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THE CAUCHY PROBLEM IN THE THEORY
OF THERMOELASTIC PLATES WITH

TRANSVERSE SHEAR DEFORMATION

IGOR CHUDINOVICH, CHRISTIAN CONSTANDA

AND JOSÉ COLÍN VENEGAS

ABSTRACT. A uniqueness theorem is proved for the weak
solution of the Cauchy problem for an infinite thermoelastic
plate with transverse shear deformation. The problem for the
homogeneous version of the governing system of equations is
then studied by means of some special initial potentials. This
is a fundamental step in the construction of a potential theory
for dynamic problems for thermoelastic plates, since its results
make it possible to reduce various initial boundary value
problems to their analogs with homogeneous initial conditions,
which, in turn, may then be solved by means of dynamic
(retarded) potentials.

1. Introduction. Plate theories reduce three-dimensional initial-
boundary value problems for this type of mechanical structures to
ones in two dimensions. Although Kirchhoff’s old mathematical model
(1850) is a good approximation in many practical situations, it is in
some respects not refined enough to satisfy today’s increasing demand
for accuracy and detail. This drawback is remedied to a large extent by
transverse shear deformation models (see, for example, [1]), where the
displacement field, the moments, and the shear force can be computed
in full, thereby giving a better picture of the physical process of
bending. The model considered in [1] was generalized to the case of a
thermoelastic plate in [2].

In what follows we consider the time-dependent bending of a very
large, that is, regarded as mathematically infinite, plate subject to
external forces, moments, internal heat sources, and natural initial
conditions. After studying some properties of the corresponding matrix
of fundamental solutions, we define “initial” potentials of the first and
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second kinds, investigate their behavior, and show that the original
Cauchy problem has a unique distributional solution, which in the
case of the homogeneous equation can be represented in terms of these
potentials. The analogs of the above results for plates with transverse
shear deformation in the absence of thermal effects were obtained in
[3].

2. Formulation of the problem. We consider an infinite elastic
plate of thickness h0 = const > 0, which occupies a region R2 ×
[−h0/2, h0/2] in R3. The displacement vector at a point x′ in this
region at t ≥ 0 is denoted by v(x′, t) = (v1(x′, t), v2(x′, t), v3(x′, t))T,
where the superscript T signifies matrix transposition. The temperature
in the plate is denoted by τ (x′, t). Let x′ = (x, x3), x = (x1, x2) ∈ R2.
In plate models with transverse shear deformation it is assumed [1]
that

v(x′, t) = (x3u1(x, t), x3u2(x, t), u3(x, t))T.

If thermal effects are taken into account, we also consider the “aver-
aged” temperature across thickness defined by [2]

u4(x, t) =
1

h2h0

∫ h0/2

−h0/2

x3τ (x, x3, t) dx3, h2 =
h2

0

12
.

The factor 1/h2 has been introduced for reasons of convenience. Then
the vector function U(x, t) = (u(x, t)T, u4(x, t))T, where u(x, t) =
(u1(x, t), u2(x, t), u3(x, t))T, satisfies the equation

(1) B0∂
2
tU(x, t) + B1∂tU(x, t) + AU(x, t) = Q(x, t), (x, t) ∈ G,

where G = R2 × (0,∞), B0 = diag {ρh2, ρh2, ρ, 0}, ∂t = ∂/∂t, ρ > 0 is
the constant density of the material,

B1 =

⎛⎜⎝
0 0 0 0
0 0 0 0
0 0 0 0
η∂1 η∂2 0 κ

−1

⎞⎟⎠ , A =

⎛⎜⎝ A
h2γ∂1

h2γ∂2

0
0 0 0 −∆

⎞⎟⎠ ,

A =

⎛⎝−h2µ∆ −h2(λ+ µ)∂2
1 + µ −h2(λ+ µ)∂1∂2 µ∂1

−h2(λ+ µ)∂1∂2 −h2µ∆ −h2(λ+ µ)∂2
2 + µ µ∂2

−µ∂1 −µ∂2 −µ∆

⎞⎠,
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∂α = ∂/∂α, α = 1, 2, η,κ, and γ are positive constants, λ and µ are
the Lamé constants of the material satisfying λ + µ > 0, µ > 0, and
Q(x, t)=(q(x, t)T, q4(x, t))T, where q(x, t)=(q1(x, t), q2(x, t), q3(x, t))T

is a combination of the forces and moments acting on the plate and its
faces and q4(x, t) is a combination of the averaged heat source density
and the temperature and heat flux on the faces.

The classical Cauchy problem for (1) consists in finding U(x, t) ∈
C2(G), u ∈ C1(Ḡ), u4 ∈ C(Ḡ), such that

(2)
B0∂

2
tU(x, t) + B1∂tU(x, t) + AU(x, t) = Q(x, t), (x, t) ∈ G,

U(x, 0) = U0(x), ∂tu(x, 0) = ψ(x), x ∈ R2,

where U0(x) = (ϕ(x)T, θ(x))T, ϕ(x) = (ϕ1(x), ϕ2(x), ϕ3(x))T, and the
initial “velocity” ψ(x) = (ψ1(x), ψ2(x), ψ3(x))T are prescribed.

To formulate this problem variationally, we introduce weighted
Sobolev spaces of vector functions defined on G. For every κ > 0,
consider the space H1,κ(G) of all four-component distributions U(x, t)
on G with finite norm defined by
(3)

‖U‖2
1,κ;G =

∫
G

e−2κt

{
|U(x, t)|2+|∂tU(x, t)|2+

4∑
i=1

|∇ui(x, t)|2
}
dx dt.

We remark that (3) is equivalent to the norm{∫
G

e−2κt
[
(1 + |ξ|)2|Ũ(ξ, t)|2 + |∂tŨ(ξ, t)|2] dξ dt}1/2

,

where Ũ(ξ, t)=(ũ(ξ, t)T, ũ4(ξ, t))T, ũ(ξ, t)=(ũ1(ξ, t), ũ2(ξ, t), ũ3(ξ, t))T,
is the Fourier transform of U(x, t) with respect to x. In what follows
we do not distinguish between equivalent norms and denote them by
the same symbol.

Let W (x, t) = (w(x, t)T, w4(x, t))T ∈ C∞
0 (Ḡ); that is, each compo-

nent of w = (w1, w2, w3)T and w4 are functions of class C∞(Ḡ) such
that suppwi ⊂ Ḡ, i = 1, 2, 3, 4. We multiply the ith component,
i = 1, 2, 3, of the vector differential equation in (2) by the complex
conjugate w̄i of wi, and the complex conjugate form of the forth com-
ponent in (2) by h2γη−1w4, integrate the new equalities over G, and
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add them together. As a result, we obtain

(4)
∫

G

[
(B0∂

2
t u,w) + (Au,w) + h2γη−1

κ
−1(w4, ∂tu4)

− h2γη−1(w4,∆u4) + h2γ(w4, ∂tdivu) + h2γ(∇u4, w)
]
dx dt

=
∫

G

[
(q, w) + h2γη−1(w4, q4)

]
dx dt,

where B0 = diag {ρh2, ρh2, ρ} and (· , ·) is the inner product in the
corresponding vector space Cm. For simplicity, we also use the generic
notation (· , ·)0 for the inner product in

[
L2(R2)

]m for all m ∈ N.
Integrating by parts in (4) and making use of the initial conditions in
(2), we arrive at

(5)
∫ ∞

0

[
a(u,w) − (B1/2

0 ∂tu,B
1/2
0 ∂tw)0 + h2γη−1

κ
−1(w4, ∂tu4)0

+ h2γη−1(∇w4,∇u4)0 − h2γ(∇w4, ∂tu)0 + h2γ(∇u4, w)0
]
dt

= (B0′, γ0w)0 +
∫ ∞

0

[
(q, w)0 + h2γη−1(w4, q4)0

]
dt,

where γ0 is the continuous trace operator from the Sobolev space of
index m ∈ N and with weight exp(−2κt), t > 0, of functions (or vector
functions) defined in G to the corresponding standard Sobolev space of
index m−1/2 of functions (vector functions) defined in R2, and a(u,w)
is the sesquilinear form defined by

a(u,w) = 2
∫
R2
E(u,w) dx,

where

2E(u,w) = h2E0(u,w) + h2µ(∂2u1 + ∂1u2)(∂2w̄1 + ∂1w̄2)

+ µ[(u1 + ∂1u3)(w̄1 + ∂1w̄3) + (u2 + ∂2u3)(w̄2 + ∂2w̄3)],

E0(u,w) = (λ+ 2µ)
[
(∂1u1)(∂1w̄1) + (∂2u2)(∂2w̄2)

]
+ λ

[
(∂1u1)(∂2w̄2) + (∂2u2)(∂1w̄1)

]
.

The form E(u, u) is the potential energy density of the plate [1].
We remark that if f ∈ C2(R2) and g ∈ C∞

0 (R2), then (Af, g)0 =
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a(f, g). Equation (5) suggests a variational formulation of the Cauchy
problem (2). Thus, we say that U(x, t) is a weak solution of (2) if
U ∈ H1,κ(G) for some κ > 0, U satisfies (5) for any W ∈ C∞

0 (Ḡ), and
γ0U = U0(x).

3. Uniqueness theorem. We examine the question of uniqueness
of the solution to the variational Cauchy problem for (2).

Theorem 1. The Cauchy problem (2) has at most one weak solution
of class H1,κ(G).

Proof. Let U1(x, t) and U2(x, t) be two such solutions. Then U =
U1 − U2 satisfies γ0U = 0 and the homogeneous equation (5); that is,∫ ∞

0

[
a(u,w) − (B1/2

0 ∂tu,B
1/2
0 ∂tw)0 + h2γη−1

κ
−1(w4, ∂tu4)0

+ h2γη−1(∇w4,∇u4)0 − h2γ(∇w4, ∂tu)0 + h2γ(∇u4, w)0
]
dt = 0

∀W ∈ C∞
0 (Ḡ).

We define

Z(x, t) = (z(x, t)T, z4(x, t))T, z(x, t) = (z1(x, t), z2(x, t), z3(x, t))T,

by writing

Z(x, t) =
∫ t

0

∫ τ

0

U(x, ζ) dζ dτ.

Clearly, U(·, t) belongs to L2((0, T );H1(R2)) ∩H1((0, T );L2(R2)) for
any T > 0; that is, U(·, t) is square integrable as a mapping from
(0, T ) to the standard Sobolev space H1(R2), and U(·, t) and ∂tU(·, t)
are square integrable as mappings from (0, T ) to L2(R2). Conse-
quently, Z(·, t) ∈ H2((0, T );H1(R2)) ∩ H3((0, T );L2(R2)). In partic-
ular, ∂2

tZ(·, t) is absolutely continuous as a mapping from [0, T ] to
L2(R2) for any T > 0. In addition, Z(·, 0) = ∂tZ(·, 0) = ∂2

tZ(·, 0) = 0.

Let ω(t) be an “averaging kernel”; that is, a function such that

(i) ω ∈ C∞
0 (R), suppω ⊂ [−1, 1], ω(t) ≥ 0;

(ii)
∫∞
−∞ ω(t) dt = 1.
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We remark that, for any T > 0, the sequence ωn(t) = nω(n(t− T )),
n ∈ N, converges, as n → ∞, to the Dirac delta δ(t − T ) in the
distributional sense, in other words, in the Schwartz space S ′(R).

We choose an arbitrary V (x, t) = (v(x, t)T, v4(x, t))T ∈ C∞
0 (Ḡ) and

construct the sequence Vn(x, t) = ωn(t)V (x, t)=(vn(x, t)T, v4,n(x, t))T.
Also, taking

Wn(x, t) =
∫ ∞

t

∫ ∞

τ

Vn(x, ζ) dζ dτ =
(
wn(x, t)T, w4,n(x, t)

)T∈ C∞
0 (Ḡ),

we deduce the equality∫ ∞

0

[
a(z, vn) − (B1/2

0 ∂tz,B
1/2
0 ∂tvn)0 + h2γη−1

κ
−1(v4,n, ∂tz4)0

+ h2γη−1(∇v4,n,∇z4)0 − h2γ(∇v4,n, ∂tz)0 + h2γ(∇z4, vn)0
]
dt

=
∫ ∞

0

[
a(z, ∂2

twn) − (B1/2
0 ∂tz,B

1/2
0 ∂3

twn)0

+ h2γη−1
κ

−1(∂2
tw4,n, ∂tz4)0 + h2γη−1(∇∂2

tw4,n,∇z4)0
− h2γ(∇∂2

tw4,n, ∂tz)0 + h2γ(∇z4, ∂2
twn)0

]
dt

=
∫ ∞

0

[
a(u,wn) − (B1/2

0 ∂tu,B
1/2
0 ∂twn)0

+ h2γη−1
κ

−1(w4,n, ∂tu4)0 + h2γη−1(∇w4,n,∇u4)0
− h2γ(∇w4,n, ∂tu)0 + h2γ(∇u4, wn)0

]
dt = 0.

Hence, after integrating by parts, we obtain
(6)∫ ∞

0

[
a(z, vn)+(B1/2

0 ∂2
t z,B

1/2
0 vn)0+h2γη−1

κ
−1(v4,n, ∂tz4)0

+h2γη−1(∇v4,n,∇z4)0−h2γ(∇v4,n, ∂tz)0+h2γ(∇z4, vn)0
]
dt = 0.

Letting n→ ∞ in (6), we arrive at
(7)
a(z(x, T ), v(x, T )) + (B1/2

0 ∂2
T z(x, T ), B1/2

0 v(x, T ))0
+ h2γη−1

κ
−1(v4(x, T ), ∂T z4(x, T ))0+ h2γη−1(∇v4(x, T ),∇z4(x, T ))0

− h2γ(∇v4(x, T ), ∂T z(x, T ))0+ h2γ(∇z4(x, T ), v(x, T ))0 = 0.
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Since (7) holds for all T > 0, we may replace T by t and integrate (7)
over (0, T ) with respect to t:
(8)∫ T

0

[
a(z, v) + (B1/2

0 ∂2
t z,B

1/2
0 v)0 + h2γη−1

κ
−1(v4, ∂tz4)0

+ h2γη−1(∇v4,∇z4)0 − h2γ(∇v4, ∂tz)0 + h2γ(∇z4, v)0
]
dt = 0.

Approximating ∂tz(x, t) and z4(x, t) by infinitely smooth, with respect
to x, functions with compact support, we deduce that we can take
v = ∂tz and v4 = z4 in (8) and, thus, write∫ T

0

[
a(z, ∂tz) + (B1/2

0 ∂2
t z,B

1/2
0 ∂tz)0 + h2γη−1

κ
−1(z4, ∂tz4)0

+ h2γη−1‖∇z4‖2
0

]
dt = 0,

where ‖ · ‖0 is the norm in
[
L2(R2)

]m. Consequently,∫ T

0

d

dt

[
a(z, z) + ‖B1/2

0 ∂tz‖2
0 + h2γη−1

κ
−1‖z4‖2

0

]
dt

=
[
a(z, z) + ‖B1/2

0 ∂tz‖2
0 + h2γη−1

κ
−1‖z4‖2

0

]
t=T

≤ 0

and Z(x, T ) = 0 for all T > 0. Since U = ∂2
tZ, we conclude that

U(x, t) ≡ 0 for all t ≥ 0, which proves the theorem.

Obviously, the solution of (2) is the sum of the solutions of two
simpler problems, namely, the Cauchy problem for the homogeneous
system (1) with the given initial data and the Cauchy problem for the
nonhomogeneous system (1) with zero initial data. Below, we restrict
our attention to the first of these problems.

4. The Cauchy problem for the homogeneous system. Let
Q(x, t) ≡ 0. Then (5) takes the form

(9)∫ ∞

0

[
a(u,w) − (B1/2

0 ∂tu,B
1/2
0 ∂tw)0 + h2γη−1

κ
−1(w4, ∂tu4)0

+ h2γη−1(∇w4,∇u4)0 − h2γ(∇w4, ∂tu)0 + h2γ(∇u4, w)0
]
dt

= (B0ψ, γ0w)0,
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and we seek U ∈ H1,κ(G) that satisfies (9) for all W ∈ C∞
0 (Ḡ) and

such that
γ0U = U0(x) = (ϕ(x)T, θ(x))T.

In what follows, we give an explicit analytic expression for the solution
of (9) as a combination of two special potential-type integrals called
“initial” potentials of the first and second kinds. In order to do that,
we need to study the properties of a matrix of fundamental solutions
D(x, t) for the system (1).

D(x, t) is a (distributional) solution of the problem

B0∂
2
tD(x, t) + B1∂tD(x, t) + AD(x, t) = δ(x, t)I, (x, t) ∈ R3,

D(x, t) = 0, t < 0,

where I is the identity (4 × 4)-matrix and δ is the Dirac delta. Its
Fourier transform D̃(ξ, t) satisfies
(10)

B0∂
2
t D̃(ξ, t) + B1(ξ)∂tD̃(ξ, t) + A(ξ)D̃(ξ, t) = δ(t)I, (ξ, t) ∈ R3,

D̃(ξ, t) = 0, t < 0,

where

B1(ξ) =

⎛⎜⎝
0 0 0 0

0 0 0 0

0 0 0 0

−iηξ1 −iηξ2 0 κ
−1

⎞⎟⎠ , A(ξ) =

⎛⎜⎝ A(ξ)

− ih2γξ1
−ih2γξ2

0

0 0 0 |ξ|2

⎞⎟⎠ ,

A(ξ) =

(
h2µ|ξ|2 + h2(λ + µ)ξ2

1 + µ h2(λ + µ)ξ1ξ2 −iµξ1
h2(λ + µ)ξ1ξ2 h2µ|ξ|2 + h2(λ + µ)ξ2

2 + µ −iµξ2
iµξ1 iµξ2 µ|ξ|2

)
.

We represent D(x, t) and D̃(ξ, t) in the form

(11) D(x, t) = χ(t)Φ(x, t), D̃(ξ, y) = χ(t)Φ̃(ξ, t),

where χ(t) is the characteristic function of the positive semi-axis.
Substituting (11) in (10), we find that the matrix Φ̃(ξ, t) satisfies the
Cauchy problem

B0∂
2
t Φ̃(ξ, t) + B1(ξ)∂tΦ̃(ξ, t) + A(ξ)Φ̃(ξ, t) = 0, ξ ∈ R2, t > 0,

B0Φ̃(ξ, 0) = 0, B0∂tΦ̃(ξ, 0) + B1(ξ)Φ̃(ξ, 0) = I.
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In what follows, the columns of a (4×4)-matrix K are denoted by K(j),
j = 1, 2, 3, 4. Clearly, each Φ̃(j)(ξ, t) satisfies

(12)
B0∂

2
t Φ̃(j)(ξ, t) + B1(ξ)∂tΦ̃(j)(ξ, t) + A(ξ)Φ̃(j)(ξ, t) = 0,

ξ ∈ R2, t > 0,

B0Φ̃(j)(ξ, 0) = 0, B0∂tΦ̃(j)(ξ, 0) + B1(ξ)Φ̃(j)(ξ, 0) = I(j).

If we write

Φ̃(j)(ξ, t) = (ũ(j)(ξ, t)T, ũ(j)
4 (ξ, t))T,

ũ(j)(ξ, t) = (ũ(j)
1 (ξ, t), ũ(j)

2 (ξ, t), ũ(j)
3 (ξ, t))T,

ũ(j)(ξ, 0) = ϕ̃(j)(ξ) = (ϕ̃(j)
1 (ξ), ϕ̃(j)

2 (ξ), ϕ̃(j)
3 (ξ))T,

ũ
(j)
4 (ξ, 0) = θ̃(j)(ξ),

∂tũ
(j)(ξ, 0) = ψ̃(j)(ξ) = (ψ̃(j)

1 (ξ), ψ̃(j)
2 (ξ), ψ̃(j)

3 (ξ))T, j = 1, 2, 3, 4,

then the initial conditions in (12) become

(13)
ϕ̃(j)(ξ) = 0, θ̃(j)(ξ) = κδ4j ,

ψ̃(j)(ξ) = B−1
0 (δ1j , δ2j , δ3j)T, j = 1, 2, 3, 4,

where δij is the Kronecker delta.

Comparing the initial conditions in (12), (13), and (9), we see that
Φ(j)(x, t) (or D(j)(x, t)) is the solution in G of the variational equation
(14)∫ ∞

0

[
a(u(j), w) − (B1/2

0 ∂tu
(j), B

1/2
0 ∂tw)0 + h2γη−1

κ
−1(w4, ∂tu

(j)
4 )0

+ h2γη−1(∇w4,∇u(j)
4 )0− h2γ(∇w4, ∂tu

(j))0+ h2γ(∇u(j)
4 , w)0

]
dt

= (B0ψ
(j), γ0w)0 ∀W ∈ C∞

0 (Ḡ), γ0U = (0, 0, 0,κδ4jδ(x)),

where u(j), u(j)
4 , and ψ(j), j = 1, 2, 3, 4, are the inverse Fourier trans-

forms with respect to ξ of ũ(j)(ξ, t), ũ(j)
4 (ξ, t), and ψ̃(j)(ξ), respectively.

For simplicity, in what follows all positive constants in estimates,
which do not depend on the functions and variables occurring in those
estimates, are denoted by the same symbol c.
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Lemma 1. There are positive constants c such that

(15)
|ũ(j)(ξ, t)| ≤ c(1 + t)(1 + |ξ|)−1, |∂tũ

(j)(ξ, t)| ≤ c,

|ũ(j)
4 (ξ, t)| ≤ c, j = 1, 2, 3, 4,

and, for any l ≥ 1,

(16)

|∂l+1
t ũ(j)(ξ, t)| ≤ c(1 + |ξ|)2l−1, j = 1, 2, 3, 4,

|∂l
tũ

(j)
4 (ξ, t)| ≤ c

{
(1 + t)(1 + |ξ|)2l−1, j = 1, 2, 3,

(1 + |ξ|)2l, j = 4.

Proof. First, we establish an energy estimate for the matrix of
fundamental solutions. Multiplying the ith component, i = 1, 2, 3,
of the vector differential equation in (12) by the complex conjugate of
∂tũ

(j)
i (ξ, t) and the complex conjugate of the fourth equation in (12)

by h2γκ
−1ũ

(j)
4 (ξ, t), and adding the new equalities, we arrive at(

B0∂
2
t ũ

(j)(ξ, t), ∂tũ
(j)(ξ, t)

)
+
(
A(ξ)ũ(j)(ξ, t), ∂tũ

(j)(ξ, t)
)

+ h2γη−1
κ

−1
(
ũ

(j)
4 (ξ, t), ∂tũ

(j)
4 (ξ, t)

)
= −h2γη−1|ξ|2|ũ(j)

4 (ξ, t)|2,

or

(17)
d

dt

{|B1/2
0 ∂tũ

(j)(ξ, t)|2 +
(
A(ξ)ũ(j)(ξ, t), ũ(j)(ξ, t)

)
+ h2γη−1

κ
−1|ũ(j)

4 (ξ, t)|2} = −2h2γη−1|ξ|2|ũ(j)
4 (ξ, t)|2.

From (17) and (13) it follows that

|B1/2
0 ∂tũ

(j)(ξ, t)|2 + (A(ξ)ũ(j)(ξ, t), ũ(j)(ξ, t)) + h2γη−1
κ

−1|ũ(j)
4 (ξ, t)|2

≤ c;

therefore,

(18)
(A(ξ)ũ(j)(ξ, t), ũ(j)(ξ, t)) ≤ c, |∂tũ

(j)(ξ, t)| ≤ c,

|ũ(j)
4 (ξ, t)| ≤ c.
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In [3] it is shown that there are positive constants k1 and k2 such that

(19)
[
k1(1 + |ξ|)2 − k2

]|ψ|2 ≤ (A(ξ)ψ, ψ
) ∀ψ ∈ C3;

hence,
(1 + |ξ|)2|ψ|2 ≤ c

[
(A(ξ)ψ, ψ) + |ψ|2],

and from (18) it follows that

(20) (1 + |ξ|)2|ũ(j)(ξ, t)|2 ≤ c
[
1 + |ũ(j)(ξ, t)|2].

On the other hand,

ũ(j)(ξ, t) =
∫ t

0

∂τ ũ
(j)(ξ, τ) dτ,

and again from (18) it follows that

(21) |ũ(j)(ξ, t)| ≤ ct.

Combining (20) and (21), we obtain the estimate

(22) |ũ(j)(ξ, t)| ≤ c(1 + t)(1 + |ξ|)−1, j = 1, 2, 3, 4.

Estimates (18) and (22) prove (15).

We now claim that the inequalities

(23)
|∂l+1

t ũ(j)(ξ, t)| + |∂l
tũ

(j)
4 (ξ, t)| ≤ c(1 + |ξ|)2l−1, j = 1, 2, 3,

|∂l+1
t ũ(4)(ξ, t)| + |∂l

tũ
(4)
4 (ξ, t)| ≤ c(1 + |ξ|)2l

hold for any l ≥ 1. Differentiating the equation in (12), we find that

(24) B0∂
2
t ∂

l
tΦ̃

(j)(ξ, t) + B1(ξ)∂t∂
l
tΦ̃

(j)(ξ, t) + A(ξ)∂l
tΦ̃

(j)(ξ, t) = 0,
ξ ∈ R2, t > 0;

therefore,

d

dt

{|B1/2
0 ∂t∂

l
tũ

(j)(ξ, t)|2 +
(
A(ξ)∂l

tũ
(j)(ξ, t), ∂l

tũ
(j)(ξ, t)

)
+ h2γη−1

κ
−1|∂l

tũ
(j)
4 (ξ, t)|2} ≤ 0
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and

|B1/2
0 ∂t∂

l
tũ

(j)(ξ, t)|2 +
(
A(ξ)∂l

tũ
(j)(ξ, t), ∂l

tũ
(j)(ξ, t)

)
+ h2γη−1

κ
−1|∂l

tũ
(j)
4 (ξ, t)|2

≤ c
{|B1/2

0 ∂l+1
t ũ(j)(ξ, 0)|2 +

(
A(ξ)∂l

tũ
(j)(ξ, 0), ∂l

tũ
(j)(ξ, 0)

)
+ h2γη−1

κ
−1|∂l

tũ
(j)
4 (ξ, 0)|2}.

For l = 1,

(25) |∂2
t ũ

(j)(ξ, t)|2 + |∂tũ
(j)
4 (ξ, t)|2

≤ c
{|∂2

t ũ
(j)(ξ, 0)|2+ |∂tũ

(j)
4 (ξ, 0)|2+ (1+|ξ|)2|∂tũ

(j)(ξ, 0)|2}.
Since Φ̃(j)(ξ, t) is smooth for t ∈ [0,∞), from (12) we deduce that

|∂2
t ũ

(j)(ξ, 0)| ≤ c
{
(1 + |ξ|)2|Φ̃(j)(ξ)| + |ξ|| θ̃(j)(ξ)|},

|∂tũ
(j)
4 (ξ, 0)| ≤ c

{|ξ||ψ̃(j)(ξ)| + |ξ|2|θ̃(j)(ξ)|};
hence,

(26)
∂2

t ũ
(j)(ξ, 0) = 0, |∂tũ

(j)
4 (ξ, 0)| ≤ c|ξ|, j = 1, 2, 3,

|∂2
t ũ

(4)(ξ, 0)| ≤ c|ξ|, |∂tũ
(4)
4 (ξ, 0)| ≤ c|ξ|2.

Substituting (26) in (25), we obtain

|∂2
t ũ

(j)(ξ, t)| + |∂tũ
(j)
4 (ξ, t)| ≤ c(1 + |ξ|), j = 1, 2, 3,

|∂2
t ũ

(4)(ξ, t)| + |∂tũ
(4)
4 (ξ, t)| ≤ c(1 + |ξ|)2;

therefore, (23) is proved for l = 1. Suppose now that (23) holds for all
k ≤ l, l > 1. Then

B0∂
2
t ∂

l+1
t Φ̃(j)(ξ, t) + B1(ξ)∂t∂

l+1
t Φ̃(j)(ξ, t) + A(ξ)∂l+1

t Φ̃(j)(ξ, t) = 0,
ξ ∈ R2, t > 0;

hence,

(27) |∂l+2
t ũ(j)(ξ, t)| + |∂l+1

t ũ
(j)
4 (ξ, t)|

≤ c
{|∂l+2

t ũ(j)(ξ, 0)| + |∂l+1
t ũ

(j)
4 (ξ, 0)| + (1+|ξ|)|∂l+1

t ũ(j)(ξ, 0)|}.
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On the other hand, from (24) it follows that

|∂l+2
t ũ(j)(ξ, 0)| ≤ c

{
(1 + |ξ|)2|∂l

tũ
(j)(ξ, 0)| + |ξ||∂l

tũ
(j)
4 (ξ, 0)|},

|∂l+1
t ũ

(j)
4 (ξ, 0)| ≤ c

{|ξ||∂l+1
t ũ(j)(ξ, 0)| + |ξ|2|∂l

tũ
(j)
4 (ξ, 0)|}.

Making use of (27), we obtain

|∂l+2
t ũ(j)(ξ, t)| + |∂l+1

t ũ
(j)
4 (ξ, t)|

≤ c
{
(1 + |ξ|)2|∂l

tũ
(j)(ξ, 0)| + (1 + |ξ|)2|∂l

tũ
(j)
4 (ξ, 0)|

+ (1 + |ξ|)|∂l+1
t ũ(j)(ξ, 0)|}

≤ c

{
(1 + |ξ|)2l+1, j = 1, 2, 3,

(1 + |ξ|)2l+2, j = 4.

This proves (23) for all l ≥ 1 and j = 1, 2, 3, 4, which, in turn, proves
statement (16) of the lemma for l ≥ 1 and j = 1, 2, 3. To complete the
proof of the lemma, we need to improve estimates (23) for ∂l+1

t ũ
(j)
4 (ξ, t),

l ≥ 1, namely, we need to show that

(28) |∂l+1
t ũ

(j)
4 (ξ, t)| ≤ c(1 + t)(1 + |ξ|)2l−1, l ≥ 1.

First, we establish (28) for l = 1. Since

B0∂
2
t Φ̃(4)(ξ, t) = −B1(ξ)∂tΦ̃(4)(ξ, t) −A(ξ)Φ̃(4)(ξ, t), ξ ∈ R2, t > 0,

we have

(29) B0∂
2
t ũ

(4)(ξ, t) = −A(ξ)ũ(4)(ξ, t) − ih2γξũ
(4)
4 (ξ, t).

From (15) and (29) it follows that

|∂2
t ũ

(4)(ξ, t)| ≤ c(1 + t)(1 + |ξ|),

which proves (16) for l = 1. Suppose now that (16) holds for all k ≤ l,
l > 1. By (24),

B0∂
l+2
t Φ̃(4)(ξ, t) = −B1(ξ)∂l+1

t Φ̃(4)(ξ, t) −A(ξ)∂l
tΦ̃

(4)(ξ, t),
ξ ∈ R2, t > 0
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and

B0∂
l+2
t ũ(4)(ξ, t) = −A(ξ)∂l

tũ
(4)(ξ, t) − ih2γξ∂l

tũ
(4)
4 (ξ, t).

Using the inductive assumption and (23), we obtain

|∂l+2
t ũ(4)(ξ, t)| ≤ c(1 + t)(1 + |ξ|)2l+1,

which completes the proof of the lemma.

We now introduce the initial potentials that generate the solution
of the Cauchy problem for the homogeneous system (1). The initial
potential of the first kind of density

F (x) = (f(x)T, f4(x))T, f(x) = (f1(x), f2(x), f3(x))T,

is defined by

J (x, t) = (JF )(x, t) =
∫
R2
D(x− y, t)F (y) dy

=
∫
R2

Φ(x− y, t)F (y) dy, t > 0.

The initial potential of the second kind of density

R(x) = (r(x)T, r4(x))T, r(x) = (r1(x), r2(x), r3(x))T,

is defined by

E(x, t) = (ER)(x, t) =
∫
R2
∂tD(x− y, t)R(y) dy

=
∫
R2
∂tΦ(x− y, t)R(y) dy = ∂t(JR)(x, t), t > 0.

Their Fourier transforms, either in the classical or in the distributional
sense, are

J̃ (ξ, t) = (J̃ F̃ )(ξ, t) = D̃(ξ, t)F̃ (ξ) = Φ̃(ξ, t)F̃ (ξ),

Ẽ(ξ, t) = (ẼR̃)(ξ, t) = ∂tD̃(ξ, t)R̃(ξ) = ∂tΦ̃(ξ, t)R̃(ξ),
t > 0,
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where F̃ (ξ) and R̃(ξ) are the Fourier transforms of F (x) and R(x),
respectively.

Lemma 2. (i) If f ∈ H1(R2) and f4 ∈ H2(R2), then J ∈ H1,κ(G)
for any κ > 0.

(ii) If r ∈ H3(R2) and r4 ∈ H4(R2), then E ∈ H1,κ(G) for any
κ > 0.

Proof. We write J̃ (ξ, t) in the form

(30) J̃ (ξ, t)

=

⎛⎜⎜⎜⎜⎝
ũ
(1)
1 (ξ, t))f̃1(ξ) + ũ

(2)
1 (ξ, t))f̃2(ξ) + ũ

(3)
1 (ξ, t))f̃3(ξ) + ũ

(4)
1 (ξ, t))f̃4(ξ)

ũ
(1)
2 (ξ, t))f̃1(ξ) + ũ

(2)
2 (ξ, t))f̃2(ξ) + ũ

(3)
2 (ξ, t))f̃3(ξ) + ũ

(4)
2 (ξ, t))f̃4(ξ)

ũ
(1)
3 (ξ, t))f̃1(ξ) + ũ

(2)
3 (ξ, t))f̃2(ξ) + ũ

(3)
3 (ξ, t))f̃3(ξ) + ũ

(4)
3 (ξ, t))f̃4(ξ)

ũ
(1)
4 (ξ, t))f̃1(ξ) + ũ

(2)
4 (ξ, t))f̃2(ξ) + ũ

(3)
4 (ξ, t))f̃3(ξ) + ũ

(4)
4 (ξ, t))f̃4(ξ)

⎞⎟⎟⎟⎟⎠ .

From (15) it follows that

|ũ(k)
i (ξ, t))f̃k(ξ)| ≤ c(1 + t)(1 + |ξ|)−1|f̃k(ξ)|, k=1, 2, 3, 4, i=1, 2, 3,

|ũ(k)
4 (ξ, t))f̃k(ξ)| ≤ c|f̃k(ξ)|, k = 1, 2, 3, 4;

hence, ∫
G

e−2κt(1 + |ξ|)2|J̃ (ξ, t)|2 dξ dt <∞.

Also by (15) and (16),

|∂tũ
(k)(ξ, t)f̃k(ξ)| ≤ c|f̃k(ξ)|, k = 1, 2, 3, 4,

|∂tũ
(k)
4 (ξ, t)f̃k(ξ)| ≤ c(1 + t)(1 + |ξ|)|f̃k(ξ)|, k = 1, 2, 3,

|ũ(4)
4 (ξ, t)f̃4(ξ)| ≤ c(1 + |ξ|)2|f̃4(ξ)|,

and ∫
G

e−2κt|∂tJ̃ (ξ, t)|2 dξ dt <∞.

This proves (i). Assertion (ii) is proved similarly. It is obvious that

(31) ‖J̃ ‖1,κ;G ≤ c(‖f‖1 + ‖f4‖2), ‖Ẽ‖1,κ;G ≤ c(‖r‖3 + ‖r4‖4),
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where ‖ · ‖m is the norm in Hm(R2).

Remark. If instead of H1,κ(G) we use H′
1,κ(G) with norm

‖U‖′1,κ;G =
{∫

G

e−2κt
[
(1 + |ξ|)2|Ũ(ξ, t)|2 + |∂tũ(ξ, t)|2

]
dξ dt

}1/2

,

then formulas (31) are replaced by

‖J̃ ‖′1,κ;G ≤ c(‖f‖1 + ‖f4‖1), ‖Ẽ‖′1,κ;G ≤ c(‖r‖2 + ‖r4‖3).

Hence, if F ∈ H1(R2), r ∈ H2(R2), and r4 ∈ H3(R2), then J̃ (ξ, t) and
Ẽ(ξ, t) belong to H′

1,κ(G).

We are now interested to know what problems are satisfied by the
initial potentials. Suppose that their densities F (x) and R(x) have
the properties in Lemma 2. Then both J (x, t) and E(x, t) belong to
H1,κ(G). We start with J (x, t).

Obviously,

J (x, t) =
4∑

i=1

∫
R2

Φ(i)(x− y, t)fi(y) dy.

On the other hand, from (13) and (14) it follows that Φ(i)(x, t) =
(u(i)(x, t)T, u(i)

4 (x, t))T satisfies the variational equation∫ ∞

0

[
a(u(i), w) − (B1/2

0 ∂tu
(i), B

1/2
0 ∂tw)0 + h2γη−1

κ
−1(w4, ∂tu

(i)
4 )0

+h2γη−1(∇w4,∇u(i)
4 )0− h2γ(∇w4, ∂tu

(i))0+ h2γ(∇u(i)
4 , w)0

]
dt

=
{ (γ0w̄i)(0), i = 1, 2, 3,

0, i = 4,
∀W ∈ C∞

0 (Ḡ);

therefore, J (x, t) = (j(x, t)T, j4(x, t))T, j(x, t) = (j1(x, t), j2(x, t),
j3(x, t))T, satisfies

(32)
∫ ∞

0

[
a(j, w) − (B1/2

0 ∂tj, B
1/2
0 ∂tw)0 + h2γη−1

κ
−1(w4, ∂tj4)0

+ h2γη−1(∇w4,∇j4)0 − h2γ(∇w4, ∂tj)0 + h2γ(∇j4, w)0
]
dt

= (f, γ0w)0 ∀W ∈ C∞
0 (Ḡ).
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Finally, from (13) we see that j(x, t) → 0 and j̃(ξ, t) → 0 as t → 0+
for almost all x and ξ in R2. But by (15) and (30),

‖j(x, t)‖2
2 =

∫
R2

(1 + |ξ|)4|j̃(ξ, t)|2 dξ

≤ c(1 + t)
∫
R2

(1 + |ξ|)2|F̃ (ξ)|2 dξ <∞, t ∈ [0, T ].

Applying Lebesgue’s dominated convergence theorem, we conclude that
j(x, t) → 0, as t→ 0, in H2(R2).

Also, j̃4(ξ, t) → κf̃4(ξ), as t → 0, for almost all ξ ∈ R2. Again from
(15) and (30) it follows that

‖j4(x, t) − κf4(x, t)‖2
1 =

∫
R2

(1 + |ξ|)2|j̃4(ξ, t) − κf̃4(ξ)|2 dξ

≤ c

∫
R2

(1 + |ξ|)2|F̃ (ξ)|2 dξ <∞;

therefore, j̃4(x, t) → κΦ̃4(x), as t→ 0, in H1(R2).

We now turn our attention to the properties of the initial poten-
tial of the second kind E(x, t) = (e(x, t)T, e4(x, t))T, where e(x, t) =
(e1(x, t), e2(x, t), e3(x, t))T. Its Fourier transform is Ẽ(ξ, t) = (ẽ(ξ, t)T,
ẽ4(ξ, t))T, ẽ(ξ, t) = (ẽ1(ξ, t), ẽ2(ξ, t), ẽ3(ξ, t))T. First, we study the
matrix K(x, t) = ∂tΦ(x, t) and its Fourier transform K̃(ξ, t). Let
K(i)(x, t) = (k(i)(x, t)T, k(i)

4 (x, t))T, where k(i)(x, 0) = α(i)(x), k(i)
4 (x, 0)

= γ(i)(x), and ∂tk
(i)(x, 0) = β(i)(x). The corresponding Fourier trans-

forms are denoted by K̃(i)(ξ, t) = (k̃(i)(ξ, t)T, k̃(i)
4 (ξ, t))T, k̃(i)(ξ, 0) =

α̃(i)(ξ), k̃(i)
4 (ξ, 0) = γ̃(i)(ξ), and ∂tk̃

(i)(ξ, 0) = β̃(i)(ξ), i = 1, 2, 3, 4.
From (12) it follows that each K̃(i)(ξ, t) satisfies both

(33) B0∂
2
t K̃

(i)(ξ, t) + B1(ξ)∂tK̃
(i)(ξ, t) + A(ξ)K̃(i)(ξ, t) = 0

and

B0∂tK̃
(i)(ξ, t) + B1(ξ)K̃(i)(ξ, t) + A(ξ)Φ̃(i)(ξ, t) = 0.(34)

To find the initial data for K̃(i)(ξ, t), i = 1, 2, 3, 4, we note that

α̃(i)(ξ) = ∂ũ(i)(ξ, 0) = ψ̃(i)(ξ), i = 1, 2, 3, 4,
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so

(35) α̃(i)(ξ) = B−1
0 (δ1i, δ2i, δ3i)T, i = 1, 2, 3, 4.

For t = 0, the forth component of (12) yields

γ̃(i)(ξ) = iκη(ξ1α̃
(i)
1 (ξ) + ξ2α̃

(i)
2 (ξ)) − |ξ|2θ̃(i)(ξ);

therefore,

(36) γ̃(i)(ξ) =

⎧⎨⎩
i(ηκ/(ρh2))ξi i = 1, 2,
0 i = 3,
−κ

2|ξ|2 i = 4.

To find β̃(i)(ξ), we consider the first three components of (34), from
which

(37) β̃(i)(ξ) = iκh2γB−1
0 (ξ1, ξ2, 0)Tδi4, i = 1, 2, 3, 4.

Combining (33), (35), (36), and (37), we see that the K̃(i)(ξ, t), i =
1, 2, 3, 4, satisfy

(38)

B0∂
2
t K̃

(i)(ξ, t) + B1(ξ)∂tK̃
(i)(ξ, t) + A(ξ)K̃(i)(ξ, t) = 0,

k̃(i)(ξ, 0) = α̃(i)(ξ) = B−1
0 (δ1i, δ2i, δ3i)T,

k̃
(i)
4 (ξ, 0) = γ̃(i)(ξ) =

⎧⎪⎪⎨⎪⎪⎩
i(ηκ/(ρh2))ξi i = 1, 2,

0 i = 3,

−κ
2|ξ|2 i = 4,

∂tk̃
(i)(ξ, 0) = β̃(i)(ξ) = iκh2γB−1

0 (ξ1, ξ2, 0)Tδi4.

Consequently, the K(i)(x, t), i = 1, 2, 3, 4, are solutions of the varia-
tional equations∫ ∞

0

[
a(k(i), w) − (B1/2

0 ∂tk
(i), B

1/2
0 ∂tw)0 + h2γη−1

κ
−1(w4, ∂tk

(i)
4 )0

+ h2γη−1(∇w4,∇k(i)
4 )0 − h2γ(∇w4, ∂tk

(i))0 + h2γ(∇k(i)
4 , w)0

]
dt

=
{ 0 i = 1, 2, 3,

κh2γ div (γ0w̄)(0) i = 4,
∀W ∈ C∞

0 (Ḡ).
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Since

E(x, t) =
4∑

i=1

∫
R2
K(i)(x− y, t)ri(y) dy,

the initial potential of the second kind satisfies

(39)
∫ ∞

0

[
a(e, w) − (B1/2

0 ∂te,B
1/2
0 ∂tw)0 + h2γη−1

κ
−1(w4, ∂te4)0

+ h2γη−1(∇w4,∇e4)0− h2γ(∇w4, ∂te)0+ h2γ(∇e4, w)0
]
dt

= κh2γ(r4, div (γ0w))0 ∀W ∈ C∞
0 (Ḡ).

To determine the initial conditions for this potential, we see that

Ẽ(ξ, t) =
4∑

i=1

K̃(i)(ξ, t)r̃i(ξ),

which, along with the initial data in (38), yields

lim
t→0+

Ẽ(ξ, t) = (ρh2)−1
(
r̃1(ξ), r̃2(ξ), h2r̃3(ξ), iκη [ξ1r̃1(ξ) + ξ2r̃2(ξ)]

− κ
2ρh2|ξ|2r̃4(ξ)

)T
,

or

lim
t→0+

E(x, t) = (ρh2)−1
(
r1(x), r2(x), h2r3(x),−κη div r(x)

+ κ
2ρh2∆r4(x)

)T
,

for almost all ξ or x, respectively. On the other hand, from (30) and
the conditions on R(x) it follows that∫

R2
(1 + |ξ|)6|ẽ(ξ, t) −B−1

0 r̃(ξ)|2 dξ ≤ c

∫
R2

(1 + |ξ|)6|R̃(ξ)|2 dξ <∞.

Therefore, by Lebesgue’s theorem,

lim
t→0+

e(x, t) = B−1
0 r(x) in H3(R2).

In addition, it is easily verified that

lim
t→0+

e4(x, t) = − κη

ρh2
div r(x) + κ

2∆r4(x) in H2(R2).
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The above results are now combined in the following assertion.

Lemma 3. (i) Let F = (fT, f4)T, with f ∈ H1(R2) and f4 ∈
H2(R2). Then J (x, t) = (JF )(x, t) belongs to H1,κ(G) for any κ > 0,
j(x, t) → 0, as t → 0, in H2(R2), j4(x, t) → κf4(x), as t → 0, in
H1(R2), and J (x, t) satisfies (32).

(ii) Let R = (rT, r4)T, with r ∈ H3(R2) and r4 ∈ H4(R2). Then
E(x, t) = (ER)(x, t) belongs to H1,κ(G) for any κ > 0, e(x, t) →
B−1

0 r(x), as t → 0, in H3(R2), e4(x, t) → −(ρh2)−1
κηdiv r(x) +

κ
2∆r4(x), as t→ 0, in H2(R2), and E(x, t) satisfies (39).

The main results of this section are expressed in the next two
assertions.

Theorem 2. Let ϕ ∈ H3(R2), θ ∈ H2(R2), and ψ ∈ H1(R2), and
let

f = B0ψ, f4 = κ
−1θ + η divϕ, r = B0ψ, r4 = 0.

Then

(40) L(x, t) = (JF )(x, t) + (ER)(x, t)

is the solution of (9) in H1,κ(G) for any κ > 0 and satisfies the initial
condition

γ0L = (ϕT, θ)T

and the estimate

(41) ‖L‖1,κ;G ≤ c
{‖ϕ‖3 + ‖θ‖2 + ‖ψ‖1

}
.

Proof. By Lemma 3, L = (lT, l4)T ∈ H1,κ(G) satisfies∫ ∞

0

[
a(l, w) − (B1/2

0 ∂tl, B
1/2
0 ∂tw)0 + h2γη−1

κ
−1(w4, ∂tl4)0

+ h2γη−1(∇w4,∇l4)0 − h2γ(∇w4, ∂tl)0 + h2γ(∇l4, w)0
]
dt

= (B0ψ, γ0w)0 ∀W ∈ C∞
0 (Ḡ).
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Again by Lemma 3,

γ0L = ((γ0l)T, γ0l4)T,
γ0l = γ0j + γ0e = B−1

0 r = ϕ,

γ0l4 = γ0j4 + γ0e4 = κf4 − ηκ

ρh2
div r + κ

2∆r4 = θ.

Finally, (41) follows from (31), and the lemma is proved.

We conclude this section by looking at the relationship between the
smoothness of the solution of the Cauchy problem and that of the
initial data. This can be done by using various norms on the spaces
of functions defined on G. Let us choose, for example, Hm,κ(G),
consisting of elements U = (uT, u4)T with norm

‖U‖′m,κ;G

=
{∫

G

e−2κt

[
(1 + |ξ|)2m|Ũ(ξ, t)|2 +

m∑
k=1

(1 + |ξ|)2(m−k)

× (|∂k
t ũ(ξ, t)|2 + |∂k−1

t ũ4(ξ, t)|2
)]
dξ dt

}1/2

, m ∈ N

(see the Remark).

Theorem 3. Let

ϕ ∈ Hm+1(R2), θ ∈ Hm(R2), ψ ∈ Hm(R2), m = 1, 2,
ϕ ∈ H2m−1(R2), θ ∈ H2m−2(R2), ψ ∈ H2m−3(R2), m ≥ 3,

and let f = B0ψ, f4 = κ
−1θ + ηdivϕ, r = B0ϕ, and r4 = 0. Then

L(x, t) = (JF )(x, t) + (ER)(x, t)

is the solution of (9) in H′
m,κ(G) for any κ > 0 and

‖L‖′m,κ;G ≤ c(‖ϕ‖m+1 + ‖θ‖m + ‖ψ‖m), m = 1, 2,
‖L‖′m,κ;G ≤ c(‖ϕ‖2m−1 + ‖θ‖2m−2 + ‖ψ‖2m−3), m ≥ 3.
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Proof. First, from the conditions of the theorem it follows that

f ∈ Hm(R2), f4 ∈ Hm(R2), r ∈ Hm+1(R2), m = 1, 2,
f ∈ H2m−3(R2), f4 ∈ H2m−2(R2), r ∈ H2m−1(R2), m ≥ 3.

Next, by Lemma 1 and (40),

(42)
|l̃(ξ, t)| ≤ c

[
(1 + t)(1 + |ξ|)−1|Φ̃(ξ, t)| + |r̃(ξ, t)|],

|l̃4(ξ, t)| ≤ c
[|Φ̃(ξ, t)| + (1 + t)(1 + |ξ|)|r̃(ξ, t)|],

|∂t l̃(ξ, t)| ≤ c
[|Φ̃(ξ, t)| + (1 + |ξ|)|r̃(ξ, t)|],

|∂k
t l̃(ξ, t)| ≤ c(1 + |ξ|)2k−3

[|Φ̃(ξ, t)| + (1 + |ξ|)2|r̃(ξ, t)|], k ≥ 2,

|∂k−1
t l̃4(ξ, t)| ≤ c(1 + |ξ|)2k−3

[
(1 + t)|Φ̃(ξ, t)| + (1 + |ξ|)|Φ̃4(ξ, t)|
+ (1 + t)(1 + |ξ|)2|r̃(ξ, t)|], k ≥ 2.

Using (42), we can easily verify the statements of the theorem.
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