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A PREDATOR-PREY SYSTEM INVOLVING
FIVE LIMIT CYCLES

EDUARDO SÁEZ, EDUARDO STANGE AND IVÁN SZÁNTÓ

ABSTRACT. In this paper we consider the multiparame-
ter system introduced in [9], which corresponds to an exten-
sion of the classic minimal Daphnia-algae model. It is shown
that there is a neighborhood in the parameter space where
the system in the realistic quadrant has a unique equilibrium
point which is a repelling weak focus of order four enclosed
by a global attractor hyperbolic limit cycle. For a small
enough change of the parameters in this neighborhood, bi-
furcation occurs from the weak focus four infinitesimal Hopf
limit cycles (alternating the type of stability) such that the
last bifurcated limit cycle is an attractor. Moreover, for cer-
tain values of parameters, we concluded that this applied
model has five concentric limit cycles, three of them being
stable hyperbolic limit cycles. This gives a positive answer to
a question raised in [2, 4].

1. Introduction. In [9], the authors study an extension of the
classic minimal Daphnia-algae model where (A) is the population of
algae and (Z) is the population for large herbivorous zooplankton:

(1)


dA

dt
= rA(1− A

K )− gA
A+hA

Z + i(K −A),

dZ

dt
= e gA

A+hA
Z −mZ − F Z2

Z2+h2
Z
.

The parameters and functions of the model have the following mean-
ings:
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r = Maximum growth rate of algae
K = Carrying capacity of algae
g = Maximun grazing rate of zooplankton
hA = Half-saturation functional respose of zooplankton
i = Diffusive inflow of algae
e = Food transfer efficiency of zooplankton
m = Loss term of zooplankton
hZ = Half-saturation functional response of fish
F = The planktivorous capacity the depredation of the

zooplankton.

Studies of the dynamics of these models are essentially numerical
with geometric and biological interpretations, and an overview of the
theory of competition of species in ecological communities can be seen
in [7]. More precisely, in [1], the congruity of plant-herbivore systems
and predator-prey systems is introduced, the former classified according
to the interaction between the plants and animals and exploring the
dynamics behavior of examples for each category of this classification,
while in [5, 6] over 20 years of study of data from populations of
Daphnia and algae in a wide variety of field situations is analyzed,
proving that these systems display three types of dynamic behavior:
both populations stable; both populations cyclic; and Daphnia cyclic
but algae stable. Furthermore, this study analyzes the behavior of the
reproduction, growth and the mortality of Daphnia with a low rate of
food supply.

In [9], an expansion is introduced of a classical minimal Daphnia-
algae model to account for effects of fish as a top predator. The model
predicts that the critical fish density for Daphnia collapse is higher in
systems with higher ambient nutrient concentrations and also shows
how intrinsic predator-prey oscillations in the planktonic system can
facilitate the switch to the algal-dominated regime where Daphnia is
controlled by fish.

In this work, we are interested in describing the dynamics of the
model suggested in [9], with results and techniques of the qualitative
theory of dynamical systems. In [9], based on this theory, the results
are demonstrated by the existence of homoclinic bifurcations, while
the central interest in this paper is to prove that the model has a high
number of cycle limits (Hopf bifurcations) which means the existence of
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distinct and diverse stability regions for the coexistence of the species
involved.

To simplify the study of the dynamics of the model, we change the
parameters and coordinates in order to obtain a more suitable system
(normal form) as follows: {A → x,Z → y, , hA → a, hZ → b}, where
x, y denote the new coordinates and hA, hZ are the values of average
saturation of the algae and herbivorous zooplankton, respectively.
Then the vector field (1) is C∞-equivalent:

(2) Xµ :


ẋ =

r

K
x(K − x)− yg

x

x+ a
+ i(K − x),

ẏ = egy
x

x+ a
−my − F

y2

y2 + b2

where the parameters are: µ = (r,K, g, a, i,m, F, b) ∈ R8
+.

In order to get a C∞-equivalent polynomial vector field, we consider
the rescaling {x → ax, y → by, F → bF, e → e/g}. Then system (2) is
reduced to the system:

(3)


ẋ = rx(1− ax

K
)− bg

a

xy

x+ 1
+ i(

K

a
− x),

ẏ = e
xy

x+ 1
−my − F

y2

y2 + 1
.

Considering again the rescaling {b → ba/g,K → aK} we obtain the
C∞-equivalent vector field

(4)


ẋ = rx(1− x

K
)− b

xy

x+ 1
+ i(K − x),

ẏ = e
xy

x+ 1
−my − F

y2

y2 + 1
.

Changing the time {t → tKr } and considering the change of param-

eters (using the same symbols for the new parameters) { bK
r → b, iK

r →
i, eK

r → e, mK
r → m, FK

r → F} and, once again changing the time

{t → t(x+1)(y2 +1)}, finally a C∞-equivalent six-parameters polyno-
mial vector field is obtained:
(5)

Yµ :

{
ẋ = (y2 + 1)[x(K − x)(x+ 1)− bxy + i(K − x)(x+ 1)],
ẏ = ey[x(y2 + 1)−m(x+ 1)(y2 + 1)− Fy(x+ 1)]
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where (x, y) ∈ Ω = {(x, y)|x, y ≥ 0} and the parameters are given by
µ = (K, b, i, e,m, F ) ∈ R6

+.

In particular,

Yµ(0, y) = iK(y2 + 1)
∂

∂x
− y[m(y2 + 1) + Fy]

∂

∂y
.

System (5) is not a Kolmogorov system, because the axis x = 0 is not
an invariant straight line of Yµ. In fact, by definition i > 0, then the
vector field transversally crosses into the first quadrant at every point
of this straight line.

Furthermore, since

Yµ(x, 0) = (K − x)(x+ 1)(x+ i)
∂

∂x
,

then Yµ(K, 0) = 0 and (K, 0) is the only singularity of field Yµ in the
invariant semi-axis y = 0, x ≥ 0.

In order to show more clearly the results of the dynamic model,
in the parameter space mF , we will consider the following auxiliary

functions:

{
l1(m,F ) = F − 2m
l2(m,F ) = F + 2m− 2

, and we define the subset of

R2 as
ℜ = l−1

1 (0,∞) ∩ l−1
2 (−∞, 0).

m

F

l1
l2

ℜ

•
1

•

•
1
2

2

FIGURE 1.

In the case of uniqueness of the singularities of the vector field in the
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open domain Ω, the coordinates of that singularity will be denoted by
(A,B). Let us consider the change of parameters

(6)


F = − (1 +B2)[A(m− 1) +m]

(1 +A)B
, A(m− 1)−A < 0

b = − (1 +A)(A+ i)(A−K)

AB
, A < K.

Then, introducing into system (5) the change of parameters shown in
(6) and also changing the time {t → AB(1 + A)t}, we have a C∞-
equivalent system to the system (5) (and consequently to the system
(1)):

(7) Zη :


ẋ = (1 +A)(1 + y2)[AB(K − x)(1 + x)(i+ x)

+(1 +A)(A+ i)(A−K)xy],
ẏ = −Aey[(1 +A)B(m+ (−1 +m)x)

−(1 +B2)(A(−1 +m) +m)(1 + x)y
+(1 +A)B(m+ (−1 +m)x)y2].

2. Main results.

Lemma 2.1. Let (m,F ) ∈ ℜ ∩ R2
+.

(i) If m
1−m < K, then the vector field Zη has at least one singularity

(A,B) ∈ Ω. Furthermore, the singularity (K, 0) is hyperbolic
saddle point with unstable manifold oriented to the realistic
quadrant Ω.

(ii) If m
1−m = K, then the vector field Zη has no singularities in Ω

and the singularity of (i) collapses with the singularity (K, 0).
(iii) If m

1−m > K, then the vector field Zη has no singularities in Ω.

Furthermore, the singularity (K, 0) is an hyperbolic attractor
point.

Lemma 2.2. Let (m,F ) ∈ ℜ ∩ R2
+,

m
1−m < K and (A,B) the

singularity of Lemma 2.1 (i). Then there exists a neighborhood in the
parameter space of vector field Zη such that the singularity (A,B) ∈ Ω
is a repelling weak focus whose order is at least 4.

For K1, c > 0, we define the subset in R2

RK1,c = {(x, y) ∈ R2 | x ≥ 0, 0 ≤ y ≤ c(K1 − x)}.
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Lemma 2.3. Let m
1−m < K. Then there are constants K1, c > 0, with

c sufficiently large, so that if A < K < K1 then RK1,c ⊂ Ω is a compact
invariant set by the vector field Zη containing the singularity (A,B) of
Lemma 2.1 (i).

Theorem 2.4. Let (m,F ) ∈ ℜ∩R2
+ and m

1−m < K. Then there exists
a neighborhood in the parameter space of vector field Zη such that the
system (7) have five concentric limit cycles, four infinitesimal limit
cycles and one non-infinitesimal attractor limit cycle (global). Also
three of the five limit cycles are stable.

3. Proof of the main results.

Proof of Lemma 2.1. The auxiliary straight lines l1, l2 and the F -
axis of the statement of Lemma 2.1 form the triangle ℜ (see Figure
1).

It is clear that, if (m,F ) ∈ ℜ, then these parameters are bounded
by 0 < m < 1

2 and 0 < F < 2.

In vector field (5), let us consider the first and second component:

(i) π1(Yµ) = 0 ⇐⇒ x(K − x)(x+ 1)− bxy + i(K − x)(x+ 1) = 0.
If x > 0, the equation x(K−x)(x+1)−bxy+i(K−x)(x+1) =

0 implicitly defines c1 : y = (x+i)(K−x)(x+1)
bx .

In the same way, π2(Yµ) = 0 ⇔ x(y2 + 1) −m(x + 1)(y2 +
1)− Fy(x+ 1) = 0.

If y > 0, the cubic curve x(y2 + 1) − m(x + 1)(y2 + 1) −
Fy(x+ 1) = 0

implicitly defines c2 : x = m(y2+1)+Fy
(y2+1)(1−m)−Fy because, for all

(m,F ) ∈ ℜ, (y2 + 1)(1−m)− Fy > 0.
It is clear that the straight line a : x = m

1−m is an asymptote
of the above cubic and, since we assume that m

1−m < K, then

there exists at least one singularity (A,B) of Yµ in Ω (see Figure
2). Now, as vector fields (5) and (7) are C∞-equivalent in Ω by
identity transformation, we conclude that the vector field (7)
has at least the singularity (A,B) ∈ Ω.
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x

y

K

•
•

c1

c2a

(A,B)

m
1−m

•

FIGURE 2.

(8)

Moreover, DYµ(K, 0) =

(
−(1 +K)(i+K) −bK

0 e(K(1−m)−m)

)
.

As K(1 −m) −m > 0 and m < 1
2 , the singularity (K, 0) is

a hyperbolic saddle whose unstable manifold is oriented to Ω.

(ii) If m
1−m = K, then (π1(Yµ))

−1(0)∩(π2(Yµ))
−1(0)∩Ω = {(K, 0)}.

(iii) If m
1−m > K, then (π1(Yµ))

−1(0) ∩ (π2(Yµ))
−1(0) ∩ Ω = Φ.

Moreover, from (8), the singularity (K, 0) is a hyperbolic at-
tractor node. �

Proof of Lemma 2.2. Let us consider vector field (7). By direct
calculation,

DZη(A,B) =

(
A10 A01
B10 B01

)
, where

A10 = −(1 +A)B(1 +B2)(A2 + 2A3 +A2i−A2K + iK)

A01 = A(1 +A)2(1 +B2)(A+ i)(A−K)

B10 = AB2(1 +B2)e

B01 = −A(1 +A)(−1 +B)B(1 +B)e(−A+m+Am)

Trace = −(1 +A)B(1 +B2)(A2 + 2A3 +A2i−A2K + iK)

−A(1 +A)(−1 +B)B(1 +B)e(−A+m+Am)
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Det = −A2(1 +A)2B2(1 +B2)2e(A+ i)(A−K)

+A(1 +A)2(−1 +B)

B2(1 +B)(1 +B2)e(A2 + 2A3 +A2i−A2K + iK)

(−A+m+Am)

In particular, for B = 1, we have

Trace = −2(1 +A)(A2 + 2A3 +A2i−A2K + iK)
Det = 4A2(1 +A)2e(A+ i)(K −A)

Since B = 1 and Det > 0, by continuity of the vector field with respect
to the parameter B, it is shown that in a small enough neighborhood
of B = 1 the singularity (A,B) of (7) is a focus.

The trace of the matrix DZη(A,B) is zero if

(9)
i = (−A2 − 2A3 −A2B2 − 2A3B2 −A2e+A2B2e+A2K

+A2B2K +Aem+A2em−AB2em−A2B2em)/
(1 +B2)(A2 +K)

In order to calculate the weakness of the focus (A,B) of (7), we
consider the translation of the focus to the origin of the coordinate
system {x → x+A, y → y+B}. Then system (7) is C∞-equivalent to
the system
(10)

ẋ = (1 +A)[AB(−A+K−x)(1+A+x)(A+ i+ x)+(1+A)(A+i)
(A−K)(A+ x)(B + y)](1 + (B + y)2),

ẏ = −Ae(B + y)[(1 +A)B(m+ (−1 +m)(A+ x))
−(1 +B2)(A(−1 +m) +m)(1 +A+ x)(B + y)
+(1 +A)B(m+ (−1 +m)(A+ x))(B + y)2] .

The coefficients of the linear part and consequently, the trace and
the determinant, are invariant under translation. Introducing the
expression of the parameter i given in (9), which cancels the trace
(10), we obtain the new coefficients of the linear part:

a10 = A(1 +A)(−1 +B)B(1 +B)e(−A+m+Am)

a01 = −A2(1 +A)2(A−K)[A+A2 +AB2 +A2B2 +Ae

−AB2e−K−AK−B2K−AB2K−em−Aem
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+ B2em+AB2em]/(A2 +K)

b10 = AB2(1 +B2)e

b01 = −A(1 +A)(−1 +B)B(1 +B)e(−A+m+Am)

and

Tr (DZη)(0, 0) = 0
Det (DZη)(0, 0) = −A2(1 +A)2(−1 +B)2B2(1 +B)2

×e2(−A+m+Am)2

+[A3(1 +A)2B2(1 +B2)e(A−K)
(A+A2 +AB2 +A2B2 +Ae−AB2e
−K −AK −B2K −AB2K
−em−Aem+B2em+AB2em)]/(A2 +K)

Now, for B = 1,

a10 = 0
a01 = (−2A2(1 +A)3(A−K)2)/(A2 +K)
b10 = 2Ae
b01 = 0
Tr (DZη)(0, 0) = 0
Det (DZη)(0, 0) = 4A3(1 +A)3e(A−K)2/(A2 +K)

In order to present the matrix of the linear part of system (10) as a
Jordan matrix, let us consider, in a sufficiently small neighborhood of
B = 1, the change of coordinates(

x
y

)
=

(
0 −L
b10 0

)(
u
v

)
where L2 = Det (DZη)(0, 0) > 0. Explicitly, the equality L2 =
Det (DZη)(0, 0) is equivalent to

L2 = 4A3(1 +A)3e(A−K)2/(A2 +K).

The previous expression is linear in the parameter e and, being a
positive number, is the only restriction. This now allows us to change
the parameter e of vector field (10) to the new parameter L which only
has the restriction L ∈ R+. Then the system (10) is reduced to the
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system
(11)

ẋ = −A(1 +A)(A3x2 +Kx2 + 3AKx2 −K2x2 +A2x3

+Kx3 +A3y + 2A4y +A5y − 2A2Ky − 4A3Ky
−2A4Ky +AK2y + 2A2K2y +A3K2y +A2xy + 2A3xy
+A4xy − 2AKxy − 4A2Kxy − 2A3Kxy +K2xy
+2AK2xy +A2K2xy)
×(2 + 2y + y2)/(A2 +K),

ẏ = −(A2 +K)L2(1 + y)(−2x− 2xy −Ay2 −A2y2

+my2 + 2Amy2 +A2my2 − xy2 −Axy2 +mxy2 +Amxy2)/
×(4A2(1 +A)3(A−K)2),

where

a10 = 0
a01 = (−2A2(1 +A)3(A−K)2)/(A2 +K)
b10 = (A2 +K)L2/(2A(1 +A)3(A−K)2)
b01 = 0
Tr (DZη)(0, 0) = 0
Det (DZη)(0, 0) = L2

In order to know the weakness of focus at the origin, we have to
calculate the Lyapunov quantities, and these are defined through the
focal values which are polynomials in the coefficients of the vector field
(11). In fact, it is known that there is an analytical function, V , in a
neighborhood of the origin, such that the rate of change along orbits,
V̇ , is of the form η2r

2 + η4r
4 + · · · , where r2 = x2 + y2 (see [3]). The

focal values are the terms η2k. However, since they are polynomials, the
ideal they generate has a finite basis, so there is M such that η2ℓ = 0,
for ℓ ≤ M , implies that η2ℓ = 0 for all ℓ. The value of M is not known
a priori, so it is not clear in advance how many focal values should
be calculated. The software Mathematica [10] is used to calculate the
first few focal values. These are then ‘reduced’ in the sense that each
is computed modulo the ideal generated by the previous ones: that is,
the relations η2 = η4 = · · · = η2k = 0 are used to eliminate some of the
variables in η2k+2. The reduced focal value η2k+2, with strictly positive
factors removed, is known as the Lyapunov quantity.

In order to simplify the calculations of the Lyapunov quantities, we
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consider the x-axis rescaling

∣∣∣∣∣∣∣∣
x = Qu
y = v

Q =
2A2(1 +A)3(K −A)2

(A2 +K)L

Thus, system (11) has the form

(12)

 u̇ = −Lv + a20u
2 + a11uv + a02v

2 + a21u
2v + a12uv

2

+a03v
3 + a13uv

3 + a22u
2v2,

v̇ = Lu+ b11uv + b02v
2 + b12uv

2 + b03v
3 + b13uv

3

where the coefficients are given by
(13)∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a10 = 0
a01 = −L
a20 = (−4A3(1 +A)4(A−K)2(A3 +K + 3AK −K2))

/((A2 +K)2L)
a11 = (−2A(1 +A)3(A−K)2)/(A2 +K)
a02 = −L
a30 = (−4A3(1 +A)4(A−K)2(A3 +K + 3AK −K2))

/((A2 +K)2L)
a12 = (−2A(1 +A)3(A−K)2)/(A2 +K)
a03 = −L/2
a22 = (−2A3(1 +A)4(A−K)2(A3 +K + 3AK −K2))

/((A2 +K)2L)
a13 = −L/2
b10 = L
b11 = 2L
b02 = −((A2 +K)L2(−A+m+Am))/(4A2(1 +A)2(A−K)2)
b12 = −(L2(−3−A+m+Am))/(2L)
b03 = −((A2 +K)L2(−A+m+Am))/(4A2(1 +A)2(A−K)2)

Moreover,

Tr (DZη)(0, 0) = 0 and Det (DZη)(0, 0) = L2.

Let us consider the change of the time {t → 1
L t} in (12). Denoting

by ηi, i = 1, 2, 3, . . ., the focal value of the monodromic focus of (12)
at the origin, as Tr (DZη)(0, 0) = 0, we have η1 = 0. Now, it is known
that the focal value η2 depends only on the 3-jet of vector field (12),
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and this is given by:

η2 = (a02a11 + a12 + a11a20 + 3a30 + 2a02b02 + 3b03 − b02b11)/8.

Replacing the coefficients in system (12) in the expression of η2 we
obtain:

η2 = (32A15 + 288A16 + 1152A17 + 2688A18 + 4032A19 + 4032A20 +

2688A21 + 1152A22 + 288A23 + 32A24 + 32A12K + 384A13K + 1824A14K +

4416A15K+5184A16K−9408A18K−14976A19K−12384A20K−6016A21K−
1632A22K−192A23K−192A11K2−2336A12K2−11904A13K2−33696A14K2−
57984A15K2 − 60480A16K2 − 32256A17K2 + 2496A18K2 + 16704A19K2 +

11616A20K2+3712A21K2+480A22K2+480A10K3+5952A11K3+31328A12K3+

93312A13K3+174528A14K3+212352A15K3+165312A16K3+73728A17K3+

9312A18K3−7872A19K3−4128A20K3−640A21K3−640A9K4−8160A10K4−
44160A11K4−135840A12K4−264960A13K4−342720A14K4−295680A15K4−
164160A16K4 − 51840A17K4 − 4960A18K4 + 1920A19K4 + 480A20K4 +

480A8K5 + 6400A9K5 + 35808A10K5 + 113472A11K5 + 228288A12K5 +

306432A13K5+278208A14K5+167808A15K5+63072A16K5+12288A17K5+

352A18K5−192A19K5−192A7K6−2784A8K6−16384A9K6−53856A10K6−
111744A11K6−154560A12K6−145152A13K6−91584A14K6−37056A15K6−
8544A16K6 − 768A17K6 + 32A18K6 + 32A6K7 + 576A7K7 + 3744A8K7 +

13056A9K7 + 28224A10K7 + 40320A11K7 + 38976A12K7 + 25344A13K7 +

10656A14K7+2624A15K7+288A16K7−32A6K8−288A7K8−1152A8K8−
2688A9K8−4032A10K8−4032A11K8−2688A12K8−1152A13K8−288A14K8

−32A15K8−48A14L−288A15L−720A16L−960A17L−720A18L−288A19L−
48A20L−48A11KL−480A12KL−1680A13KL−2688A14KL−1680A15KL+

672A16KL+1680A17KL+960A18KL+192A19KL−48A9K2L−240A10K2L+

384A11K2L+4368A12K2L+10752A13K2L+12432A14K2L+6720A15K2L+

624A16K2L − 912A17K2L − 288A18K2L + 192A8K3L + 1488A9K3L +

3552A10K3L+1008A11K3L−9408A12K3L−17808A13K3L−14112A14K3L−
4848A15K3L − 192A16K3L + 192A17K3L − 288A7K4L − 2592A8K4L −
8448A9K4L−12432A10K4L−6048A11K4L+5712A12K4L+9408A13K4L+

4752A14K4L + 768A15K4L − 48A16K4L + 192A6K5L + 1968A7K5L +

7392A8K5L+13776A9K5L+13440A10K5L+5712A11K5L− 672A12K5L−
1488A13K5L−384A14K5L−48A5K6L−624A6K6L−2688A7K6L−5712A8K6L−
6720A9K6L − 4368A10K6L − 1344A11K6L − 48A12K6L + 48A13K6L +

48A5K7L+288A6K7L+720A7K7L+960A8K7L+720A9K7L+288A10K7L+

48A11K7L−A9L4 − 4A7KL4 − 6A5K2L4 − 4A3K3L4 −AK4L4 +A8L4m+

A9L4m+4A6KL4m+4A7KL4m+6A4K2L4m+6A5K2L4m+4A2K3L4m+
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4A3K3L4m+K4L4m+AK4L4m)/(32A2(1 +A)2(A−K)2(A2 +K)3L3)

The numerator of η2 is linear in the parameter m and defines
implicitly a value of m being one of the zeros of η2. This results in
(14)
m = A/(1 +A)− 32A6(1 +A)8(A−K)6(A3 +K + 3AK −K2)/

(A2+K)4L4+ 48A5(1+A)5(A−K)4(A3+K+3AK−K2)/
(A2+K)3L3.

With the restrictions of the parameters K and A (and looking at
Figure 2), in order to obtain a numerical simulation, we can choose the
numerical values K = 1, A = 1

3 . Then the expression of m is reduced
to

m = 1/4− 234881024/(8968066875L4) + 917504/(7381125L3).

Since L ∈ R+ and m ≈ 1
4 < 1

2 , for example, we can choose
values compatible with the model L = 1 and m ≈ 0.348. Now, as
m = m(A,K,L) is a continuous function in the parameter space, the
numerical simulation shows that, for certain values of the parameters,
there is an open set such that expression (14) will zero the focal value
η2. Hence the origin of system (12) is at least a weak focus of second
order.

With the Mathematica software, we can compute the third Lyapunov
focal value η3 of (12)

η3 = (−10a3
02a11+17a02a03a11−23a02a

3
11−10a2

02a12−3a03a12−23a2
11a12+

20a02a13 − 76a2
02a11a20 +13a03a11a20 − 23a3

11a20 − 46a02a12a20 +28a13a20 −
142a02a11a

2
20 − 64a12a

2
20 − 76a11a

3
20 + 4a11a22 − 90a2

02a30 − 45a03a30 −
77a2

11a30−234a02a20a30−228a2
20a30−20a3

02b02+34a02a03b02−159a02a
2
11b02−

105a11a12b02 − 132a022a20b02 +32a03a20b02 − 109a2
11a20b02 − 192a02a

2
20b02 −

24a3
20b02−16a22b02−287a11a30b02−350a02a11b

2
02−148a12b

2
02−144a11a20b

2
02−

392a30b
2
02 − 248a02b

3
02 +24a20b

3
02 − 13a2

02a11b11 +8a03a11b11 − 13a02a12b11 +

8a13b11−42a02a11a20b11−17a12a20b11−29a11a
2
20b11−75a02a30b11−87a20a30b11

− 16a2
02b02b11 + 19a03b02b11 + 27a2

11b02b11 + 28a02a20b02b11 + 96a2
20b02b11 +

101a11b
2
02b11 + 124b302b11 − 3a02a11b

2
11 − 3a12b

2
11 − 3a11a20b

2
11 − 9a30b

2
11 +

27a02b02b
2
11 + 370a20b02b

2
11 − b02b

3
11 − 3a02a11b12 − 3a12b12 − 7a11a20b12 −

21a30b12 − 46a02b02b12 − 40a20b02b12 + 23b02b11b12 − 36b02b13)/192

where the coefficients are obtained from (13) and from the expression
(14) of the parameter m. The focal value η3 is an expression too large
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to be present here. However, if we use the previous numerical data,
we can show that the graph corresponding to the numerator of η3 as a
function of the parameter L is as shown in Figure 3.

L

η3

••
1.050.95

−20

20

FIGURE 3.

Then, in an open set of the parameter space, there are values of
parameters K,A,L with m < 1

3 such that η2 and η3 vanish simultane-
ously. Then the origin of (12) is at least a weak focus of order 3.

To investigate a higher weakness, it is necessary to compute η4.
Again, using Mathematica software, the focal value η4 is an expression
too large to be shown in this work. To calculate the Lyapunov focal
values, see [8].

The coefficient in terms of the parameter of the vector field are
obtained from (13) and (14).

However, if we use the previous values of the numerical simulation
K = 1 and A = 1

3 , the graph of η4 as a function only of the parameter
L, compared with Figure 3, is shown as in Figure 4. Both graphs are
locally transverse to the axis L, and the behavior will be stable under
small perturbations.

L

η3

η3

η4

η4

•
•

≈ 1.01955

FIGURE 4.

The values of the numerical simulation are:



A PREDATOR-PREY SYSTEM 2071

i) L ≈ 0.209412 ⇒ η3|L ≈ 0 and η4|L < 0
ii) L ≈ 1.01955 ⇒ η3|L ≈ 0 and η4|L > 0.

Thus, for case (ii), there is a neighborhood in the parameter space
such that the origin is a repelling weak focus of order 4. �

Proof of Lemma 2.3. We consider system (7) and the triangle RK1,c

defined above. The straight line l : y = c(K1 − x) is part of the border
of RK1,c, where K1, c > 0. The gradient of vector field Zη on the
straight line l corresponds to

∇l = c
∂

∂x
+

∂

∂y
.

The inner product ⟨Zη,∇l⟩|l is given by

⟨Zη,∇l⟩
∣∣∣
l
= −(Ace(K1−x)((1+A)Bm−(1+B2)c(A(−1+m)+m)

× (K1−x)+(1+A)Bc2m(K1−x)2+(1+A)B(−1+m)x

− (1 +B2)c(A(−1 +m) +m)(K1 − x)x

+ (1 +A)Bc2(−1 +m)(K1 − x)2x))

+ (1 +A)c(1 + c2(K1 − x)2)

× (ABiK +AB(−i+K + iK)x

+ (1 +A)c(A+ i)(A−K)(K1 − x)x

+AB(−1− i+K)x2 −ABx3).

The previous expression is a cubic polynomial in the parameter
c, where the coefficient of the cubic term is given by: coef (c3) =
c(1 + A)2(A + i)(A − K)(K1 − x)3x. Since A < K, K < K1 and
x < K1 in the triangle, for large values of the parameter c, we have
⟨Zη,∇l⟩|l < 0.

From (5), we see that the vector field crosses the axis x = 0
transversally in the positive sense with respect to the coordinates
system. Finally the positive axis y = 0 is a straight line invariant of
the vector field. This shows that the compact region RK1,c containing
the singularity (A,B) is an invariant set of vector field (7). �
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Proof of Theorem 2.4. Recall that the vector field (7) has the form

Zη(x, y) = (1 +A)(1 + y2)P (x, y)
∂

∂x
−AeyQ(x, y)

∂

∂y
,

where

P (x, y) = AB(K − x)(1 + x)(i+ x) + (1 +A)(A+ i)(A−K)xy

and

Q(x, y) = (1 +A)B(m+ (−1 +m)x)(1 + y2)

− (1 +B2)(A(−1 +m) +m)(1 + x)y.

By Lemma 2.1, system (7) has a singularity at Ω. Considering the
numerical values B = 1, K = 1, A = 1

3 and L = 1, we have m ≈ 87
250 .

Then it is clear that the system zeros the factors P (x, y) and Q(x, y) of
the components of vector field (7) in Ω and P−1(0) ∩ Q−1(0) ∩ Ω ≈
{(0.714687, 0.410065)}. By the continuity of vector field (7) with
respect to the parameters, the numerical calculation shows that there is
a neighborhood in the parameter space such that the singularity (A,B)
is unique.

From (5), we have that the vector field crosses the axis x = 0
transversally in the positive sense with respect to the coordinate sys-
tem. The x-axis is invariant, and the origin of vector field (5) is not a
singularity.

By Lemma 2.1 (i), the singularity (K, 0) is a hyperbolic saddle.
By Lemma 2.2, the singularity (A,B) is a repelling weak focus of
order 4 and the omega limit set of the unstable manifold of the
singularity (K, 0) is contained in the invariant region guaranteed by
Lemma (2.3). Hence, by the Poincaré-Bendixson theorem, there is a
hyperbolic attracting limit cycle that encloses the singularity (A,B).
Now, by small perturbations of the vector field, we can change the
stability of the weak focus and then four Hopf infinitesimal hyperbolic
limit cycles will be created simultaneously enclosed by at least one
global stable limit cycle. Since the focus is now a hyperbolic attractor
fixed point, the first of the bifurcated limit cycle (and also the third) will
be repelling and the second and the fourth will be hyperbolic attracting
limit cycles. This, together with the global limit cycle shows that the
system supports five hyperbolic limit cycles, three of them being stable.
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This is a concrete example of an applied model with at least three stable
limit cycles, a question raised in [2, 4]. �
4. Discussion. Under the hypothesis of Theorem 2.4, the only

singularity (K, 0) in the invariant axis y = 0, x ≥ 0 is a hyperbolic
saddle with unstable manifold to the realistic quadrant where there is
no extinction phenomenon.

With the existence of three stable limit cycles, it follows that
the model depends on initial conditions and supports three possible
equilibrium periodic states.
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Valparáıso, Chile
Email address: eduardo.stange@uv.cl
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