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ASYMPTOTIC BEHAVIOR OF SINGULAR VALUES OF 
CONVOLUTION OPERATORS 

V. FABER a n d G. MILTON WING 

1. Introduction. In [1] a study was made of the singular values and 
singular functions of the convolution operator 

(1.1) K • = V K(x - y) • dy, 0 £ * g 1, 

under the condition that K(u) is reasonably smooth and K(0) ^ 0. Asymp­
totic estimates of the singular functions and values were obtained. A 
somewhat heuristic argument was made to suggest that quite different 
behaviors are to be expected in the event that K(0) = 0. 

In this paper we treat the case 

(1.2) K(u) = u»k{u\ 0 S u S 1, 

where n is a positive integer, k{u) e Cn [0, 1], and k(0) # 0. We are unable 
to obtain asymptotic estimates for the singular functions, but we do ob­
tain such results for the singular values. This is done by showing that the 
singular values of K(u) and those of k(Q) un differ little for large indices. 

2. Some preliminaries. It is shown in [1] that instead of studying the 
nonsymmetric operator K we may confine our attention to the symmetric 
operator 

(2.1) K • = P K(x + y - 1) • dy, 0 g x g> 1. 
J l-x 

The singular values of K are just the absolute values of the eigenvalues of 
K. It is also convenient to assume 

(2.2) *(0) = 1. 

The "comparison operator" now becomes 

(2.3) Kn • = fl Kn(x + y-\).dy9 

with 

Received by the editors on October 2, 1984. 

Copyright © 1986 Rocky Mountain Mathematics Consortium 

567 



568 V. FABER AND G. M. WING 

(2.4) Kn(u) = M», 0 | M g l . 

We denote the eigenvalues of AT„ by ^ ; . (There is no need to exhibit the 
index n). 

THEOREM 1. There exists a constant A, dependent on n, such that 

(2-5) | ^ | = . ^ ( i + 0 ( ^ 

PROOF. In order to avoid interrupting the basic chain of reasoning, we 
postpone this proof until §4. 

3. The principal results. Let X;- be the eigenvalues of K (see (2.1)). Write 

(3.1) K(x + y- 1) = (* + >>- \)» + (x + y - \)»{k(x + y - 1) - 1}. 

The last term in (3.1) is the kernel of a symmetric operator whose eigen­
values we denote by Oj. Then (see [2]) 

(3.2) \l,\ <, 1̂ 1 + \ap\, j=p + q - \ . 

Here we follow the convention that all eigenvalues are indexed according 
to decreasing absolute value. 

From (2.5) we get 

(3-3) l^-^r(i+o(£))+l*>l-

Recall that ap is associated with the kernel 

(3.4) R{u) = un{k{u) - 1), 0 g u g 1. 

Then, because k(u) e Cn [0, 1], 

(3.5) -~^ R{u) = nl(k(u) - 1) + Bxu k'{u) + • • • + Bnu»k^(u). 

Here the B/s are easily calculated constants. Because k(0) = 1 (see (2.2)), 
we have 

(3.6) ir^°) = °-
Clearly, for j < n. 

(3.7) SUM = 0. 
dw 

Now we extend R(u) so that R(u) = 0, u < 0. Thus 

(3.8) fl R{x + y - 1) • dy = f * R(x + y - 1) • dy. 
Jl-x J0 
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The extended R{x + y — 1) is « times continuously differentiable with 
respect to x on the square, 0 ^ x, y ^ 1. By a known result (see [3]) the 
eigenvalues of R satisfy 

(3-9) Wp\ < -^kn, 

where ep -> 0. We rewrite (3.3) as 

(3.10) U,| ̂  ^ r (l + D(±)) + -Jfa, j = P + q - l . 

We now select 

(3.11) P = Usl q=j+l -lJsl 

where the square bracket means "largest integer in." As yet, s is unspe­
cified, although we require 0 < s < 1. Because interest lies in large j and 

(3.12) [js] = ocjjs, a; -+ 1 asy -> oo, 

we shall simplify notation by simply writing j s for [j5]. 
Now write 

(3.13) \Xi\-^zA(jLr-1lLr) + 1&ri +0(-J^)=/{. 

We attempt to find the largest t such that j 1 R -* 0 as j -* oo. This 

implies (see (3.11) and (3.12)) 

To guarantee proper behavior of the second term in (3.14), we require 

(3.15) t£s(n+ty 

and the third term implies that we need 

(3.16) t < n + 3. 

(Recall that we require 0 < s < 1.) Observe that if (3.15) holds, then 
(3.16) does also. 

To examine the first term of (3.14) we write 
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<3I7) --M**^)* "&=*). 
Thus 

n m /*/ 1 _ _ L \ - - (" + 0 + 0( i ^ 
VJ-10; y 1(7+ 1 ~y s ) " + 1 7"+1 J jn+2s-t ^ ^yp^s + n-t J' 

If we require 

(3.19) / + 5 < « + 2, 

then the expression in (3.18) approaches zero. Conditions (3.15) and (3.19) 
are both satisfied if and only if 

(3.20) t < n + 1 + 1 

2/7 + 5 

(Note that this choice gives 0 < s < 1.) From (3.13), (3.14), and (3.20) 
we conclude that 

(3.21) Urn i\Xj\ - -^ l /»+ 1 + 1 / 2 (»+ 3 > ^ 0. 
j-+oo { J ) 

We now wish to reverse the inequality in (3.21). Write 

(3.22) (x + y-\)»=(x + y-\)"k(x + y-\) + (x + y-l)»{\-k(x+y-\)} 

and obtain 

(3.23) 

(3-24) ^ - - U,| g ̂ ( -^r - j ^ r ) + -^fer + °{j^r) = *• 

Now, precisely the arguments employed in obtaining (3.21) show that, 
for t as in (3.20), 

(3.25) lim y R = 0. 
y-*oo 

From (3.11) we note that 

(3.26) lim q/j= 1. 
j—*oo 

Therefore 
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(3.27) IIS q< { -£r - U,|l = Mq'R=llrn (-*-)'(/' it} = 0. 
q-*oo { q ) q->oo q-*oo \ J / \ J 

Upon combining (3.21) and (3.27) we obtain our desired estimate. 

THEOREM 2. Let K(u) = unk(u), k(0) = 1, and k{u) e Cn [0, 1]. Then the 
singular values \Xj\ of the operator K defined by (1.1) satisfy 

(3.28) | ^ _ - Wy|j^£/y-(i.+i+i/2(i.+3))> 

where e}- -» 0 and A is a known constant dependent upon n. 
It is interesting to compare this result with that in [1] where n was zero 

and k(u) was slightly more restricted. There it was found that 

(3.29) W-jj^Ty^(j,) = ^ - + o(±). 

Clearly the result obtained from (3.28) with n = 0 is much less satis­
factory. This suggests that (3.28) can be improved, especially if additional 
hypotheses are imposed on k(u). The approach employed in [1] was com­
pletely different (and considerably more subtle) than the methods of this 
paper. 

4. The Proof of Theorem 1. We propose to calculate the eigenvalues 
of K„. Write 

(4.1) pt^jix) = f' (x + y- 1)« My)dy. 
J l-x 

Differentiation gives 

juj(f>f(x) = n(n - 1) • • • (n - k + 1) fl (x + y- 1)--* My)dy, 
(4.2) J i-x 

k = 1,2, ••• ,/!. 

Note that 

(4.3) #»(0) = 0, k = 0, 1, 2, ••• ,/*, 

and that 

(4.4) M W W = « ! [ ! MjOrfV-
J 1-X 

Thus 

(4.5) ^" + 1 >(x) = n!^{l - x ) 

and 

(4.6) (i,<l>f+»(x) = nl(- l)*"1 0j*-»(l - x), * = 1, 2, . . . , n. 
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From (4.3) we find 

(4.7) fij<f><)n+k)(\) = n\{ - I )*" 1 <j>?~l) (0) = 0, k = 1, 2, . . . , n. 

Differentiating (4.6) once more gives 

(4.8) / # f + 1 ) M = » ! ( - D" ftrfPil ~ x) 

so that 

(4.9) fiffln+1)(D = 0. 

A final differentiation of (4.8) followed by use of (4.5) yields 

(4.10) fj?rff*+2\x) = nl(- 1)"+ 1 fij$n+1)(l -x) = (n\)2(- 1)"+ 1 <f>j(x). 

Summarizing, if JLLJ # 0 and <j)j{x) are eigenvalues and eigenfunctions of 
Kn, then 

(4.11a) <f>?n+2)(x) + ( - l)"+2(n\)2 juj(f>j(x) = 0, 

(4.11b) ^ = i » 

(4.11c) $*>(0) = 0 , A: = 0, 1, 2, . . . , /i , 

(4.1 Id) $» (1 ) = 0, A: = « + 1, * + 2, . . . , 2/i + 1. 

It must be noted that the system (4.11) may have eigenvalues that do 
not belong to Kn, a matter that we shall address shortly. It is shown in 
[4] that the eigenvalues fa of (4.11) satisfy 

(4.12) \juj\1/2(n+l) = MJ + o(X\ 

where the Mn are constants given explicitly in [4]. We obtain at once 

(4.13) ^ = ^ ( x + o(±). 

We must now show that every eigenvalue of (4.11) corresponds to one 
of Kn. From (4.11a, b) 

$ P (x + z - \)» &2n+2\x) dx 

( 4 1 4 ) = (/i!)2(- 1)»+1 P (x + z - \)n fax) dx 
J l-x 
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If we integrate the left side of (4.14) by parts (n + 1) times and use (4.11 d), 
we find 

(4.15) (-\Yti)n\<t>^\\ - z) = (*!)*(-1)^1*,,^. 

Next apply Kn to both sides of (4.15): 

- A- f (x + z - \)n 6(n+l)(\ - z)dz 
n\ Ji-x 

< 4 1 6 ) 

fi. J 0 

Integrating the last integral by parts (n + 1) times and using (4.11c) 
produces 

(4.17) iifyjix) = Kl<j>j(x). 

Thus fi) is an eigenvalue of K2
n. Because Kn is symmetric, it follows (see 

[5]) that either JLLJ or ( — //>) is an eigenvalue of Kn, and so \/uj\ is a singular 
value of K. 

Finally, we must show that no eigenvalue of Kn can be zero, an assump­
tion made in deriving (4.11). Suppose for some 0 ^ 0 , 

(4.18) T (x + y - \)n<J>(y)dy = 0 . 
J l-x 

Differentiating (4.18) (« + 1) times yields 

(4.19) cjj(\ - x) = 0, 0 S x ^ 1, 

a contradiction. 
This completes the proof of Theorem 1. 

5. Summary and remarks. We have shown that when K(u) = unk(u), 
k(0) ^ 0, k(u) 6 Cn [0, 1], the singular values U ;| of the operator 

(5.1) K. =^K(x-y)-dy 

behave asymptomatically like A/jn+l. Roughly speaking, the behavior of 
K(u) near u = 0 is all important in determining the behavior of the sin­
gular values of K. This has very important implications when one is inter­
ested in the approximate solution of convolution type integral equations 
of the first kind. 

All efforts to obtain analogous results for the singular functions of such 
operators have failed. Numerical studies suggest strongly that these func­
tions are basically sinusoidal except near the interval end points. A proof 
would be most welcome. 
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Extension of the present results to non-integer values of n seems pos­
sible, but depends on material in a forth coming paper [6]. 
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