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MINIMAL UNIFORM CONVERGENCE SPACES
D. C. KENT AND R. J. GAZIK

ABSTRACT. In this paper the study of minimal P uniform con-
vergence spaces is initiated by investigating minimal Hausdorff uni-
form convergence spaces and minimal uniformly regular uniform
convergence spaces.

1. Introduction. Minimal P and P-closed topological spaces have
been of interest for some time (see [1]). In [5] these concepts were in-
troduced into the setting of convergence spaces and have been studied
further in [6]. Our object here is to investigate minimal Hausdorff and
minimal uniformly regular uniform convergence spaces and their rela-
tionships with their induced convergence structures.

Notions not explicitly mentioned here are standard and may be found
in [2] or [3]. In particular, a uniform convergence structure (hereafter
abbreviated u.c.s.) is taken in the sense of [2]. One other abbreviation is
employed, namely “uf.” for “ultrafilter.” If X is a set, a filter ® on
X X X is A-symmetric if it has a base of sets A, each of which is sym-
metric and contains the diagonal A in X X X. Each u.c.s. has a base of
A-symmetric filters. A w.c.s. I is a pseudo uniformity if a filter is in I
whenever each refining uf. is in I, and is uniformly regular if it is
Hausdorff and cl ® € I whenever ® € I. Here, the closure is taken in
the product space. If ¢ is a convergence structure on X, [q] is the col-
lection of all u.c.s.’s on X X X which induce q. For each Hausdorff g
there is a coarsest member of [q], I, called the coarse u.c.s. relative to
g. This structure is studied in [4] where the following are established.

ProrosiTioN 1.1. If q is Hausdorff, then I, is generated by all A-sym-
metric filters ® which have the following property: ®(# ) — x whenever
¥ -

ProposiTioN 1.2. If q is Hausdorff, then 1, is uniformly regular if and
only if q is a regular topology.

If P is a property of u.cs.’s, I is minimal P if I has property P and no
strictly coarser u.cs. has property P. In §2 we characterize the min-
imal Hausdorff u.c.s.’s as those which are compact, Hausdorff, pseudo
uniformities, and show that the correspondence q — I, is one-one be-
tween the class of minimal Hausdorff convergence structures and the
class of minimal Hausdorff u.c.s.’s.
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Minimal uniform regularity is much more difficult. In §4 we show
that a minimal uniformly regular u.c.s. I need not be coarse and need
not induce a minimal regular convergence structure. However, if I is
minimal uniformly regular and totally bounded, then I is coarse, and
the structure induced by a coarse minimal uniformly regular u.c.s. is
characterized as being a semi-minimal regular topological space.

2. Minimal Hausdorff u.c.s.’s. We will employ the following lemmas.

LemMA 2.1. Let X be a set and suppose that the composition A; > A,
of two filters A, and A, on X X X exists. Also assume A = Ay - A,
where A is an u.f. Then there are uf.’s 2, = A, and =, = A, such
that A = 3,0 2,

Proor. The sei {£:3 Z A,, A = Z - A,}, ordered by inclusion, has
a maximal element, say =,, by an application of Zorn’s Lemma. We
shall first show that 3, is an u.f..

Let AU B € X, and suppose A ¢ =, and B §¢ 3,. Let 3, be the
filter generated by {A N S:S € Z,}, and 2, the filter generated by
{BN S:S € 2;}. Under the assumptions A ¢ 2, and B ¢ 3,, both
2, and 2, are well-defined, and £, > =, = A, and 3; > 3, = A,
both hold. Thus, in order to contradict the maximality of Z,, it remains
only to show that either A = 2,0 A, or A = 30 A,

Suppose, on the contrary, that both of the preceding inequalities are
false. Then there are sets S,, S, in 3, and L,, L, in A, such that (A
NS,)eL,and (BN S,) oL, are not in A. Letting S=S, NS, and
L=L,NL, and using the fact that A is an uf., we have
(ANS)eL)U(BNS)eL)y=(AUB)NS)-L& A. But this is a
contradiction, since (A U B) N S € 2, and it follows that =, is an u.f.

The conclusion of the lemma now follows by applying a similar argu-
ment to the set {2:3 = A,, A =3, - 3}.

LEMMA 2.2. Let A be a filter on X X X, ¥ a filter on X such that
A7) exists. Let 7 be a u.f. on X such that § Z A(¥ ). Then there are
uf'sE2ZAand# Z ¥ such that 9 = I(7).

Proor. The proof is similar to that of Lemma 2.1 and is omitted.

Lemma 2.3. Suppose ® € 1, 1 a Hausdorff u.c.s., and ®— (x, y).
Then x = y.

Proor. If p,, p, are the projection maps, p,® = ¥,(%), p,® = ¥,()
for some V¥,, ¥, €I A simple computation shows that
iX >V 1e®o¥, so iX§EIL and x =y follows since I is
Hausdorff.
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LemMma 2.4. Let I be a u.cs., ¥ a Cauchy filter, ® a A-symmetric
member of 1. Then ®(¥) is a Cauchy filter equivalent to.7 .

ProoF. ¥ Z O(F ) and (F ) X ®F) = ®-F X ¥ - O EL
Thus ®(¥") is Cauchy and clearly equivalent to 7 .

Prorosirion 2.5. If I is minimal Hausdorff and I € [q], then q is
compact.

Proor. It is clear that I = I,. Suppose 7 is a non-convergent u.f..
Let y € X and define p to be the finest pseudo topology which satisfies
the following conditions:

(1) # — x relative to p if and only if ¥ — x relative to q, x # y.

(2) ¥ — y relative to p if and only if ¥ — y relative to q or else
& Z &, ¥ an I, Cauchy filter equivalent to 7.

Notice that p is Hausdorff, for if not we have ¥ — x relative to q,
x#y,.¥ V J exists where 4 is an I, Cauchy filter equivalent to 7.
But then ¥ A Z is Cauchy, and hence ¢ — x relative to q. This con-
tradicts the fact that .¢ is equivalent to 57°.

Next it is asserted that I, <I,. If ® is A-symmetric in I, let ¥ —x
relative to p. Now if ¥ — x relative to g, then ®(¥ ) — x relative to g
by Proposition 1.1, and so (¥ ) — x relative to p. On the other hand
suppose # — y relative to p, where # is an I, Cauchy filter equiva-
lent to 57°. By Lemma 2.4, ®(¥ ) is an I, Cauchy filter which is equiv-
alent to 7, and so (¥ ) — y relative to p. Our assertion now follows
by Proposition 1.1. Thus I, < I, = I, and I, is Hausdorff, which con-
tradicts the minimality of L.

TueoreM 2.6. For a Hausdorff u.c.s. (X, I) the following are equiva-
lent:  (a) (X, I) is minimal Hausdorff;
(b) Iis a compact, psuedo uniformity;
(c) Each uniformly continuous, one-one map of (X, I) onto a
Hausdorff u.c.s (Y, ]) is a uniform homeomorphism.

Proor. (a) implies (b). Define pI on X X X by requiring ® € pl if
and only if each uf. finer than ® is in I. That pl is indeed a u.c.s. is
shown by Lemma 2.1. Clearly pI = I and plI is Hausdorff because it in-
duces the same convergence on u.f.’s as does 1. Hence pI = I by min-
imality, and I is a pseudo uniformity. The fact that I is compact is a
consequence of Proposition 2.5. (b) implies (c). Suppose that f is a one-
one, uniformly continuous map onto a Hausdorff (Y, J). By assumption
it suffices to show that if (f X f)(A) €J, A an uf., then A €L Now
A—(x,y) for some (x,y) EX X X by compactness, and
(f X HA — (f(x), fly)); hence f(x) = fly) by Lemma 2.3. Thus x = y, and
AZp A X pA=(pAXx)e (X pA) EL

(c) implies (a). This is obvious.
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CoroLLARY 2.7. The correspondence q— I, is one-one between the
class of all minimal Hausdorff convergence structures and the class of
all minimal Hausdorff u.c.s.’s.

Proor. If q is minimal Hausdorff, then it is a compact, pseudo topo-
logy by [5]; hence I, is compact. To show that I, is a pseudo unifor-
mity suppose .# — x implies A(¥ ) — x for each uf. A finer than ®.
By Lemma 2.2, if % = ®(% ), % an uf., then% = A{Y) for uf’s A = @
and.¢ =.% . Since q is a pseudo topology, ®(¥ ) — x and so ® €I, by
Proposition 1.1. By Theorem 2.6, I, is minimal Hausdorff. The remain-
der of the Corollary is clear. The next result will be used below as well
as in §4.

ProrosiTioN 2.8. Let (X, I) be a u.c.s., ® A-symmetric in I, ¥ a filter
on X. Then ¥ and ®(¥) have the same adherent points.

Proor. Let x be an adherent point of ®(¥). There is an uf.
4 = ®(¥) such that 4 — x. A slight variation of Lemma 2.2 shows
that there is an uf. 2#° = % such that 4 = ®(Z7°). It can be shown that
HXH >DPo G X Fo ®el; thus 2# is Cauchy. Also,
GXH>SH XH oPo:d x4 EIL and so 4 and 77 are equiva-
lent Cauchy filters. Thus 5#° — x, and x is an adherent point of .# . The
remainder of the proposition is clear from the relation. ¥ = ®(%).

Prorpostrion 2.9. If I is a Hausdorff u.c.s., there is a minimal
Hausdorff u.c.s. ] such that ] = L

Proor. Let p be the convergence structure on X induced by I. Let
a € X, and define g on X as follows:

(a) If x # a, then ¥ — x relative to q if each uf. finer than ¥ p-
converges to x.

(b) ¥ — a relative to q if each uf. finer than ¥ either p-converges
to a or else fails to p-converge.

From this construction, it is easy to see that q is minimal Hausdorff
and q = p. To complete the proof we will show that [, = I. Let ® € I
and let ¥ —x relative to q. By Proposition 1.1, it suffices to show that
O(¥# ) — x relative to q.

First, assume x # a. Let 4 be an uf, 4 = ®(%). By a variation of
Lemma 2.2, there is an uf. 27 such that 27 = ¥ and 4 = @)
Then, since 7° — x in (X, p), it follows that ®(#’) — x in (X, p). Thus,
&) —x in (X, q), and so ¢ —x in (X, g). From the definition of g,
O )—xin (X, q).

Next, assume x = a, and let # and 5#° be defined as above. If
7 — a relative to p, then a repetition of the argument above leads to
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the conclusion that ®(77°) — a relative to q. If 2#° does not p-converge,
then it follows by Proposition 2.8 that ®(77°) has no p-adherent points,
and so, by construction of q, ®(7#°) — a relative to q. Thus,.¥ —a in
(X, q) for each uf..¥ = ®(¥); hence O(¥ ) — a relative to q.

3. Minimal Uniformly Regular Spaces; General Results.

ProrosiTioN 3.1. A minimal uniformly regular u.c.s. is a pseudo uni-
formity.

Proor. If I is minimal uniformly regular, let pI be as defined in The-
orem 2.6. Let ® € pl, and suppose A = cl,/®, A an uf. Since I and pI
agree on uf’s A =cl,® and we can find an uf. = = &, such that
A = cl, 2. Then €I by definition of pI, and cl,2 € I by uniform
regularity. We have shown that each uf. finer than cl,/® is in I, so pl
is uniformly regular, as it is clearly Hausdorff. It follows from min-
imality that I is a pseudo uniformity.

ProposITION 3.2. A compact, uniformly regular u.c.s. is minimal uni-
formly regular if and only if it is a psuedo uniformity.

Proor. A compact, uniformly regular, pseudo uniformity is minimal
Hausdorff by Theorem 2.6, hence minimal uniformly regular. The con-
verse is Proposition 3.1.

ProposiTION 3.3. Let q be a minimal regular convergence structure, I
uniformly regular, 1 € [q]. Then there exists a minimal uniformly regu-
lar u.c.s. ] such that ] = I.

Proor. Let &/ be the collection of all uniformly regular structures
which induce g. Let € be a chain in %/. Then inf& is generated by all
finite compositions ®, o --- o ®,, ®, €I, I, €4; and hence is gener-
ated by {®:® €I, I €&} since ¢ is a chain. It follows easily that
inf¢ € [q] and that inf# is uniformly regular. So &/ has a minimal
member J. If K =], K uniformly regular, then K € [gq] by the min-
imality of q. Thus K = J and J is minimal unformly regular.

We now see that a minimal uniformly regular u.c.s. I need not be
coarse. In fact, if ¢ is a minimal regular convergence structure which is
not a topology (see [5]), the fact that the fine u.css. for g is uniformly
regular and Proposition 3.3 shows that there is a minimal uniformly
regular | €[q]. But J # I, by Proposition 1.2. In the next section, by in-
vestigating minimal uniformly regular u.c.s.’s which are coarse, we will
also see that not every minimal uniformly regular u.c.s. induces a min-
imal regular convergence structure.
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4. Totally Bounded Minimal Uniformly Regular Structures. In this
section it will be shown that a totally bounded, minimal uniformly
regular u.c.s. is coarse, and the topology induced by a minimal uni-
formly regular I, will be characterized. From this we will see that a
minimal uniformly regular u.cs. need not induce a minimal regular
convergence structure or a minimal regular topology. The following
lemma will be needed.

LemMa 4.1. Let p be a Hausdorff pseudo topology, q a Hausdorff
convergence structure such that q Zp and q=p on uf’s. Then

I,z 1,

Proor. Let ® be A-symmetric in I, ¥ — x relative to p. If
UzZ=0%), % an uf., let 7 be an uf. such that 27 = ¥ and
% = ®(7°). By assumption 2#° g-converges to x, so % q-converges to x
by Proposition 1.1. Since p is a pseudo topology, ®(¥ ) — x relative to
pand ® € I,

ProrosiTioN 4.2. Suppose I is totally bounded, minimal uniformly
regular, I € [q]. Then I = I, and q is a regular topology.

Proor. By Proposition 0.3 of [4], g is a regular topology which
agrees, on u.f’s, with Ag, the topological modification of q. By Lemma
4.1, I,, = I, = I and, by Proposition 1.2, I, is uniformly regular. Thus,
L,=I,=1

DEerFINITION. Let g be a regular, Hausdorff topology on X. Then q is
semiminimal regular if, whenever p < g, p a regular Hausdorff topo-
logy, there exist uf’s ¥, 4 and x € X such that ¥, -4 are not g-
convergent, ¥ p-converges to x,.¥ does not p-converge to x.

Note that a minimal regular topology is obviously semi-minimal regu-
lar.

TueoreM 4.3. Let q be a Hausdorff convergence structure. Then I, is
minimal uniformly regular if and only if q is a semi-minimal regular
topology.

Proor. If I, is minimal uniformly regular, then g is a regular,
Hausdorff topology by Proposition 4.2. Suppose p <gq, p a regular
Hausdorff topology. Then I, %I, so there is a A-symmetric ® € I, — L.
This means that there is a filter # | and a point x € X such that ¥ | p-
converges to x and ®(¥ ,) does not p-converge to x. Let ¥ = ¥ | be
an uf. such that ®(¥") does not p-converge to x.

Notice that ¥ is not g-convergent, for if ¥ g-converges to x (x is
the only possibility.), then ®(%) g-converges to x since ® €1I,; thus
®(#") p-converges to x, which is a contradiction.
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Now some uf. ¢ = ®(¥) must fail to p-converge to x. If 4 g-
converges to some z, then ¥ has z as g-adherent point by Lemma 2.8.
Hence ¥ has z as p-adherent point so z = x. But then % p-converges to
x, a contradiction. In summary, we have uf’s ¥, 4, neither of which is
g-convergent, ¥ p-converges to x, ¥ does not p-converge to x. So q is
semi-minimal regular.

Conversely, suppose that g is a semi-minimal regular topology. Then
I, is uniformly regular. Assume I < I, I uniformly regular, I € [p]. By
[7], I, is totally bounded so I is totally bounded. Hence, by results of
[4] and Lemma 4.1, Ap is a regular Hausdorff topology and
I,, = I < I, By assumption there are uf’s ¥, 4 and a point x € X,
such that ¥, 4 are not g-convergent, # Ap-converges to x, 7 does not
Ap-converge to x. From the characterization of I, 4 X ¥ € I, so
IXF €L, Then J=Z(J X F)¥)—x relative to Ap, a con-
tradiction.

CoroLLARY 4.4. Let (X, q) be a Hausdorff topological space. Then [q]
contains a minimal uniformly regular u.cs. if and only if q is semi-
minimal regular.

Proor. This assertion follows immediately from Theorem 4.3 and
Theorem 1.5 of [4].

The following will be used to obtain a workable characterization of
semi-minimal regularity.

DEeFiNITION. A regular, Hausdorff topological space (X, q) is almost lo-
cally compact if there exists y € X such that the neighborhood filter at
x has a base of compact sets for x #* y.

The straightforward proofs of the next two lemmas are omitted.

Lemma 4.5. Let (X, q) be a regular, Hausdorff topological space which
is not almost locally compact. If p < q, p a regular, Hausdorff topology,
then there is no point y € X such that each non-q-convergent u.f. p-
converges to Y.

LemMma 4.6. Let (X, q) be a regular, Hausdorff, almost locally compact
space which is not compact. Then there is a point y € X and a compact
topology p, p < q, such that each non-q-convergent u.f. p-converges to

y.

TueoreM 4.7. A regular, Hausdorff topology is semi-minimal regular
if and only if it is either compact or not almost locally compact.
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THEOREM 4.7. A regular, Hausdorff topology is semi-minimal regular
if and only if it is either compact or not almost locally compact.

Proor. If q is semi-minimal regular but not compact, then g is not
almost locally compact as a consequence of Lemma 4.6.

Conversely, if q is not almost locally compact, let p be a regular,
Hausdorff topology, p < q. There is an x € X and an uf. ¥ which p-
converges to x but does not g-converge to x. By Lemma 4.5, there is a
non-q-convergent uf. # which does not p-converge to x. Hence q is
semi-minimal regular. The result follows from this and the obvious fact
that a compact, Hausdorff topology is semi-minimal regular.

CoRroLLARY 4.8. There is a minimal uniformly regular u.c.s. whose in-
duced convergence structure is neither minimal regular as a convergence
structure nor minimal regular as a topology.

Proor. By Theorem 4.7, the usual topology g on the rationals is semi-
minimal regular so, by Theroem 4.3, I, is minimal uniformly regular.
But it is clear from results of [1] and [5] that q is not minimal regular
as a topology or as a convergence structure.

ConcLupING REMARKs. In the study of minimal uniform regularity, the
two most basic problems are the following:

(1) Characterize the u.c.s.’s I which are minimal uniformly regular;

(2) Characterize the convergence structures q such that [g] contains a
minimal uniformly regular member.

We have solved Problem (1) for the case when I is totally bounded
and Problem (2) for the case when q is a topology. Both problems re-
main unsolved in the general case.
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