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PARALLEL CALIBRATIONS AND MINIMAL
SUBMANIFOLDS

COLLEEN ROBLES

Abstract. Given a parallel calibration ϕ ∈ Ωp(M) on a Rie-
mannian manifold M , I prove that the ϕ-critical submanifolds

with nonzero critical value are minimal submanifolds. I also
show that the ϕ-critical submanifolds are precisely the integral

manifolds of a C∞(M)-linear subspace P ⊂ Ωp(M). In partic-
ular, the calibrated submanifolds are necessarily integral sub-
manifolds of the system. (Examples of parallel calibrations in-
clude the special Lagrangian calibration on Calabi–Yau mani-
folds, (co)associative calibrations on G2-manifolds, and the Cay-
ley calibration on Spin(7)-manifolds.)

1. Introduction

1.1. Calibrated geometry. Let’s begin by setting notation and reviewing
(briefly) calibrated geometry. See [11] for a through introduction.

Let V be a real, n-dimensional vector space equipped with an inner product.
Throughout {e1, . . . , en} ⊂ V will denote a set of orthonormal vectors. Let

Gro(p,V ) := {e1 ∧ · · · ∧ ep} ⊂
∧pV

denote the unit decomposable (or simple) p-vectors. Notice that Gro(p,V )
is a double cover of the Grassmannian Gr(p,V ) of p-planes in V . Given
ξ ∈Gro(p,V ), let [ξ] ∈Gr(p,V ) denote the corresponding p-plane. I will abuse
terminology by referring to elements of both Gro(p,V ) and Gr(p,V ) as p-
planes. (Properly, elements of Gro(p,V ) are oriented p-planes.)

Let M be an n-dimensional Riemannian manifold. Let Gr(p,TM) denote
the Grassmann bundle of tangent p-planes on M , and Gro(p,TM) the double
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cover of Gr(p,TM) of decomposable unit p-vectors. Let Ωp(M) denote the
space of smooth p-forms on M .

Note that, given a p-form ϕ ∈ Ωp(M) and ξ = e1 ∧ · · · ∧ ep ∈Gro(p,TM),
ϕ(ξ) := ϕ(e1, . . . , ep) is well defined. If ϕ is closed and ϕ≤ 1 on Gro(p,TM),
then ϕ is a calibration. The condition that ϕ ≤ 1 on Gro(p,TM) is often
expressed as ϕ|ξ ≤ vol|ξ . Assume ϕ is a calibration. Let

Gr(ϕ) :=
{
ξ ∈Gro(p,TM) | ϕ(ξ) = 1

}
denote the set of (oriented) calibrated planes, and Gr(ϕ)x the fibre over x ∈M .
An oriented p-dimensional submanifold N ⊂M is calibrated if TxN ∈Gr(ϕ)x,
for all x ∈ N . That is, ϕ|N = volN . Compact calibrated submanifolds have
the property that they are globally volume minimizing in their homology
classes [11]. The first step in the identification or construction of calibrated
submanifolds is the determination of Gr(ϕ). However, this is often a difficult
problem, even in the case that φ ∈ ∧pV is a constant coefficient calibration
on a vector space. See, for example, [3], [5], [12], [16].

Notice that elements of Gr(ϕ)x are critical points of ϕx : Gro(p,TxM)→R.
However, it is not the case that every critical point is an element of Gr(ϕ)x.
(See Section 3.7 below.) Let C(ϕ)x ⊂Gro(p,TxM) denote the set of critical
points of ϕx, and C(ϕ)⊂Gro(p,TM) the associated sub-bundle. An oriented
p-dimensional submanifold N ⊂M is ϕ-critical if TxN ⊂C(ϕ)x, for all x ∈N .
While the calibrated submanifolds are prized as volume minimizers in their ho-
mology classes, the ϕ-critical submanifolds are also interesting. Unal showed
that if the corresponding critical value is a local maximum, then the ϕ-critical
submanifold is minimal [19, Theorem 2.1.2]. See also the work on Hong Van
Le on the stability of minimal surfaces [14]. I will prove (Theorem 1.2): if ϕ
is parallel, then the ϕ-critical submanifolds with nonzero critical value are
minimal. I will also show that the ϕ-critical submanifolds are characterized
by an exterior differential system P (Theorem 1.1).

1.2. Contents. We begin in Section 2.1 with the simple case of a constant
coefficient calibration φ ∈ ∧pV ∗. In Proposition 2.2, I identify the critical
points C(φ) ⊃ Gr(φ) as the annihilator of a linear subspace Φ ⊂ ∧pV ∗. In
the case that φ is invariant under a Lie subgroup H ⊂ O(V ), Φ is a H-
submodule of

∧pV ∗ (Lemma 3.1). (Of course, every φ is invariant under the
trivial group {Id} ⊂O(V ).) Several examples are discussed in Section 3, and
a vector-product variation of Proposition 2.2 is given in Proposition 3.4.

In Section 4, Proposition 2.2 is generalized to a parallel calibrations on a
connected, n-dimensional, Riemannian manifoldMn. Given an n-dimensional
H-manifold M , a H-invariant φ ∈ ∧pV ∗ naturally defines a parallel p-form ϕ
on M . Conversely, every parallel p-form ϕ on a Riemannian manifold arises
in this fashion. (See Section 4.3 for a description of the construction.) As a
parallel form, ϕ is a priori closed and thus a calibration on M . Similarly, Φ
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defines a sub-bundle ΦM ⊂ ∧pT ∗M . Let P ⊂Ωp(M) denote smooth sections
of ΦM . A p-dimensional submanifold Np ⊂M is an integral submanifold of
P if P|N = {0}.

Theorem 1.1. Assume that Mn is a connected Riemannian manifold, and
ϕ a parallel calibration. A submanifold Np is ϕ-critical if and only if N is an
integral manifold of P . In particular, every calibrated submanifold of M is
an integral manifold of P .

Proposition 3.4 (the vector-product variant) easily generalizes to give an
alternative formulation of the ϕ-critical submanifolds as those submanifolds
N with the property that TxN is closed under an alternating (p − 1)-fold
vector product ρ :

∧p−1TM → TM .
If N ⊂M is ϕ-critical, then ϕ|N = ϕo volN , where ϕo is a constant. Refer

to this constant as the critical value of ϕ on N .

Theorem 1.2. Assume that M is a Riemannian manifold, ϕ ∈ Ωp(M) a
parallel calibration, and N ⊂M a ϕ-critical submanifold. If the critical value
of ϕ on N is nonzero, then N is a minimal submanifold of M .

Theorems 1.1 and 1.2 are proven in Sections 4.3 and 4.4, respectively.
Finally in Section 5 it is shown that the ideal I ⊂ Ω(M) algebraically

generated by P is differentially closed and that, in general, the system fails
to be involutive.

Notation. Fix index ranges

i, j ∈ {1, . . . , n}, a, b ∈ {1, . . . , p}, s, t ∈ {p+ 1, . . . , n}.
The summation convention holds: when an index appears as both a subscript
and superscript in an expression, it is summed over.

2. The infinitesimal picture

2.1. The basics. Let φ ∈ ∧pV ∗ and ξ = e1 ∧ · · · ∧ ep ∈ Gro(p,V ). Then
φ(ξ) = φ(e1, . . . , ep) is a well-defined function on Gro(p,V ). Fix a nonzero
φ ∈ ∧pV ∗, with the property that maxGro(p,V ) φ = 1. The set of (oriented)
calibrated p-planes is

Gr(φ) :=
{
ξ ∈Gro(p,V ) | φ(ξ) = 1

}
.

Let C(φ)⊂Gro(p,V ) denote the critical points of φ. Then

Gr(φ)⊂C(φ).

Let FV denote the set of orthonormal bases (or frames) of V . Given e=
(e1, . . . , en) ∈ FV , let e

∗ = (e1, . . . , en) denote the dual coframe. Then

φ= φi1···ipe
i1 ∧ · · · ∧ eip ,
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uniquely determines functions φi1···ip , skew-symmetric in the indices, on FV .
Note that |φi1···ip | ≤ 1, and ξ = ei1 ∧ · · · ∧ eip ∈Gr(φ) if and only if equality
holds.

Next we compute dφ|ξ . Let O(V ) denote the Lie group of linear trans-
formations V → V preserving the inner product, and let o(V ) denote its
Lie algebra. Let θ denote the o(V )-valued Maurer–Cartan form on FV : at

e ∈ FV , θe = θjkej ⊗ ek, where the coefficient 1-forms θjk =−θkj are defined by

dej = θkj ek. Then {θij | i < j} is a basis for the 1-forms on FV .
If ξ = ei1 ∧ · · · ∧ eip is viewed as a map FV →Gro(p,V ), then

dξ =
∑

1≤a≤p

ei1 ∧ · · · ∧ eia−1 ∧ θkiaek ∧ eia+1 ∧ · · · ∧ eip .

Thus

dφξ = dφ(ei1 , . . . , eip)

=
∑

1≤a≤p

φ
(
ei1 , . . . , eia−1 , θ

k
iaek, eia+1 , . . . , eip

)
=

∑
1≤a≤p

θkiaφ(ei1 , . . . , eia−1 , ek, eia+1 , . . . , eip)

=
∑

1≤a≤p

φi1···ia−1kia+1···ipθ
k
ia .

The skew-symmetry of φ and θ imply that φi1···ia−1kia+1···ipθ
k
ia

vanishes if

k ∈ {i1, . . . , ip}. The {θkia | 1≤ a≤ p, k /∈ {i1, . . . , ip}} are linearly independent
on FV , and may be naturally identified with linearly independent 1-forms on
Gro(p,V ) at ξ. Consequently, dφξ = 0, and

ξ = ei1 ∧ · · · ∧ eip is a critical point(2.1)

if and only if φi1···ia−1kia+1···ipθ
k
ia = 0.

An equivalent, index-free formulation of this observation is given by the
lemma below.

Lemma 2.1. A p-plane ξ is a critical point of φ if and only if (v�φ)|ξ = 0

for all v ∈ ξ⊥.

Remark. The lemma was first observed by Harvey and Lawson (cf. Re-
mark on page 78 of [11]), and is often referred to as the First Cousin Principle.

The lemma allows us to characterize the critical points ξ ∈Gro(p,V ) of φ
as the p-planes on which a linear subspace Φ⊂ ∧pV ∗ vanishes. Forget, for a
moment, that θ is a 1-form on FV and regard it simply as an element of o(V ).
Let θ.φ denote the action of θ on φ. The action yields a map P : o(V )→ ∧pV ∗

sending θ 	→ θ.φ. Define

Φ := P
(
o(V )

)
⊂ ∧pV ∗.
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Notice that the ei1 ∧ · · · ∧ eip -coefficient of θ.φ is φi1···ia−1kia+1···ipθ
k
ia
. From

this observation, (2.1), and the fact that the Maurer–Cartan form θe : TeFV →
o(V ) is a linear isomorphism, we deduce the following.

Proposition 2.2. The set of φ-critical planes is C(φ) = Gro(p,V ) ∩
Ann(Φ).

Remark. The map P is the restriction of the map λφ : End(V )→ ∧pV ∗

in [10] to o(V ). Corollary 2.6 of [10] is precisely the observation that elements
of Φ vanish on Gr(φ) ⊂ C(φ). Indeed, Proposition 2.2 above follows from
Proposition A.4 of that paper. This is seen by observing that if A ∈ o(V )⊂
End(V ), then trξA= 0. Then their (A.2) reads λφ(A)(ξ) = φ(DÃξ). It now
suffices to note that their {λφ(A) | A ∈ o(V )} is our Φ, and that {DÃξ | A ∈
o(V )}= Tξ Gro(p,V ).

Remark. Each φ ∈ ∧pV ∗ naturally determines an alternating (p− 1)-fold
vector product ρ on V . An equivalent formulation of Proposition 2.2 is given
by Proposition 3.4 which asserts that ξ ∈ C(φ) and only if [ξ] ∈ Gr(p,V ) is
ρ-closed.

3. Examples and the product characterization

3.1. Invariant forms. Let G denote the stabilizer of φ in O(V ). Many of
the calibrations that we are interested in have a nontrivial stabilizer; but, of
course, all statements hold for trivial G. Observe that Φ is a g-module. This
is seen as follows. Let g denote the Lie algebra of G. As a g-module o(V )
admits a decomposition of the form o(V ) = g⊕ g⊥. By definition, the kernel
of P is g. In particular, Φ = P(g⊥). It is straightforward to check that P is
G-equivariant, and we have the following lemma.

Lemma 3.1. The subspace Φ = P(g⊥) ⊂ ∧pV ∗ is isomorphic to g⊥ as a
G-module.

Below I identify Φ for some well-known examples. The calibrations φ and
characterizations of Gr(φ) in Sections 3.2–3.5 were introduced in [11].

3.2. Associative calibration. Consider the standard action of the excep-
tional G=G2 on the imaginary octonions V = ImO= R7. As a G2-module
the third exterior power decomposes as

∧3V ∗ = R ⊕ V 3
1,0 ⊕ V 3

2,0. (Cf. [6,

Lemma 3.2] or [1, p. 542].) Here V 3
1,0 = V as G2-modules. The trivial

subrepresentation R ⊂ ∧3V ∗ is spanned by an invariant 3-form φ, the as-
sociative calibration. It is known that ξ ∈ Gr(φ) if and only if the forms
V 3
1,0 = {∗(φ ∧ α) | α ∈ V ∗} vanish on ξ [11, Corollary 1.7]. Here ∗(φ ∧ α) de-

notes the Hodge star operation on the 4-form φ ∧ α. As Φ = V 3
1,0, we have

C(φ) = Gr(φ).
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3.3. Coassociative calibration. Again we consider the standard action of
G2 on V = ImO= V1,0. The Hodge star commutes with the G2 action. So the

fourth exterior power decomposes as
∧4V ∗ = V 4

0,0 ⊕ V 4
1,0 ⊕ V 4

2,0, with V 4
a,b =

∗V 3
a,b. The trivial subrepresentation is spanned by the invariant coassociative

calibration ∗φ. A 4-plane ξ is calibrated by ∗φ if and only if φ|ξ ≡ 0 [11,

Corollary 1.19]. Equivalently, the 4-forms of V 4
1,0 = {φ ∧ α | α ∈ V ∗} vanish

on ξ. As Φ = V 4
1,0, we again have C(φ) = Gr(φ).

3.4. Cayley calibration. Consider the standard action of G = B3 =
Spin(7) ⊂ SO(8) on the octonions V = O = R8. The fourth exterior power
decomposes as

∧4V ∗ = V 4
0,0,0 ⊕ V 4

1,0,0 ⊕ V 4
2,0,0 ⊕ V 4

0,0,2. (Cf. [1, p. 548]

or [7, Lemma 3.3].) The trivial subrepresentation V 4
0,0,0 is spanned by the

invariant, self-dual Cayley 4-form φ = ∗φ. It is known that ξ ∈ Gr(φ) if
and only if the forms V 4

1,0,0 = {α.φ | α ∈ V 2
1,0,0} vanish on ξ [11, Proposi-

tion 1.25]; here V 2
1,0,0 = {α ∈ ∧2V ∗ | ∗(α ∧ φ) = 3α} � g⊥. As Φ = V 4

1,0,0, we
have C(φ) = Gr(φ).

3.5. Special Lagrangian calibration. Regard V := Cm as a real vector
space. Given the standard coordinates z = x+ iy,

V ∗ = span
R

{
1

2
(dz +dz̄),− i

2
(dz − dz̄)

}
.

Set

σ = − i

2

(
dz1 ∧ dz̄1 + · · ·+dzm ∧ dz̄m

)
,

Υ = dz1 ∧ · · · ∧ dzm.

The special Lagrangian calibration is ReΥ. An m-dimensional submanifold
i : M → V is calibrated if and only if i∗σ = 0 = i∗ ImΥ. (Recall that i∗σ = 0
characterizes the m-dimensional Lagrangian submanifolds.)

The special Lagrangian example is distinct from those above in that

su(m)⊥ =R⊕W ⊂ ∧2V

is reducible as an su(m)-module. The trivial subrepresentation is spanned
by σ.

The su(m) module Φ decomposes as Φ0 ⊕ ΦW , where Φ0 = span
R
{ImΥ}

and ΦW =W.(ReΥ). The elements of the sub-module ΦW may be described
as follows. Let J ⊂ {1, . . . ,m} be a multi-index of length |J |= 
, and dzJ :=
dzj1 ∧ · · · ∧ dzj� . The reader may confirm that ΦW = span

R
{Re dzJ ∧ σ,

ImdzJ ∧ σ : |J |=m− 2}.
In the remark of [11, p. 90] Harvey and Lawson showed that an m-plane

ζ is Lagrangian if and only if the forms Ψ := {dzJ ∧ σp : 2p + |J | = m,p >
0} ⊃ΦW vanish on ζ. So ±ξ ∈Gr(ReΥ) if and only if ImΥ|ξ = 0=Ψ|ξ , while
ξ ∈ C(ReΥ) if and only if ImΥ|ξ = 0 = ΦW |ξ . So it seems a priori that a
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critical ξ need not be calibrated. Nonetheless, Zhou [20, Theorem 3.1] has
shown that ±Gr(ReΥ) =C(ReΥ).

3.6. Squared spinors. In [4], Dadok and Harvey construct calibrations
φ ∈ ∧4pV ∗ on vector spaces of dimension n = 8m by squaring spinors. Let
me assume the notation of that paper: in particular, P = S+ ⊕ S− is the
decomposition of the space of pinors into positive and negative spinors, ε an
inner product on P, and Cl(V ) � EndR(P) the Clifford algebra of V . Given
x, y, z ∈ P, x ◦ y ∈ EndR(P) is the linear map z 	→ ε(y, z)x.

Given a unit x ∈ S+, φ= 16mx ◦ x ∈ EndR(S+)⊂ EndR(P) may be viewed

as an element of
∧
V ∗ � Cl(V ). Let φk ∈ ∧kV ∗ be the degree k component

of φ. Each φk is a calibration, and φk vanishes unless k = 4p. (Also, φ0 = 1
and φn = volV .) The Cayley calibration of Section 3.4 is an example of such
a calibration; see [4, Proposition 3.2].

Given such a calibration φ = φ4p, Dadok and Harvey construct 4p-forms
Ψ1, . . . ,ΨN , N = 1

2 (16)
m − 1, that characterize Gr(φ); that is, ξ ∈ Gr(φ) if

and only if Ψj(ξ) = 0 [4, Theorem 1.1].

Lemma 3.2. The span of the Ψj is our Φ. In particular, C(φ) = Gr(φ).

Proof. Continuing to borrow the notation of [4], the proof may be sketched
as follows. Complete x = x0 to an orthogonal basis {x0, x1, . . . , xN} of S+.
Then Ψj is the degree 4p component of 16mxj ◦ x0 ∈ EndR(S+)⊂

∧
V ∗. Our

Φ is spanned by γj , the degree 4p component of 16m(xj ◦ x0 + x0 ◦ xj). Let
〈x ◦ y, ξ〉 denote the extension of the inner product on V to EndR(P) �
Cl(V )� ∧

V ∗. (See [4].) Given ξ ∈Gro(4p,V ),

Ψj(ξ) = 16m〈xj ◦ x0, ξ〉,
γj(ξ) = 16m〈xj ◦ x0 + x0 ◦ xj , ξ〉.

To see that Φ = span{Ψ1, . . . ,ΨN} it suffices to note that

16m〈x0 ◦ xj , ξ〉= ε(x0, ξxj) = ε(xj , ξx0) = 16m〈xj ◦ x0, ξ〉,

when ξ ∈ ∧4pV ∗. Hence γj = 2Ψj . �

Remark. Zhou showed that C(φ) = Gr(φ) for many well-known calibra-
tions [20]. As the following example illustrates, this need not be the case.

3.7. Cartan 3-form on g. Let G be a compact simple Lie group with
Lie algebra g. Set V = g and consider the adjoint action. Every simple Lie
algebra admits an (nonzero) invariant 3-form, the Cartan form φ, defined as
follows. Given u, v ∈ g, let [u, v] ∈ g and 〈u, v〉 ∈ R denote the Lie bracket
and invariant inner product, respectively. Then φ(u, v,w) = c〈u, [v,w]〉, with
1
c the length of a highest root δ. It is immediate from Lemma 2.1 that ξ is a
critical point if and only if ξ is a subalgebra of g.
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Proposition 3.3. A 3-plane ξ is φ-critical if and only if it is a subalgebra
of g.

Remark. The proposition generalizes to arbitrary φ. See Proposition 3.4.

The su(2)′s in G(3,g) corresponding to a highest root all lie in the same
Ad(G)-orbit and Tasaki [17] showed that this orbit is Gr(φ). (Thi [18] had
observed that the corresponding SU(2) are volume minimizing in their ho-
mology class in the case that G= SU(n).) If the rank of g is greater than 1,
then g contains 3-dimensional subalgebras that are not associated to a highest
root. Thus, Gr(φ)�C(φ). More generally, Hông Vân Lê [15] has introduced
the notion of a manifold admitting a Cartan 3-form, and investigated the
algebraic types of these structures.

Remark. The quaternionic calibration on Hn also satisfies Gr(φ)�C(φ);
see [19] for details.

3.8. Product version of Proposition 2.2. Proposition 3.3 asserts that a
3-plane ξ is φ-critical, φ the Cartan 3-form, if and only if ξ is closed under the
Lie bracket. This is merely a rephrasing of Proposition 2.2, and an analogous
statement holds for any calibration.

Given a p-form φ ∈ ∧pV ∗, define a (p− 1)-fold alternating vector product
ρ on V by

(3.1) φ(u, v2, . . . , vp) =:
〈
u,ρ(v2, . . . , vp)

〉
.

Example. In the case that V = g and φ is the Cartan 3-form, ρ is a
multiple of the Lie bracket.

The following proposition is a reformulation of Lemma 2.1.

Proposition 3.4. Let φ ∈ ∧pV ∗, and let ρ denote the associated (p− 1)-
fold alternating product defined in (3.1). Then a p-plane ξ ∈ Gro(p,V ) is
φ-critical if and only if ξ is ρ-closed.

Example. When V =O and φ is the Cayley calibration, then ρ is a multi-
ple of the triple cross product. See [11, Section IV.1.C] where it is shown that
a 4-plane is Cayley if and only if it is closed under the triple cross product.

Note that

(3.2) ρ(v2, . . . , vp) is orthogonal to v2, . . . , vp.

In particular, ρ may be viewed as a generalization of Gray’s vector cross
product, satisfying [8, (2.1)] but not necessarily [8, (2.2)].

Assume that ξ = e1∧· · ·∧ ep ∈C(φ). Then (3.2) and Proposition 3.4 imply
ρ(e2, . . . , ep) = φ(ξ)e1. This yields the following.

Corollary 3.5. Let ξ ∈Gro(p,V ). The product ρ vanishes on [ξ] ∈Gr(p,
V ) if and only if ξ ∈C(φ) and φ(ξ) = 0.
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4. Parallel calibrations

4.1. Orthonormal coframes on M . Let V be an n-dimensional Euclidean
vector space. Let M be an n-dimensional connected Riemannian manifold,
and let π : F →M denote the bundle of orthogonal coframes. Given x ∈M ,
the elements of the fibre π−1(x) are the linear isometries u : TxM → V . Given
g ∈ O(V ), the right-action u · g := g−1 ◦ u makes F a principle right O(V )-
bundle.

The canonical V -valued 1-form ω on F is defined by

ωu(v) := u(π∗v),

v ∈ TuF . Let ϑ denote the unique torsion-free, o(V )-valued connection 1-form
on F (the Levi–Civita connection form). Fix an orthonormal basis {v1, . . . , vn}
of V . Then we may define 1-forms ωi on F by

ωu =: ωi
uvi.

Let v1, . . . , vn denote the dual basis of V ∗, and define ϑi
j by ϑ = ϑi

jvi ⊗ vj .
Then

ϑi
j + ϑj

i = 0 and dωi =−ϑi
j ∧ ωj .

Given u ∈ F , let {e1, . . . , en}, ei = ei(u) := u−1(vi), denote the correspond-
ing orthonormal basis of TxM .

4.2. H-manifolds. Suppose H ⊂ O(V ) is a Lie subgroup. If the bundle
of orthogonal coframes over F →M admits a sub-bundle E →M with fibre
group H , then we say M carries a H-structure. The H-structure is torsion-
free if E is preserved under parallel transport by the Levi–Civita connection
in F . In this case, we say M is a H-manifold.

When pulled-back to E , the forms ωi remain linearly independent, but ϑ
takes values in the Lie algebra h⊂ o(V ) of H .

4.3. The construction of ϕ and ΦM . I now prove Theorem 1.1. As-
sume that M is a H-manifold. Let π∗ : TuE → TxM denote the differential
of π : E →M . Any φ ∈ ∧pV ∗ induces a p-form ϕ on E by ϕu(v1, . . . , vp) =
φ(ωu(v1), . . . , ωu(vp)). Assume φ is H-invariant. Then ϕ descends to a well-
defined p-form on M . Since E ⊂ F is preserved under parallel transport, ϕ
is parallel and therefore closed. Conversely, every parallel p-form ϕ arises in
such a fashion: fix xo ∈M , and take V = TxoM and φ= ϕxo .

Assume that maxGro(p,V ) φ= 1. Then ϕ is a calibration on M .
Since H is a subgroup of the stabilizer G of φ, Lemma 3.1 implies Φ ⊂∧pV ∗ is a H-module. It follows that Φ defines a sub-bundle ΦM ⊂ ∧pT ∗M .

Explicitly, given u ∈ Ex, ΦM,x := (u−1)∗(Φ)⊂ ∧pT ∗
xM . The fact that Φ is an

H-module implies that the definition of ΦM,x is independent of our choice of
u ∈ Ex.

Let P ⊂Ωp(M) denote space of smooth sections of ΦM . Theorem 1.1 now
follows from Proposition 2.2.
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Remark. Note that Proposition 3.4 also extends to parallel calibrations
in a straightforward manner.

4.4. Proof of Theorem 1.2. Recall the notation of Section 4.1; in particular
the framing e= e(u) associated to u ∈ F . Given a p-form ψ ∈Ωp(M), define
functions ψi1···ip : F → R by ψi1···ip(u) := ψ(ei1 , . . . , eip). The fact that ϕ is
parallel implies

(4.1) dϕi1···ip = (ϑ.ϕ)i1···ip ,

where ϑ.ϕ denotes the o(n)-action of ϑ on ϕ.
The following notation will be convenient. Let {i1, . . . , im} ⊂ {1, . . . , n}

and {a1, . . . , am} ⊂ {1, . . . , p}. If the {a1, . . . , am} are pairwise distinct, then
let ψa1···am

i1···im denote the function obtained from ψ12···p by replacing the indices

a� with i�, 1 ≤ 
 ≤ m. Otherwise, ψa1···am

i1···im = 0. For example, ψ2
s = ψ1s3···p

and ψ13
st = ψs2t4···p. Note that ψa1···am

i1···im is skew-symmetric in both the upper

indices and the lower indices; for example, ψabc
rst =−ψbac

rst =−ψabc
tsr .

Define

C :=
{
u ∈ F | e1 ∧ · · · ∧ ep ∈C(ϕx), x= π(u), e= e(u)

}
.

It is a consequence of Lemma 2.1 that

C =
{
u ∈ F | ϕa

s(u) = 0 ∀1≤ a≤ p < s≤ n
}
.

Given a p-dimensional submanifold N ⊂M , a local adapted framing of M
on N is a section σ : U → F , defined on an open subset U ⊂ N with the
property that span{e1(x), . . . , ep(x)}= TxN ⊂ TxM , ea(x) := ea ◦σ(x), for all
x ∈ U . When pulled-back to σ(U),

(4.2) ωs = 0 ∀p < s≤ n and ω1 ∧ · · · ∧ ωp �= 0.

Conversely every p-dimensional integral submanifold Ũ ⊂ F of (4.2) is lo-
cally the image σ(U) of an adapted framing over a p-dimensional submanifold
U ⊂M .

Given N , let FN ⊂F denote the bundle of adapted frames of M over N .
As noted above ωs

|FN
= 0. Differentiating this equation and an application

of Cartan’s lemma yields

θsa = hs
abω

a

for functions hs
ab = hs

ba : FN → R. The hs
ab are the coefficients of the second

fundamental form of N ⊂M .
Observe that N is ϕ-critical if and only if FN ⊂ C. Assume that N is ϕ-

critical. Then ϕa
s = 0 on FN . Differentiating this equation yields 0 = dϕa

s =
(ϑ.ϕ)as = ϕoϑ

a
s +ϕab

stϑ
t
b, where

ϕo := ϕ12···p = ϕ(e1, . . . , ep)

is the (constant) critical value of ϕ on N . Equivalently, ϕoh
s
ac = ϕab

sth
t
bc.

Recalling that ϕab
st is skew-symmetric and hs

ab is symmetric in the indices a, b
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yields
∑

aϕoh
s
aa = ϕab

sth
t
ab = 0. If ϕo �= 0, then

∑
a h

s
aa = 0 and N is a minimal

submanifold of M . This establishes Theorem 1.2.

Remark. Note that a ϕ-critical submanifold with ϕo = 0 need not be
minimal. As an example, consider M = Rn with the standard Euclidean
metric and coordinates x= (x1, . . . , xn), n≥ 4. The form ϕ= dx1 ∧ dx2 is a
parallel calibration on M . Any 2-dimensional N ⊂ {x1 = x2 = 0} is ϕ-critical
with critical value ϕo = 0, but in general will not be a minimal submanifold
of Rn.

5. The system P

5.1. The ideal I = 〈P〉. Let I ⊂ Ω(M) be the ideal (algebraically) gen-
erated by P .

Lemma. The ideal I is differentially closed. That is, dI ⊂ I .

Proof. Let ϑ be the h-valued, torsion-free connection on M . Let {u1, . . . ,
un} be a local H-coframe. Note that the coefficients ϕi1i2···ip of ϕ with respect
to the coframe are constant. The space ΦM is spanned by forms of the form
{γ = θ.ϕ | θ ∈ g⊥ ⊂ h⊥}. In particular, the coefficients of these spanning γ are
also constant. Consequently the covariant derivative is ∇γ = ϑ.γ. Since ϑ is
h-valued and Φ is h-invariant, ∇γ may be viewed as a 1-form taking values in
ΦM . As the exterior derivative dγ is the skew-symmetrization of the covariant
derivative ∇γ, it follows that dγ ∈ I . �

5.2. Involutivity. This section assumes that reader is familiar with exterior
differential systems. Excellent references are [2] and [13].

In general, the exterior differential system defined by I will fail to be
involutive. In fact, involutivity always fails when p > 1

2n. This is seen as

follows. Let I k =I ∩Ωk(M). Note that I a = {0}, for a < p. Let Vk(I )⊂
Gr(k,TM) denote the k-dimensional integral elements E of I . Then,

Va(I ) = Gr(a,TM), ∀a < p, and Vp(I ) =
{
[ξ] | ξ ∈C(ϕ)

}
.

Let Vk(I )x ⊂Gr(k,TxM) denote the fibre over x ∈M . Given an integral
element E ∈ Vk(I )x spanned by {e1, . . . , ek} ⊂ TxM , the polar space of E is

H(E) :=
{
v ∈ TxM | ψ(e1, . . . , ek, v) = 0,∀ψ ∈ I k+1

}
⊃E.

Suppose that Ep = [ξ] ∈ Vp(I )x . Let {e1, . . . , ep} be an orthonormal basis
of E and set Ea = span{e1, . . . , ea}, 1≤ a≤ p. Since I a = {0}, a < p, we have
H(Ea) = TxM and ca := codimH(Ea) = 0 for 1≤ a≤ p− 2.

Note that 0 �= v ∈ H(Ep−1)\Ep−1 if and only if {v, e1, . . . , ep−1} spans a
ϕ-critical plane. Proposition 3.4 implies that the span of {v, e1, . . . , ep−1} is
closed under the product ρ. Suppose that ϕo = ϕ(ξ) = ϕ(e1, . . . , ep) �= 0. Then
(3.2) implies ρ(e1, . . . , ep−1) = φ(E)ep �= 0, and this forces H(Ep−1) = E. So
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cp−1 := codimH(Ep−1) = n− p. Cartan’s test (cf. [13, Theorem 7.4.1] or [2,
Theorem III.1.11]) implies that

(5.1) codimE Vp(I )≥ n− p.

Note that the Hodge dual ∗ϕ ∈ Ωn−p is also a parallel calibration on M ;
the associated ideal is ∗I , the Hodge dual of I . In particular Vn−p(∗I ) =
{E⊥ | E ∈ Vp(I )}, so that codimE⊥ Vn−p(∗I ) = codimE Vp(I ). It follows
that equality fails in (5.1) when p > 1

2n: the system I is not involutive.

Remark. For example, I fails to be involutive in the case that M is
a G2-manifold and ϕ is the coassociative calibration of Section 3.3. Here,
n = 7 and p = 4, so that n − p = 3, while codimE V4(I ) = 4. It fact, P =
{α ∧ (∗ϕ) | α ∈Ω1(M)}, where ∗ϕ ∈Ω3(M) is the associative calibration. As
is well-known, coassociative submanifolds are integral manifolds of {∗ϕ= 0},
and this system is involutive.

Remark. If the critical value ϕo = ϕ(ξ) equals zero, then Corollary 3.5 im-
plies that the ρ vanishes on E. In this case, H(Ep−1) = {v ∈ TxM | ρ(v, a1, . . . ,
ap−2) = 0∀{a1, . . . , ap−2} ⊂ {1, . . . , p}}.
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