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MINIMAL UNIFORM CONVERGENCE SPACES
D. C. KENT AND R. J. GAZIK

ABSTRACT. In this paper the study of minimal P uniform con-
vergence spaces is initiated by investigating minimal Hausdorff uni-
form convergence spaces and minimal uniformly regular uniform
convergence spaces.

1. Introduction. Minimal P and P-closed topological spaces have
been of interest for some time (see [1]). In [5] these concepts were in-
troduced into the setting of convergence spaces and have been studied
further in [6]. Our object here is to investigate minimal Hausdorff and
minimal uniformly regular uniform convergence spaces and their rela-
tionships with their induced convergence structures.

Notions not explicitly mentioned here are standard and may be found
in [2] or [3]. In particular, a uniform convergence structure (hereafter
abbreviated u.c.s.) is taken in the sense of [2]. One other abbreviation is
employed, namely "u.f." for "ultrafilter." If X is a set, a filter 4> on
X X X is ^-symmetric if it has a base of sets A, each of which is sym-
metric and contains the diagonal A in X X X. Each u.c.s. has a base of
A-symmetric filters. A u.c.s. / is a pseudo uniformity if a filter is in /
whenever each refining u.f. is in !, and is uniformly regular if it is
Hausdorff and cl <I> E I whenever O G I. Here, the closure is taken in
the product space. If q is a convergence structure on X, [q] is the col-
lection of all u.c.s.'s on X X X which induce q. For each Hausdorff q
there is a coarsest member of [q], IQ, called the coarse u.c.s. relative to
q. This structure is studied in [4] where the following are established.

PROPOSITION 1.1. If q is Hausdorff, then IQ is generated by all ^-sym-
metric filters $ which have the following property: ^(^r) —*• x whenever
^^x.

PROPOSITION 1.2. If q is Hausdorff, then lq is uniformly regular if and
only if q is a regular topology.

If P is a property of u.c.s/s, / is minimal P if I has property P and no
strictly coarser u.c.s. has property P. In §2 we characterize the min-
imal Hausdorff u.c.s/s as those which are compact, Hausdorff, pseudo
uniformities, and show that the correspondence q-+Iq is one-one be-
tween the class of minimal Hausdorff convergence structures and the
class of minimal Hausdorff u.c.s/s.
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Minimal uniform regularity is much more difficult. In §4 we show
that a minimal uniformly regular u.c.s. I need not be coarse and need
not induce a minimal regular convergence structure. However, if I is
minimal uniformly regular and totally bounded, then / is coarse, and
the structure induced by a coarse minimal uniformly regular u.c.s. is
characterized as being a semi-minimal regular topological space.

2. Minimal Hausdorff u.c.s/s. We will employ the following lemmas.

LEMMA 2.1. Let X be a set and suppose that the composition Al ° A2

of two filters Aj and A2 on X X X exists. Also assume A = Ax ° A2,
where A is an u.f. Then there are u.f.'s 2j ^ Aj and 22 ^ A2 such
that A ^ 2X o 22.

PROOF. The set (2 : 2 i^ A1? A ^ 2 ° A2}, ordered by inclusion, has
a maximal element, say 21? by an application of Zorn's Lemma. We
shall first show that 2X is an u.f..

Let A U B G 2lf and suppose A $ 2X and B $ 2r Let 2^ be the
filter generated by { A n S : S e 2 1 } , and 2B the filter generated by
{B H S : S G 2X}. Under the assumptions A $ ^,l and B $ 219 both
2^ and 2B are well-defined, and 2^ > 2X ^ Ax and 2S > 2j ^ Ax

both hold. Thus, in order to contradict the maximality of 21? it remains
only to show that either A = 2^ ° A2 or A = 2B ° A2.

Suppose, on the contrary, that both of the preceding inequalities are
false. Then there are sets S1? S2 in 2X and Ll9 L2 in A2 such that (A
H SA) o Lj and (B n S2) ° L2 are not in A. Letting S = Sj n S2 and
L = Ll PI L2, and using the fact that A is an u.f., we have
((A H S) o L) U ((B H S) o L) = ((A U B) n S) o L<£ A. But this is a
contradiction, since (A U B) H S G 21? and it follows that 2j is an u.f.

The conclusion of the lemma now follows by applying a similar argu-
ment to the set (2 : 2 ^ A2, A ^ 2X ° 2}.

LEMMA 2.2. Let A be a filter on X X X, ^ a filter on X such that
A(5H exists. Let $ be a u.f. on X such that $ ^ A(^). Then there are
u.f.'s ^^\and3r^?~ such that £ ^

PROOF. The proof is similar to that of Lemma 2.1 and is omitted.

LEMMA 2.3. Suppose O e /, la Hausdorff u.c.s., and O — > (x, y).
Then x = y.

PROOF. If plt p2 are the projection maps, p^ ^ ^i(*), p2^ — *2(#)
for some ^f

1, ^2 e /. A simple computation shows that
x X y > ^i"1 ° O o ̂ 2, so x X y E /, and x = t/ follows since I is
Hausdorff.
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LEMMA 2.4. Let I be a u.c.s., &~ a Cauchy filter, O a ^-symmetric
member of I. Then ^(^r) is a Cauchy filter equivalent to Jr.

PROOF. 3~ ^ 0(^0 and O(^) x O^) ^ O oj^ x ^" • * e I
Thus ^(^r) is Cauchy and clearly equivalent to Jr.

PROPOSITION 2.5. If I is minimal Hausdorff and I E [9], tfien g is
compact.

PROOF. It is clear that I = IQ. Suppose 3^ is a non-convergent u.f..
Let y E X and define p to be the finest pseudo topology which satisfies
the following conditions:

(1) &~ —* x relative to p if and only if ̂  —» x relative to qr, x ^ t/.
(2) ^~ —» t/ relative to p if and only if ^ —»t / relative to q or else

^ ^ ^, ^ an IQ Cauchy filter equivalent to 20*.
Notice that p is Hausdorff, for if not we have &~ —> x relative to q,

x =£ y, J^~ V $ exists where & is an Iq Cauchy filter equivalent to 20*.
But then ^~ A $ is Cauchy, and hence ^ —*•x relative to 9. This con-
tradicts the fact that $ is equivalent to 2P.

Next it is asserted that Ip < 1Q. If <I> is A-symmetric in IQ, let ^ —> x
relative to p. Now if J*" —> x relative to q, then O(Jr) —> x relative to g
by Proposition 1.1, and so $(^r)—>ac relative to p. On the other hand
suppose ^ —* y relative to p, where ^~ is an JQ Cauchy filter equiva-
lent to 2f. By Lemma 2.4, O^") is an IQ Cauchy filter which is equiv-
alent to 20*, and so O(Jr) —»t / relative to p. Our assertion now follows
by Proposition 1.1. Thus Ip < IQ = I, and Ip is Hausdorff, which con-
tradicts the minimality of /.

THEOREM 2.6. For a Hausdorff u.c.s. (X, /) the following are equiva-
lent: (a) (X, 7) is minimal Hausdorff;

(b) / is a compact, psuedo uniformity\
(c) Each uniformly continuous, one-one map of (X, /) onto a

Hausdorff u.c.s (Y, J) is a uniform homeomorphism.
PROOF, (a) implies (b). Define pi on X X X by requiring O E pi if

and only if each u.f. finer than O is in I. That pi is indeed a u.c.s. is
shown by Lemma 2.1. Clearly pi ^ I and pi is Hausdorff because it in-
duces the same convergence oh u.f.'s as does /. Hence p/ = / by min-
imality, and / is a pseudo uniformity. The fact that / is compact is a
consequence of Proposition 2.5. (b) implies (c). Suppose that / is a one-
one, uniformly continuous map onto a Hausdorff (Y, /). By assumption
it suffices to show that if (f X/)(A) E /, A an u.f., then A G/. Now
A —» (x, y) for some (x, y) EX X X by compactness, and
(f X /)A —> (f(x),/(i/)); hence /(x) = f(y) by Lemma 2.3. Thus x = y, and
A ^ pjA X p2A ^ (pxA x x) o (± x p2A) E /.

(c) implies (a). This is obvious.
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COROLLARY 2.7. The correspondence q — » IQ is one-one between the
class of all minimal Hausdorff convergence structures and the class of
all minimal Hausdorff u.c.s. 's.

PROOF. If q is minimal Hausdorff, then it is a compact, pseudo topo-
logy by [5]; hence IQ is compact. To show that IQ is a pseudo unifor-
mity suppose ^~ — » x implies A(F~) — » x for each u.f. A finer than 4>.
By Lemma 2.2, if ̂  ^ O(^),^ an u.f., then^ ^ A#) for u.f.'s A i= <D
andr^ '^3r. Since q is a pseudo topology, O(F")-» x and so O E/q by
Proposition 1.1. By Theorem 2.6, IQ is minimal Hausdorff. The remain-
der of the Corollary is clear. The next result will be used below as well
as in §4.

PROPOSITION 2.8. Let (X, I) be a u.c.s., O ^-symmetric in I, ^~ a filter
on X. Then ̂  and <b(j?~) have the same adherent points.

PROOF. Let x be an adherent point of O(5r). There is an u.f.
$ i^ O^) such that $ — > x. A slight variation of Lemma 2.2 shows
that there is an u.f. %f ^&~ such that 3 ^ Q(3f). It can be shown that
« ^ X ^ > O ° ^ X ^ ° O e l ; thus 2#" is Cauchy. Also,
tf X 3P > 3f X Zf ° $ o ̂  X -^ G /, and so J? and ^ are equiva-
lent Cauchy filters. Thus <^ — » x, and x is an adherent point of ̂  . The
remainder of the proposition is clear from the relation 3*~ i^

PROPOSITION 2.9. If I is a Hausdorff u.c.s., there is a minimal
Hausdorff u.c.s. / such that / ^ /.

PROOF. Let p be the convergence structure on X induced by I. Let
a E X, and define q on X as follows:

(a) If x ¥= a, then ^~ — » x relative to q if each u.f. finer than j/~ p-
converges to x.

(b) ^ —+ a relative to q if each u.f. finer than _^~ either p-converges
to a or else fails to p-converge.

From this construction, it is easy to see that q is minimal Hausdorff
and q ^ p. To complete the proof we will show that IQ ̂  I. Let O G /
and let j^~ — >x relative to 9. By Proposition 1.1, it suffices to show that
4>(^~) — * x relative to q.

First, assume x =£ a. Let ^ be an u.f., & ^ $(^"). By a variation of
Lemma 2.2, there is an u.f. 20* such that ^ ^ ^ and ̂  ^ *(3 )̂.
Then, since ^ -> x in (X, p), it follows that *(3 )̂ — x in (X, p). Thus,

> x in (X, q), and so ^^ x in (X, 9). From the definition of q,

Next, assume x = a, and let $ and 5^ be defined as above. If
— * a relative to p, then a repetition of the argument above leads to
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the conclusion that $(2f) — » a relative to q. If ffl does not p-converge,
then it follows by Proposition 2.8 that $(3^) has no p-adherent points,
and so, by construction of q, $(2^) — > a relative to q. Thus, $ — » a in
(X, q) for each u.f. 3 ^ *(^r); hence O^) -* a relative to q.

3. Minimal Uniformly Regular Spaces; General Results.

PROPOSITION 3.1. A minimal uniformly regular u.c.s. is a pseudo uni-
formity.

PROOF. If I is minimal uniformly regular, let pi be as defined in The-
orem 2.6. Let O G pi, and suppose A = clp/O, A an u.f. Since 7 and pi
agree on u.f.'s A = c!7O and we can find an u.f. 2 = O, such that
A = c!72. Then 2 E I by definition of pi, and c!72 E 7 by uniform
regularity. We have shown that each u.f. finer than clp/0 is in /, so pi
is uniformly regular, as it is clearly Hausdorff. It follows from min-
imality that I is a pseudo uniformity.

PROPOSITION 3.2. A compact, uniformly regular u.c.s. is minimal uni-
formly regular if and only if it is a psuedo uniformity.

PROOF. A compact, uniformly regular, pseudo uniformity is minimal
Hausdorff by Theorem 2.6, hence minimal uniformly regular. The con-
verse is Proposition 3.1.

PROPOSITION 3.3. Let q be a minimal regular convergence structure, I
uniformly regular, I E [q]. Then there exists a minimal uniformly regu-
lar u.c.s. J such that J = I.

PROOF. Let £/ be the collection of all uniformly regular structures
which induce q. Let -& be a chain in &/ . Then inf -& is generated by all
finite compositions ^ ° • • • ° On, Oi E 7i? l{ E €-, and hence is gener-
ated by (O : O E 7, 7 E^} since -& is a chain. It follows easily that
inft^7 E [q] and that inf 7^ is uniformly regular. So j?/ has a minimal
member /. If K ^ /, K uniformly regular, then K E [q] by the min-
imality of q. Thus K = / and / is minimal unformly regular.

We now see that a minimal uniformly regular u.c.s. 7 need not be
coarse. In fact, if q is a minimal regular convergence structure which is
not a topology (see [5]), the fact that the fine u.c.s. for q is uniformly
regular and Proposition 3.3 shows that there is a minimal uniformly
regular / E[q]. But / ¥= IQ by Proposition 1.2. In the next section, by in-
vestigating minimal uniformly regular u.c.s/s which are coarse, we will
also see that not every minimal uniformly regular u.c.s. induces a min-
imal regular convergence structure.
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4. Totally Bounded Minimal Uniformly Regular Structures. In this
section it will be shown that a totally bounded, minimal uniformly
regular u.c.s. is coarse, and the topology induced by a minimal uni-
formly regular IQ will be characterized. From this we will see that a
minimal uniformly regular u.c.s. need not induce a minimal regular
convergence structure or a minimal regular topology. The following
lemma will be needed.

LEMMA 4.1. Let p be a Hausdorff pseudo topology, q a Hausdorff
convergence structure such that q = p and q — p on u.f.'s. Then
j > j
LQ — V

PROOF. Let O be A-symmetric in IQ, ^ —> x relative to p. If
<ty an u.f., let 3f be an u.f. such that W ^ ^ and
By assumption %f ^/-converges to x, so ̂  ^/-converges to x

by Proposition 1.1. Since p is a pseudo topology, O(^")—>ac relative to
p and O G Ip.

PROPOSITION 4.2. Suppose I is totally bounded, minimal uniformly
regular, I G [q]. Then I = IQ and q is a regular topology.

PROOF. By Proposition 0.3 of [4], q is a regular topology which
agrees, on u.f.'s, with \q, the topological modification of q. By Lemma
4.1, IX(7 = IQ = I and, by Proposition 1.2, !XQ is uniformly regular. Thus,

^ = '„ = *•
DEFINITION. Let q be a regular, Hausdorff topology on X. Then q is

semiminimal regular if, whenever p < q, p a regular Hausdorff topo-
logy, there exist u.f.'s 5^ & and x G X such that ^~, $ are not q-
convergent, ^ p-converges to x, $ does not p-converge to x.

Note that a minimal regular topology is obviously semi-minimal regu-
lar.

THEOREM 4.3. Let q be a Hausdorff convergence structure. Then IQ is
minimal uniformly regular if and only if q is a semi-minimal regular
topology.

PROOF. If IQ is minimal uniformly regular, then q is a regular,
Hausdorff topology by Proposition 4.2. Suppose p < q, p a regular
Hausdorff topology. Then Ip ^IQ so there is a A-symmetric <& G IQ — Ip.
This means that there is a filter ^r

l and a point x G X such that ^r
l p-

converges to x and ^(^\) does not p-converge to x. Let jT = ^r
1 be

an u.f. such that 0^) does not p-converge to x.
Notice that ^~ is not (/-convergent, for if *?~ q-converges to x (x is

the only possibility.), then O(^) ^-converges to x since $ G/g; thus
p-converges to x, which is a contradiction.
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Now some u.f. $ ^ <&(F~) must fail to p-converge to x. If $ q-
converges to some z, then ^~ has z as q-adherent point by Lemma 2.8.
Hence ^ has z as p-adherent point so z — x. But then $ p-converges to
x, a contradiction. In summary, we have u.f/s ^, ^, neither of which is
q-convergent, ^ p-converges to x, $ does not p-converge to x. So q is
semi-minimal regular.

Conversely, suppose that q is a semi-minimal regular topology. Then
IQ is uniformly regular. Assume I < 1Q, I uniformly regular, / G [p]. By
[7], IQ is totally bounded so I is totally bounded. Hence, by results of
[4] and Lemma 4.1, Xp is a regular Hausdorff topology and
IXp ^ I < IQ. By assumption there are u.f.'s ^~, $ and a point x E X,
such that ^~, c^ are not q-convergent, _^~ Xp-converges to x, $ does not
Xp-converge to x. From the characterization of IQ, $ x ^ E /0 so
e^ X T G IXp. Then ^ ^ ^ x 5r)(^r) — x relative to Xp, a con-
tradiction.

COROLLARY 4.4. Let (X, 9) fee a Hausdorff topologlcal space. Then [q]
contains a minimal uniformly regular u.c.s. if and only if q is semi-
minimal regular.

PROOF. This assertion follows immediately from Theorem 4.3 and
Theorem 1.5 of [4].

The following will be used to obtain a workable characterization of
semi-minimal regularity.

DEFINITION. A regular, Hausdorff topological space (X, q) is almost lo-
cally compact if there exists y G X such that the neighborhood filter at
x has a base of compact sets for x ¥= y.

The straightforward proofs of the next two lemmas are omitted.

LEMMA 4.5. Let (X, q) be a regular, Hausdorff topological space which
is not almost locally compact. If p < q, p a regular, Hausdorff topology,
then there is no point y E X such that each non-q-convergent u.f. p-
converges to y.

LEMMA 4.6. Let (X, q) be a regular, Hausdorff, almost locally compact
space which is not compact. Then there is a point y G X and a compact
topology p, p < q, such that each non-q-convergent u.f. p-converges to

I/-

THEOREM 4.7. A regular, Hausdorff topology is semi-minimal regular
if and only if it is either compact or not almost locally compact.
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THEOREM 4.7. A regular, Hausdorff topology is semi-minimal regular
if and only if it is either compact or not almost locally compact.

PROOF. If q is semi-minimal regular but not compact, then q is not
almost locally compact as a consequence of Lemma 4.6.

Conversely, if q is not almost locally compact, let p be a regular,
Hausdorff topology, p < q. There is an x E X and an u.f. ^ which p-
converges to x but does not ^-converge to x. By Lemma 4.5, there is a
non-g-convergent u.f. $ which does not p-converge to x. Hence q is
semi-minimal regular. The result follows from this and the obvious fact
that a compact, Hausdorff topology is semi-minimal regular.

COROLLARY 4.8. There is a minimal uniformly regular u.c.s. whose in-
duced convergence structure is neither minimal regular as a convergence
structure nor minimal regular as a topology.

PROOF. By Theorem 4.7, the usual topology q on the rationals is semi-
minimal regular so, by Theroem 4.3, IQ is minimal uniformly regular.
But it is clear from results of [1] and [5] that q is not minimal regular
as a topology or as a convergence structure.

CONCLUDING REMARKS. In the study of minimal uniform regularity, the
two most basic problems are the following:

(1) Characterize the u.c.s.'s / which are minimal uniformly regular;
(2) Characterize the convergence structures q such that [q] contains a

minimal uniformly regular member.
We have solved Problem (1) for the case when I is totally bounded

and Problem (2) for the case when q is a topology. Both problems re-
main unsolved in the general case.
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