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ABSTRACT. Ultrafilters are useful mathematical objects
having applications in nonstandard analysis, Ramsey theory,
Boolean algebra, topology and other areas of mathematics. In
this note, we provide a categorical construction of ultrafilters
in terms of the inverse limit of an inverse family of finite
partitions; this is an elementary and intuitive presentation of
a consequence of the profiniteness of Stone spaces. We then
apply this construction to answer a question of Rosinger in
the negative.

1. Introduction. It is well known that the category Stone of Stone
spaces with continuous maps is categorically equivalent to the pro-
completion of the category FinSet of finite sets (see [2, page 236]). We
illuminate this equivalence in the context of spaces of ultrafilters, in
an elementary setting which does not require topological methods. In
particular, we give an elementary construction of ultrafilter spaces as
an inverse limit, without resorting to Stone spaces or to the correspon-
dence between maximal ideals and ultrafilters. We then give a brief
application of this construction, answering a question of Rosinger [4]
in the negative.

2. Ultrafilters.

Definition. Let S be a set. An ultrafilter on S is a subset U of 2°,
the power set of S, such that:

(1) @ ¢u,

(2)AceU, ACB = Bel,
3)AeUU,Beld = ANBeU,
4)A¢U = S\Ael.
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We say that an ultrafilter is free if it contains no finite sets. It has
been shown (see, for example, [1, Form 63], [3, pages 145-146]) that

Theorem 1 (Free Ultrafilter theorem). If S is infinite, then there
exists a free ultrafilter on S.

The standard proof of Theorem 1, given in [3, pages 145-146],
considers, more generally, filters on S, i.e., subsets of 25 satisfying
Properties (1)—(3) from Definition 2. It proves via Zorn’s lemma that,
given any filter F, there exists an ultrafilter 4 O F. Taking F to be the
cofinite filter (the collection of all sets whose complements are finite)
gives Theorem 1.

Now, let Sets denote the category of sets, and let FP(S) C Sets
denote the set of finite partitions of a set S. Let FPS(S) C Sets denote
the set of finite partitions of subsets of S with the partial ordering
defined as follows: A’ < A if and only if for all D’ € A’, there exists
a unique D € A such that D’ C D, i.e.,, A’ is a subset of a (possibly
trivial) refinement of A. This turns FPS(S) into an inverse family
with morphisms

{ara: AT < A},
where YA+ A is defined by

Yan:AeN+— BeAst. ACB.
The following property of ultrafilters will be useful:

Lemma 2. Let U be an ultrafilter on S, and let A € FP(S). Then
there exists a unique D € A such that D € U.

Proof. Assume to the contrary that no such D exists. Then S\ D € U
for each D € A. Hence their intersection,

(] S\D=g,

DeA

is in U by Property 3 of Definition 2, which contradicts Property 1 of
Definition 2; that is, the empty set cannot be in I.
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Now, assume that D, D’ € A are both in Y. Then DND' = & €
U-again, a contradiction. ]

3. The inverse limit. We require one additional definition, which
is central to our categorical approach to ultrafilters:

Definition. The inverse limit of an inverse family (X;, f;;) in a cat-
egory C is the universal object X (unique up to a unique isomorphism)
equipped with arrows m; : X — X; with m; = f;; om;. That is, X is
such that for any Y € Ob(C) and collection of maps u; : ¥ — X; such
that u; = f;; ou; for all f;;, there exists a unique u : ¥ — X such that
the diagram

Y

|
(K%

Ui

|
X

g
fij

X; X,

J

commutes for all f;;.

For an inverse family (Xj, f;;) in Sets, the inverse limit can be
explicitly constructed as

(1) @Xz = {(az) S HXZ M aj = f”(az) fOI‘ all fij};
which may, in some cases, be empty.

4. Our categorical construction. We may now give categorical
interpretations of both the set of free ultrafilters and the set of all
ultrafilters over a set I. In particular, consider the function Big :
FP(I) — FPS(I) given by

Big: A — {D € A : D is infinite}.

Then we have the following theorem:
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Theorem 3. The set of free ultrafilters on I is in canonical bijection
with
@ Big (A).
AeFP(I)

Furthermore, the set of all ultrafilters on I is in canonical bijection with

lim A.
F
AEFP(I)

Proof. We prove the second claim above; the first follows analogously.
We claim that each ultrafilter induces a unique element of the inverse
limit by the mapping

@:U»—)(AHU)AG}-p(I) S @ A,
AEFP(I)

where
im AcS ] a
A€FP(I) AcFP(I)
We first check that any element of the image of the above map is in
the inverse limit, as claimed. First, note that for all A € FP(I),
A NU is a singleton by Lemma 2, so ®(I) is indeed an element of

[Taerpn A To see that ®(U) is in @Aeﬂ?u) A, we check that ®(U)

satisfies the conditions of the construction in equation (1) of Section 3.
In particular, we have that for all YA A with A" <A,

UNA' C TﬁAI’A(U N A/),

so Yar,A(UNA") € U by Property 2 of Definition 2. But, by definition,
YaralUUNA) e A, soUNA =1 a(UNA), as desired (as each set
contains a single element). So we have that

oU)e lim A.
%
AeFP(I)

We claim that ® is the desired canonical bijection. To see that this
map is injective, consider ultrafilters U,U’ with ®(U) = ®(U’'). Note
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that for each A € U, we may take the partition Ay = {A, I\ A}; then,
as ®(U) = ®(U'), we must have U'NA 4 = A. Thus, AeU',sold CU'.
The reverse inclusion follows identically, so U = U'.

We now show that ® is surjective. Choose a tuple (aa) € @A; we
claim that the set

U={aa: A€ FPI)}

is an ultrafilter and that ®(U) = (aa). To check that U is an ultrafilter,
we verify the four definitional properties.

(1) @ ¢ U: The empty set is not an element of any partition A.

(2) A e U, AcCc B = B € U: Consider the partitions
A; ={B,I\ B} and Ay = {A,B\ A, I\ B}. Noting that A = aa,, we
have Ay < Ay and thus aa, = ¥, a,(A) = B. So B € U, as desired.

(3 Ae U, BeU = AnNnB € U: Consider the partitions
Ay = {AvI\A}a Ay = {BaI\B}a A = {AﬂB,A\B,B\A,I\(AUB)}
We have that Ag S Al,AQ, SO ¢A3,A1(G‘A3) = A, wAg,Az(aAg) = B.
But then ap, = ANB,so ANBeU.

(4) A¢U = I\AcU: Let A={A, I\ A}. Then at least one of
A, I\ A (namely, an) is in U. Since it is not A by assumption, it must
be I'\ A.

Clearly, ®(U) = (aa), by construction, so ® is bijective.

An identical proof gives the first claim, as we never use the cardinality
of the sets involved. That is, the restriction by Big guarantees that all
the elements of each (aa) are infinite; there is always at least one
infinite element in any finite partition of an infinite set (on finite sets,
the inverse limit will indeed be empty, as there are no free ultrafilters
on finite sets), by the pigeonhole principle. O

5. A concrete example. As an application of our results on
ultrafilters, we note an interesting corollary:

Theorem 4. Consider a function f : I — X, where I is an infinite
indezing set. For A € FP(X), let A(f) denote the set

A(f) :=={D € A : f~Y(D) is infinite}.
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Then
lm A(f) # .

AEFP
Proof. For A € FP(X), let
FTHA) ={f"1(D): D € A}.

Note that every partition in FP(I) admits a representation in this
fashion. Then any free ultrafilter & on I gives an element of the inverse
limit above, e.g.,

(DeA:f'(D)e U)acrp(x),

which is an element of the inverse limit precisely by the argument in
Section 4, above. ]

Corollary 5. Let X be a set and T : X — X a function. For
A e FP(X), let

Alz):={D e A:{neN:T"(x) € D} is infinite}.
Then for each © € X, we have

££n Az) £ 2.
AEFP(X)

Proof. Fixing x, we may take I = N and f : n — T™(z) in Theorem 4.
The result follows immediately. O

Corollary 5 negatively answers the conjecture Rosinger posed in [4].
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