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ARITHMETICAL RANK OF STRINGS AND CYCLES

KYOUKO KIMURA AND PAOLO MANTERO

ABSTRACT. Let R be a polynomial ring over a field K.
To a given squarefree monomial ideal I ⊂ R, one can asso-
ciate a hypergraph H(I). In this article, we prove that the
arithmetical rank of I is equal to the projective dimension of
R/I when H(I) is a string or a cycle hypergraph.

Introduction. Let R = K[x1, . . . , xn] be a polynomial ring over a
field K and I a squarefree monomial ideal of R. The arithmetical rank
of I, denoted by ara I, is defined as the minimum number u of elements
q1, . . . , qu ∈ R such that the equality√

(q1, . . . , qu) =
√
I (= I)

holds. When this is the case one says that q1, . . . , qu generate I up to
radical. Let G(I) denote the minimal set of monomial generators of I,
and set µ(I) = #G(I). Then ara I ≤ µ(I) holds. On the other hand,
Lyubeznik [15] proved that ara I ≥ pdR/I, where pdR/I denotes the
projective dimension of R/I. Therefore, we have

height I ≤ pdR/I ≤ ara I ≤ µ(I).

From the above inequalities, it is natural to ask when ara I = pdR/I
holds. Many authors including [1]–[11, 13, 16, 17, 18, 19] inves-
tigated this problem. In particular, in [10, 11] (see also [7]), Terai,
Yoshida and the first author attacked the problem for ideals I with
µ(I)−height I ≤ 2. Their idea is to classify these squarefree monomial
ideals using hypergraphs (this classification is also used in [12]). The
association of a hypergraph to a squarefree monomial ideal I of R with
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G(I) = {m1, . . . ,mµ} is defined by setting

H(I) :=
{
{j ∈ [µ] : xi | mj} : i = 1, . . . , n

}
.

H(I) is indeed a (separated) hypergraph on the vertex set [µ] :=
{1, 2, . . . , µ}. On the other hand, given a separated hypergraph H,
one can construct a squarefree monomial ideal I with H(I) = H; see
Section 1 for more details.

We focus on the squarefree monomial ideals I such that H(I) is a
string or a cycle. For these ideals, Lin and the second author [14] found
an explicit formula expressing the projective dimension of R/I in terms
of purely combinatorial invariants of the hypergraph H(I), namely,

(0.1) pd(R/I) = µ(I)− b(H(I)) +M(H(I)),

see the discussion before Theorem 2.3 for the definition of b(H(I)) and
M(H(I)).

In the present work, we study the arithmetical rank of these ideals I.
We prove that pdR/I elements can be chosen so that they generate I up
to radical and have “small” monomial support. To be more precise, let
us recall that the binomial arithmetical rank of I, denoted by biara I, is
the minimum number u of monomials or binomials q1, . . . , qu ∈ R which
generate I up to radical. Here, we also define the trinomial arithmetical
rank of I as the minimum number u of monomials, binomials or
trinomials q1, . . . , qu ∈ R which generate I up to radical. We denote
this by triara I. Clearly, we have ara I ≤ triara I ≤ biara I. Our main
result is the next theorem.

Theorem 0.1. Let I be a squarefree monomial ideal of R.

(1) Assume that H(I) is a string hypergraph. Then ara I = biara I =
pdR/I.

(2) Assume that H(I) is a cycle hypergraph. Then ara I = triara I =
pdR/I.

In particular, the arithmetical rank of these ideals is independent of
the characteristic of the field K. Crucial ingredients of our proof of
Theorem 0.1 are a lemma by Schmitt and Vogel ([18], Lemma 3.2) and
formula (0.1) for the projective dimension (Theorem 2.3).



ARITHMETICAL RANK OF STRINGS AND CYCLES 91

Now we explain the organization of this article. In Section 1, we
recall the definition of the (separated) hypergraph associated to a
squarefree monomial ideal, first introduced in [10]. In Section 2, we
recall a few results by Lin and the second author [14] that will be
employed in the subsequent sections. Then, in Sections 3 and 4, we
prove Theorem 0.1 (1) and (2), respectively.

1. Hypergraphs. In this section, we recall the construction of a
separated hypergraph associated to any squarefree monomial ideal.
The construction was introduced in [10], see also [7, 11, 12, 14].

Set V = [µ]. A collection H ⊂ 2V is called a hypergraph on vertex
set V if V =

∪
F∈H F . An element F ∈ H is called a face of H. A

vertex j ∈ V is called closed, respectively, open, if {j} ∈ H, respectively,
{j} /∈ H. A hypergraph is called saturated if {j} ∈ H for all j ∈ V .
Let i, j ∈ V be two vertices of H. We say that i is a neighbor of j if
there exists a face F ∈ H containing both i and j.

A hypergraph H on V is said to be separated if, for all vertices
i, j ∈ V , i ̸= j, there exist faces F,G ∈ H such that i ∈ F \ G and
j ∈ G \ F . Let I be a squarefree monomial ideal of R = K[x1, . . . , xn]
with G(I) = {m1, . . . ,mµ}. The hypergraph associated to I is defined
as

H(I) :=
{
{j ∈ [µ] : xi | mj} : i = 1, . . . , n

}
,

which is a separated hypergraph on [µ].

Conversely, let H be a separated hypergraph on [µ]. Then, we can
construct a squarefree monomial ideal I withH(I) = H in a polynomial
ring with enough variables as follows: for each F ∈ H, take a squarefree
monomial mF such that mF and mG are coprime if F ̸= G. For
each j ∈ [µ], set mj =

∏
F∈H, j∈F mF . Then I = (m1, . . . ,mµ)

is a squarefree monomial ideal with H(I) = H. This construction
implies that there are many ideals I (in various polynomial rings) with
H(I) = H. We set I(H) to be the ideal obtained from the above
construction by setting each mF to be a variable xF in a polynomial
ring R(H) := K[xF : F ∈ H].

The above correspondence between squarefree monomial ideals and
separated hypergraphs yields the classification of squarefree monomial
ideals mentioned in the introduction. The next proposition shows the
usefulness of this association for our purpose.
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Proposition 1.1 ([7, Proposition 3.2], [14, Corollary 2.4]). Let I1
and I2 be squarefree monomial ideals with H(I1) = H(I2). Then
pd I1 = pd I2 and ara I1 = ara I2 hold.

Let I be a squarefree monomial ideal of R. Set H = H(I). By
Proposition 1.1, the following notation is well defined:

pd(H) := pdR/I, ara(H) := ara(I).

We call pd(H), respectively, ara(H), the projective dimension, respec-
tively, arithmetical rank, of H. We will compute pd(H) and ara(H) by
computing pdR(H)/I(H) and ara I(H), respectively.

Remark 1.2. The statement of Proposition 1.1 remains true if we re-
place the arithmetical rank by the binomial or the trinomial arithmeti-
cal rank. Hence, we use the similar notation biara(H) and triara(H).

2. Projective dimensions of a string hypergraph and a cycle
hypergraph. In this section, we collect results about the projective
dimensions of a string hypergraph and a cycle hypergraph. These
results are proved by Lin and the second author in [14].

We first recall the definitions of a string hypergraph and a cycle
hypergraph.

Definition 2.1 ([14, Definition 2.13]). Fix µ ≥ 2. A hypergraph H
on V = [µ] is a string if {j, j + 1} ∈ H for all j = 1, . . . , µ− 1, and the
only other possible faces of H are of the form {j}, for some j ∈ V .

For a string hypergraph H on [µ], we call the vertices 1 and µ the
endpoints of H. Note that, if H is separated, then both endpoints are
closed vertices.

Definition 2.2 ([14, Definition 4.1]). Fix µ ≥ 3. A hypergraph H on

V = [µ] is a µ-cycle if H can be written as H = H̃ ∪ {{µ, 1}} where H̃
is a string hypergraph on [µ].
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To introduce the explicit formula for the projective dimension of a
string hypergraph and a cycle hypergraph in terms of invariants of the
hypergraph we need some more definitions.

A hypergraph H on [µ] is called a string of opens if H is a string
hypergraph with µ ≥ 3 whose only closed vertices are its endpoint.

First, we assume that H is a string hypergraph. We set s = s(H)
to be the number of strings of opens inside H. We number the strings
of opens in H from one endpoint to another and set ni(H) to be the
number of open vertices in the ith string of opens. We say that H is a
2-special configuration if s ≥ 2, H does not contain two adjacent closed
vertices, n1 ≡ ns ≡ 1 mod 3, and ni ≡ 2 mod 3 for i = 2, . . . , s − 1.
Two 2-special configurations contained in H are said to be disjoint
if they do not have a common open vertex. The modularity of H,
denoted by M(H), is the maximum number of pairwise disjoint 2-
special configurations contained in H.

Next, we assume that H is a cycle hypergraph. If H contains at
least two closed vertices, we define s = s(H) and n1(H), . . . , ns(H)
analogously to the case of a string hypergraph. If H contains at most
one closed vertex, we set s = s(H) = 1 and n1(H) = µ(H) − 1. In
either case, the definition of a 2-special configuration S in H is the
same as in the case of a string hypergraph, except for allowing that the
two extremal vertices of S coincide. The modularity M(H) is defined
in the same way as in the case of a string hypergraph.

Let H be a string hypergraph or a cycle hypergraph. Set

b(H) = s(H) +

s(H)∑
i=1

⌊
ni(H)− 1

3

⌋
.

Theorem 2.3 ([14, Theorems 3.4, 4.3]). Let H be a string hypergraph
or a cycle hypergraph. Then

pd(H) = µ(H)− b(H) +M(H).

We also state some inductive results about the projective dimension.

Let I be a squarefree monomial ideal with G(I) = {m1, . . . ,mµ}.
Then, we set Ii := (mi+1, . . . ,mµ) and Hi := H(Ii). Also, we set
J1 := I1 : m1 and Q1 := H(J1).
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Lemma 2.4 ([14, Lemmas 2.6, 2.11]). Let H be a hypergraph
on [µ] with µ ≥ 2. Assume that {1} ∈ H. Then, pd(H) =
max{pd(H1), pd(Q1) + 1}. Moreover, if all the neighbors of 1 are
closed vertices, then pd(H) = pd(H1) + 1.

Finally, for a string hypergraph H, we will use the following results
that allow us to compare pd(H) with the projective dimension of a
smaller string hypergraph.

Lemma 2.5 ([14, Lemma 2.14 (ii)]). Let H be a string hypergraph on
[µ] with µ ≥ 3. Then pd(H) ≤ pd(H2) + 2.

Lemma 2.6 ([14, Proposition 2.15]). Let H be a string hypergraph on
[µ] with µ ≥ 4. Assume {2} /∈ H. Then pd(H) = pd(H3) + 2.

3. Strings. In this section, we consider string hypergraphs. The
goal of this section is to prove the next result.

Theorem 3.1. Let H be a string hypergraph. Then ara(H) =
biara(H) = pd(H).

Before proving the theorem, we introduce a useful lemma by Schmitt
and Vogel [18].

Lemma 3.2 ([18, page 249, Lemma]). Let R be a commutative ring
and P a finite subset of R. Let P0, P1, . . . , Pu be subsets of P satisfying
the following three conditions:

(SV1)
∪u

ℓ=0 Pℓ = P .
(SV2) #P0 = 1.
(SV3) For any integer ℓ > 0 and elements p, p′′ ∈ Pℓ with p ̸= p′′,

there exist an integer ℓ′ < ℓ and an element p′ ∈ Pℓ′ such that
pp′′ ∈ (p′).

Let I be an ideal of R generated by P , and set

qℓ =
∑
p∈Pℓ

p, ℓ = 0, 1, . . . , u.

Then q0, q1, . . . , qu generate I up to radical.
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We first see the case where the number of vertices is ≤ 3.

Lemma 3.3. Let H be a string hypergraph on [µ]. If µ ≤ 3, then
ara(H) = biara(H) = pd(H).

Proof. If H is saturated, then pd(H) = µ, and there is nothing to
prove. The remaining case is that µ = 3 and the vertex 2 of H is
open. Then, I(H) = (y1x1, x1x2, y3x2). In this case, pd(H) = 2. By
Lemma 3.2, we have x1x2, y1x1+y3x2 generate I(H) up to radical. �

Next we assume µ ≥ 4. We divide the proof into two cases,
depending on whether vertex 2 is closed or open.

Lemma 3.4. Let H be a string hypergraph on [µ]. Assume the
neighbor 2 of endpoint 1 of H is closed. If biara(H1) = pd(H1), then
biara(H) = pd(H).

Proof. We first note that biara(H) ≤ biara(H1) + 1 since I(H) has
one more generator than I(H1). We then have the chain of inequalities

biara(H) ≤ biara(H1) + 1 = pd(H1) + 1 = pd(H) ≤ biara(H),

where the last equality follows by Lemma 2.4. Therefore, biara(H) =
pd(H). �

Lemma 3.5. Let H be a string hypergraph on [µ] with µ ≥ 4. Assume
the neighbor 2 of endpoint 1 of H is open. If biara(H3) = pd(H3), then
biara(H) = pd(H).

Proof. Write I(H) = I3 + I ′, where I3 = I(H3) = (m4, . . . ,mµ) and
I ′ = (m1,m2,m3). Note that H(I ′) is a string hypergraph on vertex
set [3]. Since the vertex 2 of H(I ′) is open, we have biara I ′ = 2 by
Lemma 3.3. We then have

biara(H) = biara(I3 + I ′) ≤ biara(I3) + biara(I ′)

= biara(I3) + 2 = pd(H3) + 2.

Since pd(H3) + 2 = pd(H) by Lemma 2.6, and pd(H) ≤ biara(H)
always holds, we have biara(H) = pd(H). �

We can now prove Theorem 3.1.
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Proof of Theorem 3.1. We prove it by induction on the number µ of
vertices of H.

If µ ≤ 3, then the statement follows by Lemma 3.3. We may then
assume µ ≥ 4, and the statement is proved for string hypergraphs with
< µ vertices. Then both biara(H1) = pd(H1) and biara(H3) = pd(H3)
hold, and the assertion follows from Lemmas 3.4 and 3.5. �

4. Cycles. In this section, we consider cycle hypergraphs. The goal
of this section is to prove the next result.

Theorem 4.1. Let H be a cycle hypergraph. Then ara(H)= triara(H)=
pd(H).

We first consider the case where H contains at most one closed
vertex.

Lemma 4.2. Let H be a cycle hypergraph. If H contains at most 1
closed vertex, then triara(H) = biara(H) = pd(H).

If H does not contain any closed vertex, then I(H) is also the
edge ideal of a cycle. In [2, Propositions 2.2, 2.3, 2.4], Barile, et
al., constructed monomials and binomials which generate this ideal up
to radical. Below, we show that the same construction with minor
modifications also works for H, which contains precisely one closed
vertex.

Proof of Lemma 4.2. Let H be a µ-cycle. By assumption, we may
assume that the monomial generators of I(H) are of the forms:

yx1xµ, x1x2, x2x3, . . . , xµ−1xµ,

where x1, x2, . . . , xµ are pairwise distinct variables and y is either a
variable which is different from x1, x2, . . . , xµ or y = 1. By Theorem 2.3,
we have

pd(H) = µ−
(
1 +

⌊
µ− 2

3

⌋)
.

We distinguish three cases.
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Case 1. µ = 3m (m ≥ 1). In this case, pd(H) = 2m. Consider the
2m elements:{

q0 = x1x2,

q1 = yx1xµ + x2x3,{
q2i = x3i+1x3i+2,

q2i+1 = x3ix3i+1 + x3i+2x3i+3,
i = 1, 2, . . . ,m− 1.

Lemma 3.2, see also [2, Proposition 2.2], yields that q0, q1, . . . , q2m−1

generate I(H) up to radical.

Case 2. µ = 3m+1 (m ≥ 1). In this case, pd(H) = 2m+1. Consider
the following 2m elements:{

q2i = x3i+2x3i+3,

q2i+1 = x3i+1x3i+2 + x3i+3x3i+4,
i = 0, 1, 2, . . . ,m− 1.

Set q2m = yx1x3m+1.

Lemma 3.2, see also [2, Proposition 2.3], now yields that q0, q1, . . . , q2m
generate I(H) up to radical.

Case 3. µ = 3m+2 (m ≥ 1). In this case, pd(H) = 2m+1. Consider
the following 2m elements:{

q0 = x1x2,

q1 = x2x3 + x4x5,{
q2i = x3ix3i+1 + x3i+2x3i+3,

q2i+1 = x3i+2x3i+3 + x3i+4x3i+5,
i = 1, 2, . . . ,m− 1.

Set q2m = yx1x3m+2 + x3mx3m+1, see also [2, Proposition 2.4].

Set J = (q0, q1, . . . , q2m). We claim
√
J = I(H). It is clear that

J ⊂ I(H). Thus, we prove
√
J ⊃ I(H).

We first prove x1I(H) ⊂
√
J . Since one has q0, q1 ∈ J , then

x1 · x1x2, x1x2x3, x1x4x5 ∈
√
J . We claim that

(4.1)

x1x3ix3i+1, x1x3i+2x3i+3, x1x3i+4x3i+5 ∈
√
J, i = 1, 2, . . . ,m− 1.

We prove this by induction on i.
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For the case i = 1, we need to prove that x1x3x4, x1x5x6, x1x7x8 ∈√
J . Since x1q2 = x1x3x4 + x1x5x6 ∈ J and x1x4x5 ∈

√
J , Lemma 3.2

yields x1x3x4, x1x5x6 ∈
√
J . Then, since x1q3 = x1x5x6 + x1x7x8 ∈ J

and x1x5x6 ∈
√
J , we also have x1x7x8 ∈

√
J .

Assume that equation (4.1) is true for i − 1. Then, since x1q2i =
x1x3ix3i+1+x1x3i+2x3i+3 ∈ J and x1x3i+1x3i+2 = x1x3(i−1)+4x3(i−1)+5

∈
√
J , Lemma 3.2 yields x1x3ix3i+1, x1x3i+2x3i+3 ∈

√
J . Then

x1q2i+1 = x1x3i+2x3i+3 + x1x3i+4x3i+5 ∈ J and x1x3i+2x3i+3 ∈
√
J ;

hence, we have x1x3i+4x3i+5 ∈
√
J , as required. Therefore, equa-

tion (4.1) holds true for all i. Moreover,

q2m = yx1x3m+2 + x3x3m+1 ∈ J

and

x1x3m+1x3m+2 = x1x3(m−1)+4x3(m−1)+5 ∈
√
J.

These two facts imply

x1 · yx1x3m+2, x1x3mx3m+1 ∈
√
J.

Hence, we have x1I(H) ⊂
√
J .

Next, we prove I(H) ⊂
√
J . Since x1I(H) ⊂

√
J , we have

yx2
1x3m+2 ∈

√
J , whence yx1x3m+2 ∈

√
J . Since q2m ∈ J , we also

have x3mx3m+1 ∈
√
J .

We now prove

x3ix3i+1, x3i+2x3i+3, x3i+4x3i+5 ∈
√
J,(4.2)

i = 1, 2, . . . ,m− 1

by descending induction on i.

When i = m − 1, since x3mx3m+1 ∈
√
J and q2(m−1)+1 =

x3m−1x3m+x3m+1x3m+2 ∈ J , Lemma 3.2 gives x3m−1x3m, x3m+1x3m+2

∈
√
J . Also, since q2(m−1) = x3m−3x3m−2 + x3m−1x3m ∈ J , we have

x3m−3x3m−2 ∈
√
J .

Next, assume that equation (4.2) holds true for i+1. Since q2i+1 =

x3i+2x3i+3 + x3i+4x3i+5 ∈ J and x3i+3x3i+4 = x3(i+1)x3(i+1)+1 ∈
√
J ,

then Lemma 3.2 yields x3i+2x3i+3, x3i+4x3i+5 ∈
√
J . Then q2i =

x3ix3i+1 + x3i+2x3i+3 ∈ J ; so we have x3ix3i+1 ∈
√
J , as required.



ARITHMETICAL RANK OF STRINGS AND CYCLES 99

Note that x1x2 = q0 ∈ J . Also, since q1 = x2x3 + x4x5 and
x3x4 ∈

√
J , then x4x5 ∈

√
J . This completes the proof. �

Next, we consider the case where the number of vertices is at most
four. In this case, we know that ara(H) = pd(H) by [10]. We prove
the following, slightly more precise lemma.

Lemma 4.3. Let H be a cycle hypergraph on [µ] with µ ≤ 4. Then
triara(H) = biara(H) = pd(H).

Proof. We first assume that pd(H) = µ. In this case, we can choose
µ monomial generators. Next, we assume that pd(H) < µ. In this case,
we can easily check that pd(H) = µ− 1.

When µ = 3, then the three generators of I(H) can be written
as x1x2, y1x1x3 and y2x2x3, where each yi can possibly be 1. By
Lemma 3.2, x1x2, y1x1x3 + y2x2x3 generate I(H) up to radical.

When µ = 4, then the four generators of I(H) can be written as x1x2,
y1x1x4, y2x2x3 and y3x3x4, where each yi is possibly 1. Lemma 3.2
yields that the elements x1x2, y1x1x4 + y2x2x3 and y3x3x4 generate
I(H) up to radical. �

Thus, we can assume that the number of vertices of a cycle hyper-
graph is at least five.

Lemma 4.4. Let H be a cycle hypergraph on [µ] with µ ≥ 5. If H
contains two adjacent closed vertices, then triara(H) = biara(H) =
pd(H).

Proof. Without loss of generality, we may assume 1 and µ are two
adjacent closed vertices.

We first assume that the vertex 2 is also closed. Then we have
pd(H) = pd(H1) + 1, by Lemma 2.4. Since H1 is a string hypergraph,
we have biara(H1) = pd(H1), by Theorem 3.1. Now, the equality
biara(H) = pd(H) follows because the monomial m1 corresponding
to the vertex 1, together with elements which generate I(H1) up to

radical, generate I(H) up to radical, i.e. if
√
I(H1) =

√
(a1, . . . , ar),

then
√

I(H) =
√
(m1, a1, . . . , ar).
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We may then assume that the vertex 2 is open. Then the monomials
corresponding to vertices 1, 2 and 3 can be written as y1x1xµ, x1x2

and y3x2x3, respectively, where y3 is possibly 1. Note that Q1 is the
disjoint union of H3 and a closed vertex. Thus, pd(Q1) = pd(H3) + 1.
By Lemma 2.4, we have

pd(H) = max{pd(H1), pd(Q1) + 1} = max{pd(H1), pd(H3) + 2}.

Since H1 is a string hypergraph, we have pd(H1) ≤ pd(H3) + 2 by
Lemma 2.5, and thus, pd(H) = pd(H3) + 2. Also, since H3 is a string
hypergraph, Theorem 3.1 shows that biara(H3) = pd(H3).

Since the elements x1x2 and y1x1xµ+y3x2x3, together with elements
which generate I3 up to radical, generate I(H) up to radical, we obtain
biara(H) = pd(H). �

In order to prove the next lemma, we use Theorem 2.3.

Lemma 4.5. Let H be a cycle hypergraph. Suppose that there is a
string of opens with n0 open vertices, with n0 ≡ 0 mod 3 in H. Then
triara(H) = biara(H) = pd(H).

Proof. By Lemma 4.2, we may assume that H contains at least 2
closed vertices. Let S0 be the string of opens with n0 open vertices,
and let u1, u2, u3 be three adjacent open vertices in S0 such that u1 is
adjacent to a closed vertex v. Let v′ be the other neighbor of u3. We
consider the ideal I ′′ with G(I ′′) = G(I) \ {u1, u2, u3}. Then, H′′ :=
H(I ′′) is a string hypergraph whose endpoints are v and v′, i.e., H′′ is
obtained by deletion of the vertices u1, u2 and u3 from H and changing
v′ to be closed if v′ is open in H. We claim that pd(H) = pd(H′′) + 2.
Then, since we know that biara(H′′) = ara(H′′) = pd(H′′), we can
conclude that biara(H) = ara(H) = pd(H), because ara(H′′) elements
which generate I ′′ up to radical, together with u2 and u1+u3, generate
I up to radical.

Hence, we only need to prove the equality pd(H) = pd(H′′)+2. We
first note that µ(H′′) = µ(H) − 3 and that v′ is a closed vertex in H′′

(independently of whether it is closed or not in H).

If v′ is closed in H, then s(H′′) = s(H)− 1. Since ⌊(n0 − 1)/3⌋ = 0,
we have b(H′′) = b(H) − 1. Moreover, M(H′′) = M(H), because S0
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does not belong to any 2-special configuration in H. Therefore, we have
pd(H) = pd(H′′) + 2, by Theorem 2.3.

If v′ is open in H, then s(H′′) = s(H). Let n′′
0 be the number of

open vertices in the string of opens H′′, one of whose endpoints is v′.
Then, n′′

0 = n0 − 4 ≡ 2 mod 3. Note that ⌊(n0 − 1)/3⌋ = n0/3 − 1
and ⌊(n′′

0 − 1)/3⌋ = n0/3 − 2. Thus, b(H′′) = b(H) − 1. Moreover, we
have M(H′′) = M(H), because both strings of opens do not belong
to any 2-special configuration. Therefore, by Theorem 2.3, we have
pd(H) = pd(H′′) + 2. �

By Lemma 4.5, we may then assume that each string of opens in H
contains a number of open vertices that is either congruent to 2 mod 3
or 1 mod 3.

Lemma 4.6. If we prove that ara(H) = triara(H) = pd(H) for a cycle
hypergraph H whose strings of opens all have at most 2 open vertices,
then Theorem 4.1 follows.

Proof. Let H be a µ-cycle. By Lemma 4.2, we may assume H has
at least two closed vertices. By Lemma 4.3, we may assume µ ≥ 5.
Moreover, by Lemma 4.4, we may assume that there are no two adjacent
closed vertices in H.

Suppose that H contains a string of opens S with n0 ≥ 3 open
vertices. By Lemma 4.5, we may assume that n0 ≡ 1, 2 mod 3.

We first assume that n0 ≡ 1 mod 3. Let v be an endpoint of S,
and let u1, u2, u3, u4 be adjacent open vertices following v. Let H′ be
the cycle hypergraph obtained by turning u2 into a closed vertex. We
claim that pd(H) = pd(H′).

Indeed, by the change we made, the string of opens S in H is
now divided into two strings of opens S1 and S2 (in H′), with 1 and
n0 − 2 open vertices, respectively. It is easy to see that µ(H′) = µ(H)
and s(H′) = s(H) + 1. Also, since ⌊(n0 − 1)/3⌋ = (n0 − 1)/3,
⌊(1 − 1)/3⌋ + ⌊((n0 − 2) − 1)/3⌋ = (n0 − 1)/3 − 1, we have b(H′) =
b(H). Moreover, the modularity is also unchanged because the change
does not affect the number of 2-special configurations. Now, equality
pd(H) = pd(H′) follows from the formula of Theorem 2.3.
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Next, assume that n0 ≡ 2 mod 3. Let v be an endpoint of S, and
let u1, u2, u3, u4 and u5 be adjacent open vertices following v. Let H′

be the cycle hypergraph obtained by turning u3 into a closed vertex.
We claim that pd(H) = pd(H′).

By the change, the string of opens S in H is now divided into two
strings of opens S1 and S2 (in H′), with 2 and n0 − 3 open vertices,
respectively. It is easy to see that µ(H′) = µ(H) and s(H′) = s(H)+1.
Since ⌊(n0 − 1)/3⌋ = (n0 − 2)/3, ⌊(2 − 1)/3⌋ + ⌊((n0 − 3) − 1)/3⌋ =
(n0 − 2)/3 − 1, we have b(H′) = b(H). Furthermore, the modularity
is also unchanged because the change does not affect the number of
2-special configurations. All of the above together with the formula of
Theorem 2.3 implies the equality pd(H) = pd(H′).

Moreover, in either case, if triara(H′) = pd(H′), then also triara(H) =
pd(H) holds, as can be seen by substituting 1 for the variables corre-
sponding to the vertices which we caused to become closed.

Then, this procedure produces a new hypergraph H̃ (obtained by
causing selected open vertices of H to become closed) and all strings of

opens in H̃ have at most two open vertices. Moreover, the above shows

that, if triara(H̃) = pd(H̃), then triara(H) = pd(H) also holds. The
statement now follows. �

By the above results, we may then assume that H is a cycle
not containing two consecutive closed vertices and whose strings of
opens have at most two open vertices. Note that, for such a graph,
b(H) = s(H) holds.

Next, we prove the case where there are strings of opens with
precisely two open vertices.

Lemma 4.7. Assume that H contains a closed-open-open-closed string S,
where the two closed vertices of S are distinct. Let H′ be the cycle hy-
pergraph obtained by removing the two open vertices of S from H and
identifying the two closed vertices of S.

If triara(H′) = pd(H′), then triara(H) = pd(H).

Proof. Let H be a cycle hypergraph on [µ]. By Lemma 4.4, we may
assume that there are no two adjacent closed vertices in H, and by
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Lemma 4.6, all strings of opens have at most two open vertices. We
first claim that pd(H) = pd(H′) + 2.

It is easy to see that µ(H) = µ(H′)+ 3 and s(H) = s(H′)+ 1. Since
the removed string of opens has two open vertices, the modularity is
unchanged. Hence, the claim follows by the formula of Theorem 2.3.
To prove the statement, we show that triara(H) ≤ triara(H′) + 2.

Let 1, µ, µ−1, µ−2 be the vertices of string S. We set the monomials
corresponding to these vertices to be

(4.3) y1x1xµ, xµ−1xµ, xµ−2xµ−1, yµ−2xµ−3xµ−2.

We set 
g0 = y1yµ−2x1xµ−3xµ−2xµ,

g1 = y1x1xµ + xµ−2xµ−1,

g2 = yµ−2xµ−3xµ−2 + xµ−1xµ.

We claim that

y1x1xµ, xµ−1xµ, xµ−2xµ−1, yµ−2xµ−3xµ−2 ∈
√

(g0, g1, g2).

Indeed, since

xµ−2xµ−1 · xµ−1xµ = (g1 − y1x1xµ)(g2 − yµ−2xµ−3xµ−2) ∈ (g0, g1, g2),

we have xµ−2xµ−1xµ ∈
√
(g0, g1, g2). Then the claim follows by

Lemma 3.2.

Let I0 be the squarefree monomial ideal which is generated by all
monomials in G(I(H)) except for the four monomials in equation (4.3).
Then I(H) = I0 + (y1x1xµ, xµ−1xµ, xµ−2xµ−1, yµ−2xµ−3xµ−2). Let I ′

be the squarefree monomial ideal defined as

I ′ = I0 + (y1yµ−2x1xµ−3xµ−2xµ),

and note that H(I ′) = H′. Since g0 = y1yµ−2x1xµ−3xµ−2xµ ∈ I ′ it
follows that ara(H′) elements which generate I ′ up to radical, together
with g1, g2 generate I(H) up to radical. �

Therefore, we reduce to the case of cycle hypergraphs in which closed
vertices and open vertices appear alternately.
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Lemma 4.8. Let H be a cycle hypergraph in which closed vertices and
open vertices appear alternately. Then we have ara(H) = triara(H) =
pd(H).

Proof. We first note that the number µ of vertices of H is even.

Case 1. µ = 4m. By Theorem 2.3, we have pd(H) = 3m, because
s(H) = 2m and M(H) = m. We now divide the vertices into disjoint
groups of four adjacent vertices. In other words, there exist m strings
of the shape closed-open-closed-open in H. It suffices to show that the
ideal associated to any such string is generated up to radical by three
polynomials, each of which has at most three terms. So, letting m1,
m2, m3 and m4 be monomials corresponding to the four vertices of the
string, we can write m1, m2, m3 and m4 as y1x1xµ, x1x2, y3x2x3, x3x4.
By Lemma 3.2, the following three polynomials

x1x2, y1x1xµ + y3x2x3, x3x4

generate (m1,m2,m3,m4) up to radical, whence the statement follows.

Case 2. µ = 4m + 2 (m ≥ 1). In this case, we prove the statement
by induction on m. First assume m = 1. Then I(H) is generated by
the following six monomials:

y1x1x6, x1x2, y3x2x3, x3x4, y5x4x5, x5x6.

By Theorem 2.3, we have pd(H) = 4, and by Lemma 3.2, the following
4 polynomials generate I(H) up to radical:

x1x2,

x3x4,

x5x6,

y1x1x6 + y3x2x3 + y5x4x5.

Now we assume that m ≥ 2. In this case, H contains a 2-special
configuration S: closed-open-closed-open-closed. Let 1, µ, µ − 1, µ −
2, µ − 3 be the vertices of the string S. We set the monomials
corresponding to these vertices to be

(4.4) y1x1xµ, xµ−1xµ, yµ−1xµ−2xµ−1, xµ−3xµ−2, yµ−3xµ−4xµ−3.

Let H′ be the cycle hypergraph obtained by removing the three inner
vertices µ, µ− 1, µ− 2 of S from H and identifying the two endpoints 1
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and µ−3 of S. ThenH′ is the cycle hypergraph with µ(H′) = 4(m−1)+
2 in which closed vertices and open vertices appear alternately. Note
that Theorem 2.3 yields pd(H) = pd(H′)+3, because µ(H) = µ(H′)+4,
s(H) = s(H′) + 2, and M(H) = M(H′) + 1.

Let I0 be the squarefree monomial ideal which is generated by all
monomials in G(I(H)) except for the five monomials in equation (4.4).
Then

I(H) = I0+(y1x1xµ, xµ−1xµ, yµ−1xµ−2xµ−1, xµ−3xµ−2, yµ−3xµ−4xµ−3).

We set I ′ = I0 + (y1yµ−3x1xµ−4xµ−3xµ). Note that H(I ′) = H′ and
y1yµ−3x1xµ−4xµ−3xµ is the monomial corresponding to the vertex 1
of H(I ′). Since y1yµ−3x1xµ−4xµ−3xµ ∈ I ′, the following three polyno-
mials, together with ara(H′) elements which generate I ′ up to radical,
generate I(H) up to radical:

xµ−1xµ,

xµ−3xµ−2,

y1x1xµ + yµ−1xµ−2xµ−1 + yµ−3xµ−4xµ−3. �
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