality we have that

Lk =
∫

H=ρ

(ωk + ωk−1h1 + ωk−2h2 + · · ·+ ω1hk−1) =
∫

H=ρ

ωk.

Therefore, Lk(ρ) has the same expression as L1(ρ). Furthermore, it is
easy to see that, in the case Lk ≡ 0, and by again using Remark 2.5,
we have

χ(hk) = (1, 1, 1) + (2, 0, 0) + (3, 1, 1) + (4, 0, 0)
+ · · ·+ (o∗, 1, 1) + (e∗, 0, 0)
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and
χ(ωk) =

(
(2, 1, 1, ) + (4, 1, 1) + · · ·+ (e∗, 1, 1)

)
dr

+
(
(3, 1, 0) + (5, 1, 0) + · · ·+ (o∗, 1, 0)

)
dθ.

Hence the induction step follows and the proof is complete.

4. Systems with homogeneous nonlinearities. The next
theorem implies our result forHn as stated in Theorem B. We introduce
the following notation:

Given a sequence of polynomials li(ρ) ∈ R[ρ], i ∈ N, we say that
they satisfy the property (PN ) if there exist homogeneous polynomials
l̃i(ρ) ∈ R[ρ] of degree ki, i ∈ N, such that

(i) l̃1(ρ) = l1(ρ),

(ii) l̃i(ρ)− li(ρ) +
∑
j<i

pj(ρ)l̃j(ρ) for i ≥ 2, where pj(ρ) ∈ R[ρ].

(iii) J = 〈l1(ρ), l2(ρ), . . . , ln(ρ), . . . 〉 = 〈l̃1(ρ), l̃2(ρ), . . . , l̃N (ρ)〉,
(iv) k1 < k2 < · · · < kN .

Theorem 4.1. Consider a family of differential equations F and

(12) dH + εω = 0,

where ω is a differential 1-form such that (12) is in F . Assume that
the sequence of polynomials lk(ρ), k ≥ 1, given in Definition 2.6 and
associated to (12), satisfies the property (PN ).

Let L(ρ, ε) = ρ+ εL1(ρ) + · · · be the return map associated with the
solution of

(13) dH + εω1 + ε2ω2 + · · · = 0,

where dH + εωk ∈ F for every k. Then the following holds

Lj(ρ) =
j∑

i=1

aki
ρki , when j ≤ N,

Lj(ρ) =
N∑

i=1

aki
ρki , when j > N,
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where each aki
is a polynomial whose variables are the coefficients of

(13). In other words, M̃j(F) = j−1 for j ≤ N , and M̃j(F) = M̃(F) =
N − 1 for j > N .

Remark 4.2. (i) If we add to the hypotheses of the above theorem, the
hypothesis that l̃i(ρ) can take arbitrary values, then M̃(F) = M(F).
(ii) If the family F has finitely many nonzero coefficients, then the

Hilbert Basis Theorem guarantees that the ideal J is finitely generated.
In the above theorem we also request that it be generated by the first
N elements and furthermore, that these elements can be replaced by
homogeneous polynomials in ρ with increasing degrees.

As a corollary of the above result, we can prove Theorem B.

Proof of Theorem B. Assume first that n is odd. It is easy to see
that the only nonzero Lyapunov constants are vn+i(n−1) for i ≥ 0.
If in equation (13) we take all ωi ≡ 0 except ωn−1, then we get
with ε1 := εn−1 and using Theorem 2.8, that there is the following
relation between the return map associated to dH + ε1ωn−1 = 0 and
the Lyapunov constants of dH + ωn−1 = 0:

li(ρ) = vn+(i−1)(n−1)(2ρ)(n+1)+(i−1)(n−1)/2.

Hence the polynomials li(ρ) are homogeneous in the variable ρ, with
these degrees, ki, all different. So we can take li(ρ) ≡ l̃i(ρ). Therefore,
from Theorem 4.1, we have as many nonzero coefficients of the polyno-
mial Lj(ρ) as number of nonzero Lyapunov constants. So the theorem
is proved in this case.

For n even, and using the same computations, we get that the
polynomials li with i odd are zero. So the ideal J of Theorem 4.1
can be reduced to take just the polynomials l2i. The proof then follows
in a similar way.

Proof of Theorem 4.1. From our hypotheses, there exist polynomials
pi,j such that

l1 = l̃1,
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li =
∑
j<i

pi,j l̃j for any i = 2, . . . , N,(14)

li =
N∑

j=1

pi,j l̃j for any i > N.

As in the proof of Theorem 2.3, we substitute ω by ω = ω1 + εω2 +
ε2ω3 + · · · , in the expressions of lj(ρ) associated to (14). Then the
above equalities (14) are given by

l1,0 + ε l1,1 + ε2 l1,2 + · · · = l̃1,0 + ε l̃1,1 + ε2 l̃1,2 + · · · .

Hence, l1,i = l̃1,i for any i = 0, 1, 2, . . . , and

li,0 + ε li,1 + ε2 li,2 + · · · = (l̃i,0 + ε l̃i,1 + · · · )
+

∑
j<i

(p0
i,j + p1

i,j ε+ · · · )(l̃j,0 + εl̃j,1 + · · · ).

After equating the coefficients with the same ε power we get the
following equalities:

li,0 = l̃i,0 +
∑
j<i

p0
i,j l̃j,0,

li,1 = l̃i,1 +
∑
j<i

p0
i,j l̃j,1 + p1

i,j l̃j,0

= l̃i,1 +
∑

0<k<i
0≤m≤1

qi,1
k,m l̃k,m.

In general, for each li,j , we can write

li,j = l̃i,j +
∑

0<k<i
0≤m≤j

qi,j
k,m l̃k,m,

where the qi,j
k,m are again polynomials in the coefficients of the system

and ρ. Hence we have for l̃i,j similar expressions to the expressions for
li,j . Moreover, in the case i ≥ N , the l̃i,j are zero.
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Note that the polynomials l̃i,j are also homogeneous polynomials in
ρ with the same degree in ρ, that li,j , li and l̃i.

From Theorem 2.3 we have that the coefficients of the expansion of
the return map associated to (13) are

l
(2)
k (ρ) =

∑
i+j=k
j<k

li,j(ρ).

Hence, by using the above expressions for the functions li,j , we get that

l
(2)
1 = l1,0 = l̃1,0,

l
(2)
2 = l2,0 + l1,1 = l̃2,0 + q2,0

1,0 l̃1,0 + l̃1,1,

l
(2)
3 = l3,0 + l2,1 + l1,2

= (l̃3,0 + q3,0
2,0 l̃2,0 + q3,0

1,0 l̃1,0) + (l̃2,1 + q2,1
1,0 l̃1,0 + q2,1

1,1 l̃1,1) + l̃1,2.

To determine the first nonzero coefficient of the return map, we need to
simplify the above expressions under the assumption that the previous
ones are all zero. If l(2)1 = l̃1,0 ≡ 0, then l

(2)
2 = l̃2,0+ l̃1,1, and since both

summands are homogeneous in ρ of different degree, l̃(2)2 is zero if and
only if l̃2,0 are l̃1,1 also zero. In this situation l

(2)
3 = l̃3,0 + l̃2,1 + l̃1,2.

In general we can prove that l
(2)
k =

∑
0≤i+j=k,j<k l̃i,j when l

(2)
1 ≡

l
(2)
2 ≡ · · · ≡ l

(2)
k−1 ≡ 0.

Observe that in each step we get a polynomial in ρ, l(2)k , where each
of its monomials in ρ, l̃i,j , is a homogeneous polynomial of degree
ki. Moreover, since l̃i,j = 0 for i > n, we have that the polynomial
l
(2)
k for k > n does not augment its degree. This fact implies that
M̃k(F) = k − 1 if k ≤ N and M̃k(F) = N − 1 if k > N . Therefore,
M(F) ≤ M̃(F) = N − 1 as we wanted to prove.

5. Other families. This section is devoted to give numbers M(F)
andB(F) for two concrete families F . The first one is a new application
of Theorem 4.1. The second one does not satisfy the hypotheses of the
theorem; we are just able to compute some values of M̃k(F) for small k.



SMALL AMPLITUDE AND BIG LIMIT CYCLES 1301

Proposition 5.1. Consider the family F defined by system

ẋ = −y + a2x
2 + a3x

3,

ẏ = x+ b3x
3 + b4x

4.

Then M(F) = C(F) = 1, and B(F) = 2.

Proof. Its first Lyapunov constants are v3 = (3π/4)a3 and v5 =
−(π/2)a2b4. Furthermore, there are two sets of solutions of the system
{v3 = v5 = 0}: {a3 = b4 = 0} (reversible centers) and {a2 = a3 = 0}
(potential centers).

It is not difficult to see that the ideal 〈a3, a2b4〉 is radical. From this
fact we have that I = 〈v3, v5〉 and so B(F) = 2.

On the other hand, following the notation of Theorem 4.1, we have
that l̃1 = 3a3πρ

2 and l̃2 = −2a2b4πρ
3. Since if l̃1 ≡ l̃2 ≡ 0, then

a3 = a2b4 = 0, by using the above classification of the centers of F ,
we have that dH + εω = 0 has a center for each ε. Then l̃j ≡ 0 for
j ≥ 3 if l̃1 = l̃2 = 0. Hence we can apply Theorem 4.1, the radicality
of 〈v3, v5〉, and the fact that l̃1 = v3ρ

2/4 and l̃2 = v5ρ
3/4 to conclude

that J = 〈l̃1, l̃2〉 and M̃(F) = B(F) − 1. From the fact that a3 and
a2b4 can take arbitrary values, it follows that M̃(F) = M(F). Finally,
it is easy to see that C(F) = 1.

Proposition 5.2. Consider the family F , defined by

ẋ = −y + a2x
2 + a3x

3,

ẏ = x+ b2y
2 + b3y

3.

Then B(F) = 4, C(F) = 2, the maximum order of the origin as a weak
focus is 3 and

Mk(F) =


0 if k = 1, 2,
1 if k = 3, 4, 5,
2 if k = 6, 7, . . . , 10.
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Proof. Its first Lyapunov constants are

v3 =
3π
4
(b3 + a3),

v5 = − π

12
(a2

2 − b22)(6b2a2 + 5b3),

v7 = −5π
8

b3(a4
2 − b42),

v9 = −382π
125

a4
2b3(a

2
2 − b22).

In [7] it is proved that if v3 = v5 = v7 = 0, then the origin of F is a
center. Since v9 is not zero when {v3 = v5 = v7 = 0} in C[a2, b2, a3, b3],
it follows that

〈v3, v5, v7〉 �= 〈v3, v5, v7, v9〉.
Furthermore, the fact that 〈v3, v5, v7, v9〉 is a radical ideal (this is tested
by using the algebraic package MAGMA), and the fact that its zero
set coincides with the set of centers of F , we have that, for n ≥ 10,
vn ∈ rad (v3, v5, v7, v9) = 〈v3, v5, v7, v9〉 and hence B(F) = 4.

Note also that on any real solution of v3 = v5 = v7 = 0, v9 is also 0.
Then the maximum order of the origin is 3.

The fact that v3, v5, v7 can take arbitrary values and v7v9 ≥ 0 implies
that C(F) = 2.

On the other hand, to compute the Melnikov number, we have to
study the expression for the return map associated to dH + εω = 0.
We obtain that

l̃1 = 3π(b3 + a3)ρ2,

l̃2 = 0,

l̃3 =
5π
3

b3(a2
2 − b22)ρ

3,

l̃4 = −2π a2b2(a2
2 − b22)ρ

3.

Since the degrees in ρ of l̃3 and l̃4 coincide, we cannot apply Theo-
rem 4.1. So we study directly the equation dH + εω + ε2ω + · · · = 0
and we get the values of M̃k(F) given in the statement. We do not
give here the details of the computations due to their length.



SMALL AMPLITUDE AND BIG LIMIT CYCLES 1303

REFERENCES

1. N.N. Bautin, On the number of limit cycles which appear with variation of
coefficients from an equilibrium position of focus or center type, Amer. Math. Soc.
Trans. 100 (1954), 397 413.

2. T.R. Blows and N.G. Lloyd, The number of small-amplitude limit cycles of
Liénard equations, Math. Proc. Cambridge Philos. Soc. 95 (1984), 359 366.

3. C. Chicone and M. Jacobs, Bifurcation of limit cycles from quadratic
isochrones, J. Differential Equations 91 (1991), 268 326.

4. A. Cima, A. Gasull and F. Mañosas, Ciclicity of a family of vector fields, J.
Math. Anal. Appl. 196 (1995), 921 937.

5. J.P. Françoise, Successive derivatives of a first return map, application to the
study of quadratic vector fields, Ergodic Theory Dynam. Systems 16 (1996), 87 96.

6. , The first derivative of the period function of a plane vector field, Publ.
Mat. 41 (1997), 127 134.
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