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PARALLEL CALIBRATIONS AND MINIMAL
SUBMANIFOLDS

COLLEEN ROBLES

ABSTRACT. Given a parallel calibration ¢ € QP(M) on a Rie-
mannian manifold M, I prove that the @-critical submanifolds

with nonzero critical value are minimal submanifolds. I also
show that the ¢-critical submanifolds are precisely the integral
manifolds of a ¥°°(M)-linear subspace & C QF(M). In partic-
ular, the calibrated submanifolds are necessarily integral sub-
manifolds of the system. (Examples of parallel calibrations in-
clude the special Lagrangian calibration on Calabi-Yau mani-
folds, (co)associative calibrations on Gz-manifolds, and the Cay-
ley calibration on Spin(7)-manifolds.)

1. Introduction

1.1. Calibrated geometry. Let’s begin by setting notation and reviewing
(briefly) calibrated geometry. See [11] for a through introduction.

Let V be a real, n-dimensional vector space equipped with an inner product.
Throughout {e1,...,e,} CV will denote a set of orthonormal vectors. Let

Gro(p,V):={e1 A---Nept C APV

denote the unit decomposable (or simple) p-vectors. Notice that Gr,(p,V)
is a double cover of the Grassmannian Gr(p,V) of p-planes in V. Given
€ € Gro(p, V), let [¢] € Gr(p, V) denote the corresponding p-plane. I will abuse
terminology by referring to elements of both Gr,(p,V) and Gr(p,V) as p-
planes. (Properly, elements of Gr,(p,V) are oriented p-planes.)

Let M be an n-dimensional Riemannian manifold. Let Gr(p, TM) denote
the Grassmann bundle of tangent p-planes on M, and Gr,(p,TM) the double
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384 C. ROBLES

cover of Gr(p, TM) of decomposable unit p-vectors. Let QP(M) denote the
space of smooth p-forms on M.

Note that, given a p-form ¢ € QP(M) and { =e1 A--- Aep € Gro(p, TM),
0(&) :==p(e1,...,ep) is well defined. If ¢ is closed and ¢ <1 on Gr,(p,TM),
then ¢ is a calibration. The condition that ¢ <1 on Gr,(p,TM) is often
expressed as ¢ < volje. Assume ¢ is a calibration. Let

Gr(p) == {€ € Gro(p, TM) | p(€) = 1}

denote the set of (oriented) calibrated planes, and Gr(p), the fibre over x € M.
An oriented p-dimensional submanifold N C M is calibrated if T, N € Gr(y).,,
for all z € N. That is, ¢y = voly. Compact calibrated submanifolds have
the property that they are globally volume minimizing in their homology
classes [11]. The first step in the identification or construction of calibrated
submanifolds is the determination of Gr(y). However, this is often a difficult
problem, even in the case that ¢ € APV is a constant coefficient calibration
on a vector space. See, for example, [3], [5], [12], [16].

Notice that elements of Gr(y), are critical points of ¢, : Gr,(p,T,M) — R.
However, it is not the case that every critical point is an element of Gr(y),.
(See Section 3.7 below.) Let C(yp), C Gro(p, T M) denote the set of critical
points of ¢,, and C(¢) C Gr,(p, T M) the associated sub-bundle. An oriented
p-dimensional submanifold N C M is p-critical if T,N C C(¢)4, for all z € N.
While the calibrated submanifolds are prized as volume minimizers in their ho-
mology classes, the @p-critical submanifolds are also interesting. Unal showed
that if the corresponding critical value is a local maximum, then the y-critical
submanifold is minimal [19, Theorem 2.1.2]. See also the work on Hong Van
Le on the stability of minimal surfaces [14]. I will prove (Theorem 1.2): if ¢
is parallel, then the p-critical submanifolds with nonzero critical value are
minimal. I will also show that the @-critical submanifolds are characterized
by an exterior differential system & (Theorem 1.1).

1.2. Contents. We begin in Section 2.1 with the simple case of a constant
coefficient calibration ¢ € APV*. In Proposition 2.2, I identify the critical
points C(¢) D Gr(¢) as the annihilator of a linear subspace ® C APV*. In
the case that ¢ is invariant under a Lie subgroup H C O(V), ® is a H-
submodule of APV* (Lemma 3.1). (Of course, every ¢ is invariant under the
trivial group {Id} C O(V).) Several examples are discussed in Section 3, and
a vector-product variation of Proposition 2.2 is given in Proposition 3.4.

In Section 4, Proposition 2.2 is generalized to a parallel calibrations on a
connected, n-dimensional, Riemannian manifold M™. Given an n-dimensional
H-manifold M, a H-invariant ¢ € APV* naturally defines a parallel p-form ¢
on M. Conversely, every parallel p-form ¢ on a Riemannian manifold arises
in this fashion. (See Section 4.3 for a description of the construction.) As a
parallel form, ¢ is a priori closed and thus a calibration on M. Similarly, ®
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defines a sub-bundle ®;; C APT*M. Let & C QP(M) denote smooth sections
of ®5;. A p-dimensional submanifold NP C M is an integral submanifold of
2 it Py ={0}.

THEOREM 1.1. Assume that M™ is a connected Riemannian manifold, and
@ a parallel calibration. A submanifold NP is p-critical if and only if N is an
integral manifold of &2. In particular, every calibrated submanifold of M is
an integral manifold of &.

Proposition 3.4 (the vector-product variant) easily generalizes to give an
alternative formulation of the p-critical submanifolds as those submanifolds
N with the property that T, N is closed under an alternating (p — 1)-fold
vector product p: AP"'TM — TM.

If N C M is ep-critical, then ¢y = ¢, voly, where ¢, is a constant. Refer
to this constant as the critical value of ¢ on N.

THEOREM 1.2. Assume that M is a Riemannian manifold, ¢ € QP(M) a
parallel calibration, and N C M a @-critical submanifold. If the critical value
of ¢ on N is nonzero, then N is a minimal submanifold of M.

Theorems 1.1 and 1.2 are proven in Sections 4.3 and 4.4, respectively.

Finally in Section 5 it is shown that the ideal . C Q(M) algebraically
generated by £ is differentially closed and that, in general, the system fails
to be involutive.

Notation. Fix index ranges
i,7€4{1,...,n}, a,be{l,...,p}, s,te{p+1,...,n}.

The summation convention holds: when an index appears as both a subscript
and superscript in an expression, it is summed over.

2. The infinitesimal picture

2.1. The basics. Let ¢ € APV* and { =e1 A--- Aep € Gro(p, V). Then
o(&) = o(e1,...,ep) is a well-defined function on Gr,(p,V). Fix a nonzero
¢ € APV, with the property that maxq,,,1)¢ =1. The set of (oriented)
calibrated p-planes is

Gr(¢) :={£ € Gr,(p, V) | 6(¢) =1}.
Let C(¢) C Gro(p, V) denote the critical points of ¢. Then

Gr(¢) € C(¢).
Let Fy denote the set of orthonormal bases (or frames) of V. Given e =
(€1,...,en) € Fy, let e* = (el,...,e") denote the dual coframe. Then

d) = ¢i1-~ip€i1 ARERNA eipa
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uniquely determines functions ¢, ...;,, skew-symmetric in the indices, on Fy .
Note that |@s,...;,| <1, and { =e;; A--- Ae;, € Gr(¢) if and only if equality
holds.

Next we compute d¢e. Let O(V) denote the Lie group of linear trans-
formations V — V preserving the inner product, and let o(V) denote its
Lie algebra. Let 6 denote the o(V')-valued Maurer—Cartan form on Fy: at
ee Fy, 0. = Hiej ® €*, where the coefficient 1-forms 9{; = —9? are defined by
de; = 0%ej. Then {0’ ]i < j} is a basis for the 1-forms on Fy.

If £ =ei, A---Ney, is viewed as a map Fy — Gr,(p, V), then

de= > e A Nei,  AOf e Nei, N Ae,.
1<a<p

Thus
dd)g = dqﬁ(eil, .. .,eip)
= Z ¢(€i1,~~~,€z‘a_1,9£ca€k,€ia+1,~~,€ip)

1<a<p
_ § k
= Hia(b(eiu...,eiafl,ek,eiaﬂ,...,eip)
1<a<p
_ 2 : k
— ¢i1"'ia71kia+1"'ip oia °
1<a<p

The skew-symmetry of ¢ and 6 imply that ¢il---ia71kia+1--~ip9£€a vanishes if
ke {i1,...,ip}. The {6F |1<a<p,k¢/{i1,...,ip}} are linearly independent
on Fy, and may be naturally identified with linearly independent 1-forms on

Gro(p, V) at €. Consequently, dge =0, and

(2.1) §=ei, N~ Aey, is a critical point
if and only if ¢i1...ia71kia+1...ipefa =0.

An equivalent, index-free formulation of this observation is given by the
lemma below.

LEMMA 2.1. A p-plane  is a critical point of ¢ if and only if (vi1¢)e =0
for all v e &+,

REMARK. The lemma was first observed by Harvey and Lawson (cf. Re-
mark on page 78 of [11]), and is often referred to as the First Cousin Principle.

The lemma allows us to characterize the critical points £ € Gr,(p, V) of ¢
as the p-planes on which a linear subspace ® C APV* vanishes. Forget, for a
moment, that 6 is a 1-form on Fy and regard it simply as an element of o(V).
Let 0.¢ denote the action of  on ¢. The action yields a map P : o(V) — APV*
sending 6 — 0.¢. Define

o :=P(o(V)) C APV*.
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Notice that the e’ A - A e'r-coefficient of 6.¢ is ¢i,...i,_ikisss--i, 0F. . From
this observation, (2.1), and the fact that the Maurer—Cartan form 6. : T. Fy —
o(V) is a linear isomorphism, we deduce the following.

PROPOSITION 2.2. The set of ¢-critical planes is C(¢p) = Gro(p,V) N
Ann(®).

REMARK. The map P is the restriction of the map Ay : End(V) — APV*
in [10] to o(V'). Corollary 2.6 of [10] is precisely the observation that elements
of ® vanish on Gr(¢) C C(¢). Indeed, Proposition 2.2 above follows from
Proposition A.4 of that paper. This is seen by observing that if A€ o(V) C
End(V), then tr¢eA=0. Then their (A.2) reads Ag(A)(§) = o(D ;). It now
suffices to note that their {\y(A) | A€ o(V)} is our ®, and that {Dz{| A€
o(V)} =T Gro(p, V).

REMARK. Each ¢ € APV* naturally determines an alternating (p — 1)-fold
vector product p on V. An equivalent formulation of Proposition 2.2 is given
by Proposition 3.4 which asserts that £ € C(¢) and only if [¢] € Gr(p,V) is
p-closed.

3. Examples and the product characterization

3.1. Invariant forms. Let G denote the stabilizer of ¢ in O(V). Many of
the calibrations that we are interested in have a nontrivial stabilizer; but, of
course, all statements hold for trivial G. Observe that ® is a g-module. This
is seen as follows. Let g denote the Lie algebra of G. As a g-module o(V)
admits a decomposition of the form o(V) =g ® g*. By definition, the kernel
of P is g. In particular, ® = P(gt). It is straightforward to check that P is
G-equivariant, and we have the following lemma.

LEMMA 3.1. The subspace ® = P(gt) C APV* is isomorphic to g+ as a
G-module.

Below I identify ® for some well-known examples. The calibrations ¢ and
characterizations of Gr(¢) in Sections 3.2-3.5 were introduced in [11].

3.2. Associative calibration. Consider the standard action of the excep-
tional G = G4 on the imaginary octonions V =ImQ =R". As a Go-module
the third exterior power decomposes as A*V* =R @ Vio @ V. (CL [6,
Lemma 3.2] or [1, p. 542].) Here V3, =V as Ga-modules. The trivial
subrepresentation R C A®V* is spanned by an invariant 3-form ¢, the as-
sociative calibration. It is known that £ € Gr(¢) if and only if the forms
Vo ={*(¢ Aa) | a € V*} vanish on £ [11, Corollary 1.7]. Here *(¢ A ) de-
notes the Hodge star operation on the 4-form ¢ A . As & = ijo, we have

C(¢) = Gr(¢9).
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3.3. Coassociative calibration. Again we consider the standard action of
Goon V =ImQO =V, g. The Hodge star commutes with the G action. So the
fourth exterior power decomposes as A\*V* = Voo @ Vito @ Vo', with Va4)b =
#V2,. The trivial subrepresentation is spanned by the invariant coassociative
calibration *¢. A 4-plane { is calibrated by ¢ if and only if ¢ =0 [11,
Corollary 1.19]. Equivalently, the 4-forms of Vi's = {¢ A | @ € V*} vanish
on £. As ® =V}, we again have C(¢) = Gr(¢).

3.4. Cayley calibration. Consider the standard action of G = B3 =
Spin(7) € SO(8) on the octonions V =0 = R®. The fourth exterior power
decomposes as \*V* = Voo @ Vitoo @ Vito o ® Voo (CE [1, p. 548]
or [7, Lemma 3.3].) The trivial subrepresentation V!, is spanned by the
invariant, self-dual Cayley 4-form ¢ = %¢. It is known that & € Gr(¢) if
and only if the forms Vo = {a.¢ | o € Vi, (} vanish on ¢ [11, Proposi-
tion 1.25]; here V2, o = {a € A’V* [x(a A @) =3a} ~ g, As &=V, we
have C(¢) = Gr(¢).

3.5. Special Lagrangian calibration. Regard V :=C™ as a real vector
space. Given the standard coordinates z = x + iy,

1 .
V= spanR{i(dz+d2),—%(dz - dz)}.
Set
o= f%(dzl Adz' -+ d2™ AdE™),

YT=dz' A---Ad2™.

The special Lagrangian calibration is Re Y. An m-dimensional submanifold
i: M — V is calibrated if and only if i*c =0=¢*"Im Y. (Recall that i*c =0
characterizes the m-dimensional Lagrangian submanifolds.)

The special Lagrangian example is distinct from those above in that

su(m)T =RoW C A’V

is reducible as an su(m)-module. The trivial subrepresentation is spanned
by o.

The su(m) module ® decomposes as g @ Py, where ¢ = spanp{Im Y}
and @y = W.(ReT). The elements of the sub-module ®y, may be described
as follows. Let J C {1,...,m} be a multi-index of length |J| = ¢, and dz” :=
dz7t A --- Adz7. The reader may confirm that ®y = spang{Re dz’ A o,
Imdz? Ao : |J|=m—2}.

In the remark of [11, p. 90] Harvey and Lawson showed that an m-plane
¢ is Lagrangian if and only if the forms W := {dz’ A oP: 2p + |J| = m,p >
0} D @y vanish on ¢. So ££ € Gr(ReY) if and only if Im Y ¢ =0 = ¥, while
£ € C(ReT) if and only if InY ¢ = 0= ®y . So it seems a priori that a
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critical & need not be calibrated. Nonetheless, Zhou [20, Theorem 3.1] has
shown that £ Gr(ReT)=C(ReY).

3.6. Squared spinors. In [4], Dadok and Harvey construct calibrations
xS /\4” V* on vector spaces of dimension n = 8m by squaring spinors. Let
me assume the notation of that paper: in particular, P =St @& S~ is the
decomposition of the space of pinors into positive and negative spinors, € an
inner product on P, and Cl(V) ~ Endg(P) the Clifford algebra of V. Given
x,y,z €P, z oy € Endg(P) is the linear map z — &(y, z)x.

Given a unit € ST, ¢ =16z o x € Endr(ST) C Endg(P) may be viewed
as an element of AV* ~ CI(V). Let ¢ € A¥*V* be the degree k component
of ¢. Each ¢y is a calibration, and ¢, vanishes unless k =4p. (Also, ¢ =1
and ¢, = voly.) The Cayley calibration of Section 3.4 is an example of such
a calibration; see [4, Proposition 3.2].

Given such a calibration ¢ = ¢4,, Dadok and Harvey construct 4p-forms
Uy,..., Uy, N=1(16)™ — 1, that characterize Gr(¢); that is, £ € Gr(¢) if
and only if ¥;(£) =0 [4, Theorem 1.1].

LEMMA 3.2. The span of the ¥; is our ®. In particular, C(¢) = Gr(¢).

Proof. Continuing to borrow the notation of [4], the proof may be sketched
as follows. Complete x = 2o to an orthogonal basis {xg,x1,...,2n} of ST.
Then ¥, is the degree 4p component of 16™x; o zy € Endg(ST) C AV*. Our
® is spanned by ~;, the degree 4p component of 16™(x; o g + xg 0 ;). Let
(x o y,&) denote the extension of the inner product on V to Endg(P) ~
Cl(V)~ AV*. (See [4].) Given & € Gr,(4p,V),

U,;(&) =16"(z; 0 z0,&),
v; (&) = 16™(x; 0z + T 0 T4, E).
To see that ® =span{¥y,..., Uy} it suffices to note that
16™ (o 0 x5, &) = e(w0,&x;5) = (x5, £x0) = 16™ (x5 © T0, £),
when ¢ € A*V*. Hence v; = 27;. O

REMARK. Zhou showed that C(¢) = Gr(¢) for many well-known calibra-
tions [20]. As the following example illustrates, this need not be the case.

3.7. Cartan 3-form on g. Let G be a compact simple Lie group with
Lie algebra g. Set V =g and consider the adjoint action. Every simple Lie
algebra admits an (nonzero) invariant 3-form, the Cartan form ¢, defined as
follows. Given u,v € g, let [u,v] € g and (u,v) € R denote the Lie bracket
and invariant inner product, respectively. Then ¢(u,v,w) = ¢{u, [v,w]), with
% the length of a highest root §. It is immediate from Lemma 2.1 that £ is a
critical point if and only if £ is a subalgebra of g.



390 C. ROBLES

PROPOSITION 3.3. A 3-plane & is ¢-critical if and only if it is a subalgebra
of g.
REMARK. The proposition generalizes to arbitrary ¢. See Proposition 3.4.

The su(2)'s in G(3,g) corresponding to a highest root all lie in the same
Ad(G)-orbit and Tasaki [17] showed that this orbit is Gr(¢). (Thi [18] had
observed that the corresponding SU(2) are volume minimizing in their ho-
mology class in the case that G =SU(n).) If the rank of g is greater than 1,
then g contains 3-dimensional subalgebras that are not associated to a highest
root. Thus, Gr(¢) & C(¢). More generally, Hong Van Lé [15] has introduced
the notion of a manifold admitting a Cartan 3-form, and investigated the
algebraic types of these structures.

REMARK. The quaternionic calibration on H™ also satisfies Gr(¢) & C(¢);
see [19] for details.

3.8. Product version of Proposition 2.2. Proposition 3.3 asserts that a
3-plane £ is ¢-critical, ¢ the Cartan 3-form, if and only if £ is closed under the
Lie bracket. This is merely a rephrasing of Proposition 2.2, and an analogous
statement holds for any calibration.

Given a p-form ¢ € APV*, define a (p — 1)-fold alternating vector product
ponV by

(3.1) o(u,va,...,vp) =: <u,p(v2,...,vp)>.
EXAMPLE. In the case that V =g and ¢ is the Cartan 3-form, p is a
multiple of the Lie bracket.

The following proposition is a reformulation of Lemma 2.1.

PROPOSITION 3.4. Let ¢ € APV, and let p denote the associated (p—1)-
fold alternating product defined in (3.1). Then a p-plane & € Gr,(p,V) is
o-critical if and only if £ is p-closed.

ExXAMPLE. When V =Q and ¢ is the Cayley calibration, then p is a multi-
ple of the triple cross product. See [11, Section IV.1.C] where it is shown that
a 4-plane is Cayley if and only if it is closed under the triple cross product.

Note that

(3.2) p(va,...,vp) is orthogonal to ve,...,vp.

In particular, p may be viewed as a generalization of Gray’s vector cross
product, satisfying [8, (2.1)] but not necessarily [8, (2.2)].

Assume that E =eg A---Ae, € C(¢). Then (3.2) and Proposition 3.4 imply
plea,...,ep) = d(&)er. This yields the following.

COROLLARY 3.5. Let & € Gr,(p, V). The product p vanishes on [£] € Gr(p,
V) if and only if £ € C(¢) and ¢(£) =0.
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4. Parallel calibrations

4.1. Orthonormal coframes on M. Let V be an n-dimensional Euclidean
vector space. Let M be an n-dimensional connected Riemannian manifold,
and let m: F — M denote the bundle of orthogonal coframes. Given x € M,
the elements of the fibre 77! (x) are the linear isometries u : T, M — V. Given
g € O(V), the right-action u - g := g~! o u makes F a principle right O(V)-
bundle.

The canonical V-valued 1-form w on F is defined by

Wy (V) := u(m,w),

v €T, F. Let ¥ denote the unique torsion-free, o(V')-valued connection 1-form
on F (the Levi-Civita connection form). Fix an orthonormal basis {v1,...,v,}
of V. Then we may define 1-forms w* on F by

Wy = Wi v
Let v!,...,v" denote the dual basis of V*, and define 193- by 9 = 19§»vi ® i,
Then , ‘ 4 4 4
Ui +9] =0 and dw'=—V;Aw’.
Given u € F, let {e1,...,en}, €; = e;(u) :==u"1(v;), denote the correspond-
ing orthonormal basis of T, M.

4.2. H-manifolds. Suppose H C O(V) is a Lie subgroup. If the bundle
of orthogonal coframes over F — M admits a sub-bundle £ — M with fibre
group H, then we say M carries a H -structure. The H-structure is torsion-
free if € is preserved under parallel transport by the Levi—-Civita connection
in F. In this case, we say M is a H-manifold.

When pulled-back to &, the forms w’ remain linearly independent, but ¥
takes values in the Lie algebra h C o(V') of H.

4.3. The construction of ¢ and ®,;. I now prove Theorem 1.1. As-
sume that M is a H-manifold. Let m, : T, — T, M denote the differential
of m: £ = M. Any ¢ € APV* induces a p-form ¢ on & by ¢, (v1,...,v,) =
d(wu(v1),.. . ,wy(vp)). Assume ¢ is H-invariant. Then ¢ descends to a well-
defined p-form on M. Since £ C F is preserved under parallel transport, ¢
is parallel and therefore closed. Conversely, every parallel p-form ¢ arises in
such a fashion: fix z, € M, and take V =T, M and ¢ = ¢, .

Assume that maxg,, )¢ =1. Then ¢ is a calibration on M.

Since H is a subgroup of the stabilizer G of ¢, Lemma 3.1 implies & C
APV* is a H-module. It follows that ® defines a sub-bundle ®»; C APT*M.
Explicitly, given u € &, ®pr . := (u™1)*(®) C A\PTF M. The fact that ® is an
H-module implies that the definition of ®,s, is independent of our choice of
u €&

Let & C QP(M) denote space of smooth sections of ®;. Theorem 1.1 now
follows from Proposition 2.2.
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REMARK. Note that Proposition 3.4 also extends to parallel calibrations
in a straightforward manner.

4.4. Proof of Theorem 1.2. Recall the notation of Section 4.1; in particular
the framing e = e(u) associated to u € F. Given a p-form ¢ € QP (M), define
functions ;,...;, : F — R by 9.5, (u) :=v¥(e;,,...,e;,). The fact that ¢ is
parallel implies

(41) d(pil...ip = (19.@)7;1...1‘}7,
where .¢ denotes the o(n)-action of ¥ on ¢.

The following notation will be convenient. Let {i1,...,im} C {1,...,n}
and {a1,...,an}t C{1,...,p}. If the {a1,...,a,} are pairwise distinct, then
let 1/)?11,','.;;"”‘ denote the function obtained from 12..., by replacing the indices
ag with ig, 1 <€ <m. Otherwise, 1{* %" =0. For example, 12 = th143...,

i1-evim
and 12 = ¥s214...,. Note that Yt i is skew-symmetric in both the upper
indices and the lower indices; for example, 13%¢ = —bac = —qpabe,
Define

C:={ueFlet A Nep€Clps),x=m(u),e=e(u)}.
It is a consequence of Lemma 2.1 that
C={ueF|gi(u)=0Vl<a<p<s<n}.

Given a p-dimensional submanifold N C M, a local adapted framing of M
on N is a section o: U — F, defined on an open subset U C N with the
property that span{e;(z),...,e,(x)} =T, N C T, M, eq(x) :=eq00(x), for all
x € U. When pulled-back to o(U),

(4.2) wWwi=0 Vp<s<n and w'A---AwP#0.

Conversely every p-dimensional integral submanifold U C F of (4.2) is lo-
cally the image o(U) of an adapted framing over a p-dimensional submanifold
UcM.

Given N, let Fy C F denote the bundle of adapted frames of M over N.
As noted above w?® £, = 0. Differentiating this equation and an application
of Cartan’s lemma yields

0> = h; w®
for functions hl, = hj, : Fnv — R. The h, are the coefficients of the second
fundamental form of N C M.

Observe that N is (-critical if and only if Fy C C. Assume that N is -
critical. Then ¢¢ =0 on Fy. Differentiating this equation yields 0 = dy? =
(9.0)% = oy + iy}, where

Po = P12...p = p(er,..., ep)

is the (constant) critical value of ¢ on N. Equivalently, ¢,hs, = p%ht..
Recalling that ¢ is skew-symmetric and h;, is symmetric in the indices a,b
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yvields " @ohs, = pht, =0. If v, # 0, then Y~ hs, =0 and N is a minimal
submanifold of M. This establishes Theorem 1.2.

REMARK. Note that a @-critical submanifold with ¢, = 0 need not be
minimal. As an example, consider M = R™ with the standard Euclidean
metric and coordinates z = (z!,...,2"), n > 4. The form p =dz' Adaz? is a
parallel calibration on M. Any 2-dimensional N C {z! =22 =0} is ¢-critical
with critical value ¢, =0, but in general will not be a minimal submanifold
of R™.

5. The system &

5.1. The ideal .# = (%). Let .# C Q(M) be the ideal (algebraically) gen-
erated by Z.

LEMMA. The ideal .Z is differentially closed. That is, d.¥ C .Z.

Proof. Let 9 be the h-valued, torsion-free connection on M. Let {ul,...,
u™} be alocal H-coframe. Note that the coefficients ;,4,...;, of ¢ with respect
to the coframe are constant. The space ®,; is spanned by forms of the form
{y=0.0]0 € gt Cht}. In particular, the coefficients of these spanning ~ are
also constant. Consequently the covariant derivative is Vy =.7y. Since 9 is
h-valued and ® is h-invariant, Vv may be viewed as a 1-form taking values in
®,r. As the exterior derivative dv is the skew-symmetrization of the covariant
derivative V7, it follows that dy € .#. (]

5.2. Involutivity. This section assumes that reader is familiar with exterior
differential systems. Excellent references are [2] and [13].

In general, the exterior differential system defined by # will fail to be
involutive. In fact, involutivity always fails when p > %n This is seen as
follows. Let #% = # N QF(M). Note that .#¢ = {0}, for a < p. Let %,(.#) C
Gr(k,TM) denote the k-dimensional integral elements E of .#. Then,

Yu(#) = Gr(a,TM), Va<p, and %(#)={[g]|€€C(e)}.

Let ¥.(#), C Gr(k, T, M) denote the fibre over x € M. Given an integral
element E € ¥ (%), spanned by {e1,...,ex} C T, M, the polar space of E is

H(E):={veT,M|{(e,...,ex,v) =0,V € S5} D B.

Suppose that E, =[£] € #,(F), . Let {e1,...,ep} be an orthonormal basis
of E and set E, =span{ey,...,eq.}, 1 <a <p. Since .#* = {0}, a < p, we have
H(E,)=T,M and ¢, :=codimH(E,)=0for 1<a<p-—2.

Note that 0# v € H(E,—1)\Ep_1 if and only if {v,e1,...,e,_1} spans a
-critical plane. Proposition 3.4 implies that the span of {v,es,...,ep,_1} is
closed under the product p. Suppose that ¢, = ¢(§) = p(e1,...,ep) #0. Then
(3.2) implies p(e1,...,ep—1) = ¢(E)ep, # 0, and this forces H(E,_1) =E. So
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cp—1:=codim H(E,_1) =n — p. Cartan’s test (cf. [13, Theorem 7.4.1] or [2,
Theorem II1.1.11]) implies that

(5.1) codimg ¥,(.¥) >n — p.

Note that the Hodge dual x¢ € Q™" P is also a parallel calibration on M;
the associated ideal is *.#, the Hodge dual of .#. In particular #;,_,(x.%) =
{E+ | E € ,(#)}, so that codimp: ¥;,_,(*.%) = codimp ¥,(#). It follows
that equality fails in (5.1) when p > %n: the system .# is not involutive.

REMARK. For example, .# fails to be involutive in the case that M is
a Go-manifold and ¢ is the coassociative calibration of Section 3.3. Here,
n=7 and p =4, so that n —p =3, while codimg ¥, (#) =4. It fact, & =
{a A (x¢) | a€ QY (M)}, where xp € Q3(M) is the associative calibration. As
is well-known, coassociative submanifolds are integral manifolds of {*¢ = 0},
and this system is involutive.

REMARK. If the critical value ¢, = ¢(§) equals zero, then Corollary 3.5 im-
plies that the p vanishes on E. In this case, H(E,_1) ={ve T, M | p(v,a1,...,
ap—?) = Ov{ah s 7ap—2} C {17 s 7p}}
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