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ABELIAN SUBGROUPS OF Aut (k[X, Y]) AND
APPLICATIONS TO ACTIONS ON THE AFFINE PLANE

BY

DAVID WRIGHT

Introduction

In this study, we apply some theorems of group theory to study algebraic
and non-algebraic actions of algebraic groups on the affine plane. The main
object of study is the group Autk (k[X, Y]), which is denoted by GA2(k).
When k is a field this group hasa decomposition as an amalgamated free
product A *B E of groups (1). Since GA2(k) is (up to anti-isomorphism)
the group of algebraic isomorphisms of the aftine plane A2(k), any action of
a commutative algebraic group G on A2(k) gives rise to a group
homomorphism G GA2(k), the image of which homomorphism is then an
abelian subgroup of GA2(k). Abelian subgroups of any amalgamated free
product A .B E may be understood group theoretically, up to conjugacy, in
terms of the groups A and E, and the containments B c A and B c E, using
certain results from combinatorial group theory, especially a theorem of
Moldavanski (see 0.5). These essential facts are laid out in 0. By these
means we are able to give a classification of any action of an algebraic group
on the aftine plane, up to equivalence (3.10 and 3.11).
The main theorem of 4 (Theorem 4.9) explicitly describes, up to equival-

ence, actions of the n-dimensional vector group G on the plane, as long as
the field k is infinite. This generalizes the results of R. Rentschler and M.
Miyanishi ([11] and [8]), which describe actions of Ga on the aftine plane.

In Section 5, we employ these methods to give another proof of Gut-
wirth’s theorem [5], which describes, up to equivalence, actions of the
n-dimensional torus G on the plane. Again, we assume only that the field
k is infinite. (Certain generalizations of this theorem involving faithful
actions of tori on n-space can be found in [2] and [4].)
The writer is indebted to Professor Hyman Bass, who suggested these

group theoretic methods as a means of describing actions of groups on the
plane.

O. Some facts about subgroups of amalgamated free products

0.1. Notation. When G is a group and H is a subgroup of G, a right
coset of G modulo H is an element of the coset space on which G acts on
the right. Hence if g G, Hg is a right coset. If h G, we conjugate h by g
by writing hg g-lhg. Also, for Hc G, we.write Hg for g-IHg. We write
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580 DAVID WRIGHT

(h, g) for the subgroup of G generated by h and g. Similarly, we write (H, g)
for the subgroup generated by H and g.

Let A, E, and B be groups. Given monomorphisms B A and B E, we
can form G A *B E, the free product of A and E, amalgamated over B.

Let/, resp. J, be a system of non-trivial right coset representatives of A,
resp. E, modulo B. (Here, and from now on, we identify B as a subgroup of
A, and of E.) Let W be the set of all words spelled using elements of I and J
in alternating fashion, including an empty word x. Given a word w W, let
Iwl denote the element of G obtained by multiplying the letters of w in
order. The map B W---G defined by (b, w)-- b Iw[ is a bijection (see 1 of
[12]). Given an element g G, we call the corresponding element (b, w)
B W the normal form of g. Thus each element of G has a unique normal
form. We define the length of g G to be the length of the word w. This is
independent of I and J

Let g G with normal form (b, w). We say that g is cyclicly reduced if w
is non-empty, and if w begins with an element of I and ends with an
element of J, or vice versa. Every element of G is either (1) conjugate in G
to an element of A or E, or (2) conjugate to a cyclicly reduced element; and
(1) and (2) are mutally exclusive. (See 1.3 of [12].) If g is cyclicly reduced,
then clearly length (ga)= d length (g). Hence g is of infinite order.

0.2. There are some facts from combinatorial group theory which will be
exploited to obtain the main results of this paper. These results have to do
with the classification of abelian subgroups of a group G which is an
amalgamated free product A *B E. First I shall state the main group-
theoretic theorem, due to Moldavanski [11], which describes how such
subgroups can occur.

0.3. Theorem-Definition (Moldavanski). Suppose G=A *BE, and
suppose H is an abelian subgroup of G. Precisely one of the following
situations holds.

(1) H is conjugate (in G) to a subgroup of A, or H is conjugate to a
subgroup of E.

(2) H is not conjugate to any subgroup of A or E. There exists an infinite
nested chain of subgroups Hoc H1 c I-I_ Hi such that H
=o Hi, and such that each Hi is conjugate in G to a subgroup of B. (The
chain is necessarily non-stationary.)

(3) H Fx (g), where F is conjugate to a subgroup of B, and g is not
conjugate to any element in A or E. Hence g is of infinite order.
We say that H is an abelian subgroup of type 1, 2, or 3 accordingly.

0.4. This theorem has been proved by combinatorial group theoretic
methods similar to those used in proving similar theorems for free groups.
The reader is referred to Karrass and Solitar’s very lucid treatment [7], in
which this comes as a corollary to a much more general theorem (Theorem 6
of [7]).
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I will merely outline a .proof which uses the Bass-Serre theory of groups
acting on trees; as presented in [12], and which provides a method for the
explicit construction of subgroups of type II and III. There are our main
lemmas (0.21, 0.22, 0.25, and 0.26) from which 0.3 follows immediately.
The lemmas themselves will be important for my purposes because they
provide a method for determining whether or not certain types of abelian
subgroups can occur, and, if so, how to construct them.

0.5. Let (, X) be the following graph of groups [12, 3]:
)1-" /92

where A, E, B and the monomorphisms , , ,
are those given in 0.1. (Referring to the notation of [12], we have written
to represent both the edges and ?.) The graph X is a tree, and the
fundamental group r(d, X, X) of (d, X) [12, 5] is the group G.

0.6. As in [12, 4], we construct the tree =(d, X, X); and we have
an action (on the right) of G on and a projection p" .--X which induces
an isomorphism /G--X. In addition, we have a section s" X-- such that
G(o (the stabilizer in G of s(v)) A, G() E, and G(,) B.

0.7. The tree ., can be realized in the following way. Let be the set
consisting of all the non-empty words in W, together with two formally
"empty" words x and x. The vertices in X correspond bijectively to
elements of f’. Given a word w /’, we write v(w) for the corresponding
vertex in .. We formally declare that xr begins with an element of J, and
that x begins with an element of I. Now, given two words w, w’ f’, not
both empty, the vertices v(w) and v(w’) are connected by an edge in if
and only if w’ is obtained from w by dropping the first letter, or vice versa.
In addition, the vertices v(x) and v(x) are connected by an edge.
Whenever vertices v and v’ in are connected by an edge, we write t(v, v’)
for the edge connecting them. If v v(w), v’= v(w’), with w, w’ /4c, we will
also write t(w, w’) for t(v, v’), We will say that a vertex v(w) of X is of type
A if w begins with an element of J, and of type E if w begins with an
element of L

0.8. We now describe the action of G on . The action will be transitive
on vertices of type A and transitive on vertices of type E. Note that, for any
g G, we can write g a [w[ with a A, and w a word in f" beginning with
an element of J, and this expression is unique. Similarly, we can write
g e Iw’l where e E and w’ f" begins with an element of/. Given g G
and v(w) a vertex in X, then v(w)" g is defined as follows. If v(w) is a
vertex of type /, write Iwl g a Iw’l with a A, w’, and let v(w). g
v(w’). If v(w) is a vertex of type J, write Iwl g e Iw’l with e E, w’ and
let v(w) g v(w’).

0.9. Obviously, each edge in . connects a vertex of type A and a vertex
of type E. Given any segment
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with v of type A and v’ of type E, there exists g G such that v. g =xr and
v’. g xj. (For example, suppose v’ v(w), where w f" begins with an
element of L and v v(ew), where e J. Then take g [w[-1.)

0.10. The stabilizers of the vertices in , are the conjugates of A and E
in G. The stabilizers of edges are the conjugates of B in G. More precisely,
given a vertex v(w) in , then one sees that

AIwl if v(w) is of type A,
G,(w tEt if v(w) if of type E.

Suppose h e J. Let w be a word beginning with an element of/. Upon letting
v v(w), v’= v(hw), then v and v’ are connected by an edge t(v, v’), and
G,(,.,, B last. The same is true if h e i and w is a word beginning with an
element of J. The stabilizer of the edge connecting v(x) and v(xj) is B.

0.11. The projection p" .--->X sends v to v if v is of type A, and to v2
if v is of type E. We choose the section s" X-->. so that s(vl)= v(xt) and
s(vg= v(x).

0.12. Let H be a subgroup of G. Then H acts on by restriction, and
we form the graph of groups (, Y) where Y /H, as in 5 of [12]. Upon
choosing a maximal subtree T in Y we form the fundamental group
rl(’, Y, T) [12, 5]. There exists a section s Y--->: such that sir is a
morphism of graphs. Such a section s induces an isomorphism

" r(9, Y, T)--->H such that for any vertex v in Y and for any edge e in T,
the isomorphism carries , onto Hs, and ’e onto Hs(e [12, 5].

0.13. Employing the technique, and using the terminology, introduced in
[1], we can choose a maximal filtering forest D in Y, and form a reduced
graph of groups (’, Y’). The vertices in Y’ correspond to the connected
components in D. The edges in Y’ correspond to edges in Ywhich aren’t in
D. If T is a maximal subtree of Y which contains D, then T corresponds to
a maximal subtree T’ in Y’, and there is a canonical isomorphism

7r1(, Y, T)--r(’, Y’, T’).

The graph (’, Y’) contains no directed edges.
0.14. Suppose H is a subgroup of G A .s E, and that (, Y), D, and

(’, Y’) are as in 0.13. Let us further assume that the graph Y’ consists of
one point with no edges. Clearly this happens precisely when D Y, i.e.,
(, Y) is a filtering tree of groups. Therefore we have r(, Y, Y)=
qTl(’ Y’, Y’)-H.

0.15. If the filtering tree of groups (, Y) has a maximal vertex v, then
the map

9.--r(, Y, Y) H

is an isomorphism (see 1.6 of [1]). If we lift v to a vertex v’ in , then , is
identified with the stabilizer H(.,), and so H(.,)= H. But H(.,)= H f3 G(.,). By
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0.10, we see that H is a subgroup of either a conjugate of A. or a conjugate
of E.

0.16. Conversely, if H is a subgroup of either a conjugate of A or a
conjugate of E, then there is a vertex v’ of which is fixed by the action of
H on . If v’ projects to v in Y, and if T is a maximal subtree of Y, then the
map ---rt(, Y, T) is an isomorphism. It follows that T Y (otherwise
there would be projections r(’, Y, T) onto Z which, when restricted to ,
were trivial), and that (’, Y) is a filtering tree of groups, v being a maximal
vertex.

0.17. Now suppose that H is a subgroup of G, and that (’, Y) is a
filtering tree of groups with no maximal vertex. This will be the standing
assumption in 0.17-0.21. In this case there exists in Y an infinite directed
geodesic

(1) --1 0 1 2 3

with no maximal vertex, and

lim , r(, Y, Y) H.

Upon choosing a section s of the projection p" ---, Y, we can choose the
isomorphism r(, Y, Y)--.H so as to identify , with H(, H fq Go,,.

0.18. Recalling the construction of X (0.6), we have s(v)= v(w) for
some w /’, and the geodesic (1) lifts to

(w_) ,(Wo) (w) (w)
to tl t2

in . Since (1) is directed, we have

(2) H(_) H,o H(o H, ".

This chain is non-stationary, since (, Y) has no maximal vertex, and the
union is H.

0.19. We may assume that v(w_l) is of type A. Otherwise, we can
remove the first vertex and relabel. We are interested in describing the
subgroup H up to conjugacy in G. Therefore, we are free to replac.e H by
any conjugate Hg, and at the same time apply the automorphism of X which
arises from multiplication by g. In other words, we have a commuting
diagram

XxH ---X

fxHX
where X--X is a multiplication by g, and H---H is conjugation by g. (The
notation H is an abuse.)
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0.20. The point is that we may replace H by an appropriate conjugate,
and assume that w-1 =xt and Wo xj. This follows from 0.19 and 0.9. It
follows, since the vertices v(wi) lie successively along a geodesic, that there
exist sequences {a}= I and {e}__ J such that

Wl e1 w2 alel,

(3) wa e2ae, w4 a2e2ae

w2i-1 e,a_le_t ale, w2i ae ae
The vertex v(w) is of te A if is odd and of te E if is even. According
to 0.10, the nested non-stationary chain (2) is

HA=HBHE=HB
H A H B H E H B

(4)

For each integer i>_ 1, let

(5)
H_ Hf3A1’2,-31 H fqBt’,-l,

H HNEt,-t H fq B

so that the nested non-stationary chain (4) becomes

(6) Ho cH H1 H_ Hf ’.

For each integer i 1, let

(7) S_ -Uw2’-21-i_1 Si’ HII’--.
Since B,c E, and B,At, for each integer i0, we can see from

(5) that

(8) H_x H B,- and H H B,-,I

for each integer i 1. Conjugating the groups in the first equation of (8) by
[w2_2-, referring to (7), we get

Conjugating the groups in the second equation of (8) by Iw2,_]-, and
referring to (7), we get

S __t41,,-1- fq B .,.ql’’l Iw,_1-1 f3 B S, f3 B.
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Thus for each integer i_> 1, we have

(9)

It follows that

and S[=S,fqB

(10)

Similarly it follows that

(11)

Since the nested chain (6) is non-stationary, one concludes from (10) and
(11) that there are infinitely many integers i_> 1 for which either

(12) Sf*, B or S,q- B

The following lemma summarizes the preceding discussion (0.17-0.20).

0.21. LEMMA. Let H be a subgroup of G A , E such that the graph of
groups (, Y) (as in 0.12) is a filtering tree of groups which has no maximal
vertex. Then there exist sequences {ai}= I and {ei}= J (I and J are as in
0.1) and subgroups Si_, S B, >_ 1 satisfying:

(a) Si-1 Sfe’ fq B and Sf= S., fq B for >_ 1.
(b) There are infinitely many integers i>_ 1 for which either Sfe, B, or

S, B such that, upon letting {wj}= c " (see 0.7) be defined by W_x X,
Wo xj, w2i-x eiw2i-2 and w2t aiw2i- for >- 1, and upon letting I-t_
Sl_-21, H S[1’2,-11 for i>_ 1, then we have a nested, non-stationary chain

in G, and H is conjugate in G to the union.

Moreover, the argument above can easily be retraced to obtain the
following converse to Lemma 0.21.

0.22. LEMMA. Suppose we are given sequences {a}7__ 1 i and {ei}.= J (I
and J as in 0.2) and subgroups Si-, S[ B, >- 1, satisfying:

(a) Si_l Sf’, N B and S[ S, fq B for >- 1.
(b) There are infinitely many integers i>_ 1 for which either S, B or

Si, B. Let {wj}=_t f" (see 0.7) be defined by w_x xr, Wo xj, wzi_x

eiw2i-2 and w2i aiw2i-x for >- 1, and let Hi-x SI-/-t, H Stw2,-,I for
i>_ 1. Then we have a nested, non-stationary chain.

Ho H’ H

_
Hf H
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in G, and upon letting H be the union of this chain, the graph of groups
(, Y) (as in 0.12) is a filtering tree which contains no maximal vertex.

0.23. Suppose H is a subgroup of G A *B E, and that (, Y), D, and
(’, Y’) are as in 0.13. We further assume that the graph Y’ consists of one
vertex v’ and one edge t’,

and that t’ is a directed edge. Thefact that t’ is directed means that one of
the monomorphisms 9,,’, is an isomorphism. In this case, D has one
connected component, which is, of course, a filtering tree, and Y has
precisely one edge which is not in D. The fact that t’ is directed implies
that is connected to a maximal vertex vt in D, and that is directed away
from v,. (This is all immediate from the construction of (’, Y’) in [1].)

0.24. Let v be the other edge in Y to which is connected. Since v and
v, are connected in D by a unique geodesic, which is directed toward v,, we
have a circuit

in Y which is directed clockwise (as indicated). One can easily see that when
we remove any one of the edges 6, 0_<i _< n-2, the remaining graph of
groups Di is a filtering tree, and v_l is a maximal vertex in D. Thus the
reduced graph of groups (’, Y’) could have been constructed using D
instead of D, and it would be a directed loop. We see then, that after
possibly replacing D by some D with 0_<i-<n-2, and relabeling the
vertices in 61 (by rotation), we may assume that vi v-t is the image of a
vertex in . which is of type A (see 0.7). Once this adjustment is made, we
see that v comes from a vertex of type A in if is odd, and v comes from
a vertex of type E in X if is even. Hence n is even; say n 2r. We may
proceed from here in a manner similar to that of 0.17-0.20 to obtain the
following lemma.

0.25. LEMMA. Let H be a subgroup of G A *B E such that the graph of
groups ((’, Y’) (as in 0.13) is a directed loop. There exists an integer r>_ 1
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and elements a a I, e e J, b B, and subgroups
So, S’, S, S’, S of B satisfying

(a) Si_l=Sf’,fqB and Sf= S’pf’IB for i= 1 r,
(b) S S,

such that, upon letting w-l, Wo, w w2 (see 0.7) be defined by
w_l x, Wo x, w2-i eiw2_2 and w2 aw2_l for 1,..., r, and letting

1,2,-21 for 1 r + 1 H Sl’2,-,I for 1, r, and lettingHi-1 "-i--1

g b Iw2rl (= barer"" ale1) we have a nested chain

and H Hr and H is conjugate in G to the subgroup (Ho, g) of G. Since
H Hr Ho we have a nested chain

Let F be the union of this chain. Then (Ho, g)= F, (g).

Again, there is a converse to the preceding lemma.

0.26. LEMMA. Suppose we are given an integer r>_ 1, and elements
a,..., aL e er J (I and J as in 0.1), b B, and subgroups
So, S, S S, S’ of B satisfying

(a) S_ Sf’, f3 B and Sf= S, f3 B for 1 r,
(b) Sr S.

Let w_l, Wo, wl,..., wzr W (see 0.7) be defined by w-1 xi, Wo Xj,

forw-i eiw_ and w awzi_l or i= 1 r, and let H_I
1,..., r + 1, H S[12,-1 for 1 r, and let g b [wr[
hater ale1). Then we have a nested chain

Ho C H’x = H1
and H Hr( Ho).

Let F be the union of the nested chain

and let H (F, g)(.= (Ho, g)). Then H is the semidirect product F>(g), and g
is of infinite order. Let v be the image in Y of the vertex v(xi) and let be the
image in Y of t(xi, xj). Then D Y-{t} is a filtering tree, in fact it is a
maximal filtering forest in Y, and v is a maximal vertex. The reduced graph of
groups (’, Y’) with respect to D is a directed loop.

Furthermore, let us record that we can extend the given data to sequences
{a}7=1:/, {e,}7=1: J, and subgroups S-1, S B, for -> 1, in such a way that
HI-I =/-/-l+r and Hfg= H,+r for i> 1. Hence F is the union of

0.27. I can now give a proof of Theorem 0.3, based on the preceding
lemmas, and the main result of [1]. Let H be as in the theorem. Since H is
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abelian, then according to 6 of [1], (’, Y’) is either a point or a doubly
directed loop.

If Y’ is a point then Y is a filtering tree. If Y has a maximal vertex, then
H is conjugate to a subgroup of A or E (see 0.15), and so (1) holds. If Y
has a maximal vertex, then it follows from Lemma 0.21 that (3) holds.

If Y’ is a doubly directed loop, we can apply Lemma 0.25. In the notation
of 0.25, we see that H is conjugate in G to the group (F, g), which is a
semidirect product Fx(g). But since H is abelian, we have (F, g)=F(g).
Now, F is the union of the chain HoCHCH2c which, in our
situation, is stationary, since H is abelian. Therefore F Ho So c B. The
element g, being cyclicly reduced, is not conjugate to any element of A or
E. And so (2) holds.

Clearly (1), (2), and (3) are mutually exclusive, so the theorem is proved.

0.28. COROLLARY. Suppose H is an abelian subgroup of G A . E, and
suppose B is finite. Then H is an abelian subgroup of type 1 or type 3.

Proof. The finiteness of B rules out the possibility of the non-stationary
chain of situation (2) in 0.3.

0.29. COROLLARY. Suppose B is normal in both A and E, and suppose H
is an abelian subgroup of G A . E. Then precisely one of the following
holds.

(a) H is conjugate in G to a subgroup of A or E.
(b) H F (g), where F B, and g is not conlugate to any element of A

or E. (Hence g is of infinite order.)

Proof. Since B is normal in both A and E, B is normal in G. We see,
then, that situation (2) of 0.3 cannot occur, because each Hand hence
Hwould be contained in B. Thus we are left with the possibilities (1) and
(3). In case (3), F must be contained in B.
The following corollary is a well known fact.

0.30. COROLLARY. Supposg B {1}, i.e., G A * E, and suppose H is an
abelian subgroup of G. Then H is conjugate in G to a subgroup of A or E, or
H (g) (infinite cyclic), where g is not conjugate to any element of A or E.

Proof. This immediate from either of 0.28 and 0.29.

0.31. Example. The group PSL2(Z)=SL2(Z)]{:t:I} is isomorphic to
Z/2Z Z/3Z (see [12, Chapter II]). The only non-trivial abelian subgroup
of PSL2(Z are the conjugates of Z/2Z, the conjugates of Z/3Z, and the
infinite cyclic subgroups.

0.32. Example. The group SL2(Z) is isomorphic to Z/4Z *z/4zZ/6Z
where Z/4Z is generated by

(_o
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and Z/6Z is generated by

(ibid.). The non-trivial abclian subgroups of SLy(Z) arc the conjugates of
Z/4Z, the conjugates of Z/6Z, the conjugates of Z/3Z( Z/6Z), the group
Z/2Z, the infinite cyclic subgroups, and the subgroups of the form (Z/2Z)x
(g), where (g) is infinite cyclic. This all follows form Corollary 0.29.

0.33. Dmo. Given G A *s E, and H any subgroup of G, wc say
that H is a subgroup of bounded length if there exists an upper bound for
the length of the elements of H (scc 0.1). Wc say that H is of unbounded
length if no such bound exists.

0.34. One readily verifies that if H G is a subgroup of bounded length,
then any subgroup which is conjugate to H is of bounded length. Further-
more, if H contains an clement h which is cyclicly reduced, then H is of
unbounded degree, since length (h)a =d length (h). It follows that if H
contains an clement which is not conjugate to any clement of A or E, then
H is of unbounded length, because any such clement is conjugate to a
cyclicly reduced clement (scc 1.3 of [12]).

0.35. PROPOSITION. Suppose H is an abelian subgroup of G=A
Then H is of bounded length if and only if H is conjugate to a subgroup of A
or E (i.e. H is of type 1).

(Remark. This proposition is probably true without the assumption that H
is abelian.)

Proof. The "if" is dear, in view of the remarks in 0.34. We must show
that if H is abelian and of bounded length, H cannot be of type 2 or 3 (see
Theorem-Definition 0.3). Any subgroup of type 3 contains an element
which is not conjugate to any element of A or E, and so H cannot be of
type 3.

Suppose now that H is of type 2. This means that the graph of groups
(9, Y) is a filtering tree with no maximal vertex. By Lemma 0.21, there
exists data {a}= 1 c/, {e}= 1 c J, and S_, S B, for -> 1, satisfying (a) and
(b) of 0.21, such that upon letting /-/_, H be defined as in 0.21, H is
conjugate to the union of

In fact, we may assume that H is the union, since replacing H by a
conjugate doesn’t alter the bounded length condition. Condition (b) of 0.21
guarantees that for any integer m, there exists n > m such that either
S’e-5 B or S-5 B. Assume the latter. Let s e S such that sa B. Since
H, Se-alel, then s-e’11 is in H. The length of is 2n-1, since
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Sa- B. We can do a similar thing in the case S’,e, yt B. This shows that H is
of unbounded lengthma contradiction---and so the proposition is proved.

0.36. Example. Let k be a field, and let kiT] be the polynomial ring in
one variable over k. The group GL2(k[T]) is a free product with amalgama-
tion as follows: GL2(k[T])=GL2(k)*B2(k)B2(k[T]) where B denotes the
lower triangular subgroup (see [12], Chapter II).
The set

forms a system of non-trivial right coset representatives of GL2(k) modulo
B2(k). This fact is easily seen, and will be demonstrated in 1.6. The set

J=
f

fek[T], I(0) 0,

forms a system of non-trivial coset representatives of B2(k[T]) modulo
B(k).

Let

(: 0)t= B2(k).

A direct computation shows that if, for some a /, we have t" B2(k), then
w =0. On the other hand, if there exists e e J such that B:(k), then
u v. Obviously, if both of these conditions hold, then is a scalar matrix.
Let us denote by C2(k) the scalar matrices in GL2(k). C2(k) is the center of
GL2(k[T]).
We claim that there are no abelian subgroups of type 2 in GL2(k[T]). In

light of Lemma 0.21, suppose there exist sequences {ai}=l =/, {ei}=l =J
and subgroups S_, Sf = B2(k), i_> 1 satisfying (a) of the theorem. We will
show that (b) cannot possibly be satisfied, which, according to the theorem,
will prove the claim.

Let S for some -> 1. According to condition (a), there exists s a S
such that s",. Therefore s is of the form

with u, v e k*. There also exists re S+ such that s re,/. If

ei+l

then

e+= _f 1
e J’
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and since s(’,9 r B, we must have u v. Therefore s C2(k). Since s",,
s. This shows that S c C2(k). It follows from (a) that Si-1 c C2(k). Since

Si_l, S C2(k) for i_> 1, we see (b) does not hold.
Now suppose H GL2(k[T]) is an abelian subgroup of type 3. Then, by

Lemmas 0.25 and 0.26, we have the same data {a}, {e}, S_x, S as above,
with Si_I=S,NB and S=S.,NB, and an element bB2(k), g=
barer’"ae such that H is conjugate in GL2(k[T]) to F(g) where F is
the union of

(13)

Just as in the last paragraph, we can argue that S_, Sf c C2(k). It follows
from (13) that F Ho So, and that H is actually equal to Fx (g’) where g’
is conjugate to g.
We have proved the following proposition.

0.37. PROPOSITION. Let k be a field. Suppose H is an abelian subgroup of
GL2(k[T]). Then precisely one of the following situations holds.

(a) H is conjugate in GL2(k[T]) to a subgroup of GL2(k) or B2(k[T]).
(b) H=Fx(g) whereF C2(k), and g is not conjugate to any element of

GL2(k) or BE(kIT]) (hence g is of infinite order).

0.38. Remark. We define the degree of an element / GL2(k[T]) (or
GI.(k[T]) to be the maximum of the degrees of its entries--i.e, the degree
of / as an element of the graded ring of 2 x 2 matrices with coefficients in
kiT]. One can prove by an easy induction argument that if al, a /,
el er J (I and J as in 0.36), and if

with d, =deg ), then

deg (ae ae)= deg (ea, ea)
deg (ea,..., er_la_e) d + + d.

(In fact, this is one way to see that GLz(k) *a(k B2(k[T]-->GLz(k[t])is an
isomorphism.) Thus if /=ae...ae, and if d=d+...+d, then
deg (/")= nd. In particular, we can see that for any / GL(k[T]),

deg (/) > (length /- 1)/2.

Let Hc GL2(k[T]). We say that H is a subgroup of bounded degree if
there is an upper bound for the degrees of the elements of H. It follows
from the above remarks that if H is of bounded degree, then H is of
bounded length. Therefore, we can apply Proposition 0.35 to get:

0.39. PROPOSITION. Any abelian subgroup of GL2(k[T]) which is of
bounded degree is conjugate either to a subgroup of GLz(k) or to a subgroup of
B2(k[T]).
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1. The group GA2(k)

1.1. Suppose k is a ring. We denote by GA,(k), or just GA,, the group
of k-automorphisms of the polynomial ring k[X1,... ,X,,]. An element
oeGA, is determined by a vector (FI,...,F,,), when F1,...,F,,e
k[X X,], and so we write (F,..., F,). If 0 (F,..., F,) and
/= (G,..., G,), then

3’0 (F(GI G,), F,(G, G,)).

1.2. The group GL,(k) is identified as a subgroup of GA,(k) by the
monomorphism which sends the invertible matrix (qi) to the vector

x,)cii e GA,, (k).
=1

The additive group k is identified as subgroup o GA,, via the
monomorphism l: k -- GA, defined by l(c, c)
(X +cl X, +c,), and we write n for the image of I. The additive
group k[X2 X] is identified as a subgroup of GAn(k) via the
monomorphism e: k[X2 ,X,,]--GA,, defined by

e(f) (X + f(X:z, X,), X2 X,);

we write ig, for the image of e. We call the elements of , elementary
automorphisms.

1.3. The group GL, normalizes , (in GAz), and ...,,GL, is a semidirect
product, the action of conjugation of G/. on , being given by l(c)* c g,
where c e k", g GL, (c.g denotes matrix multiplication). We denote by
Af, the subgroup ’, xlGL, c GA,. Elements of Af,, are called linear
automorphisms. One easily verifies that Af, is isomorphic to the subgroup
of GL,+(k) consisting of matrices of the form

(:
where g GL(k), c k. (This matrix gets identified with g. l(c)Af,,(k).)
We will often write elements of Af,, as matrices, rather than as vectors.

1.4. The diagonal subgroup D of GL normalizes , and the action is
given by

e(f(X2, X,)) e(rf(rXX:z, rdX,))

(14) where r

0

The subgroup of GA,, generated by g, and D, is a semidirect product. The
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subgroup of GA, generated by ig, > D, and g, is a product
although neither of these groups normalizes the other. We will denote this
group by E,. Each element of E, has the form

(15) (rX +f(X,..., X,)+ c, rX+ c, r,X, + c)
where rl r, k*, cl,..., ck.

1.5. For the case n 2, and k a field, the linear and elementary au-
tomorphisms generate the entire automorphism group. This was proved by
Jung in [6] for the case when k has characteristic zero, and was generalized
to arbitrary characteristics by van der Kulk in [13]. In fact, the group
GAE(k) is the free product of the groups Af2 and E2, amalgamated along
their intersection, which is the semidirect product -2 > B2, where B denotes
the lower triangular subgroup of GL2. Upon letting A Af2, E E2, and
B 2xBE, we have

(16) GA2 A * E.

(See [10, p. 31] or [12, 5] for a proof of this. Both these references furnish
a more complete description of the group GAz(k).)
For the rest of 1 we will be assuming that k is a field.
1.6. We will choose a system of non-trivial left coset representatives of

A modulo B. Since A =.’2GL2, and B =-B2, we can do this by
choosing representatives of GL2 modulo B2. We claim that the set

is such a system. Given

with b 0, a is represented (modulo B2) by

since, upon letting u =det (ct), we have

lib 0

Furthermore, if x y, then

-y

and (Yl )
which shows that

Y}\ B2
x

1 /
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represent distinct left cosets modulo B2. Hence upon identifying A with the
subgroup

oI GL (see 1.3), we see that the, set

(18) I= 0 0
0 1

is our system of left coset representatives of A modulo B. We will let

(19) a(x)= 0 L
0

1.7. We now choose a system of non-trivial left coset representatives of
E modulo B. Let k[Y] Yk[Y]. We claim that

(20) {eft) If .k[Y]2, f= 0}

is such a system. (See 6.2 for notation. Here we consider GA to be the
automorphism group of k[X, Y].) This is seen as follows. Let

=(uX+g(Y)+r, vY+s)E

(see (15)), where u, v k*, r, s k, and g k[Y]. Let

1

-r-g(-)

Writing in vector notation, we have

0 0

1
0

s

Direct computation shows that

eft’) ’2 where -g e k[Y].
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Write ]" =alY+"" +aaYa. Since 0B, then d> 1. Now e(-alY)B, and

e(-aY)/3O e(]’) where f= a2X + + aaX k[Y].
Thus we see that is represented by e(f) modulo B. Furthermore, if
]’1, f2 k[y]2_{0}, and if ]’1 f2, then

e (/)e(]’2)- e(f)e(-f2) e-f2) : B,

since fl- f2 is not linear. This shows that the elements of J represent distinct
left cosets modulo B.

1.8. DEFiNiTION. Given
(deg (q)) to be maximum of the total degrees of the polynomials F and G.
Given a subgroup Hc GA2(k), we say that H is of bounded degree if there
is an upper bound for the degrees of the elements of H; we say that H is of
unbounded degree if no such bound exists.

1.9. PROPOSITION. Suppose we are given al,,.., ar L el, er J (as
defined in (62) and (64)), with el =e), and di =deg) for i= 1,..., r.
Then

deg (ale arer)= deg (elal eras)= deg (eal e,_ta_le,)= ’I dt.
i=1

Proof. It is evident that multiplication of an automorphism on the right
or left by a linear automorphism does not alter its degree, and so we only
need to prove

deg (ae ae)= ’I di.
i=l

Let 0 ael.., are. We will prove the following statement, by induction" If
q (F, G), then deg (q)=deg (F)= 1-I--1 di. For r 0 this makes sense, and
is obviously true. Suppose it is true for r-1. Let

q’= ae. a,_e,_ (F’, G’).

1-I=l di. LetThen by induction, deg (’)= deg (F’)

Then ’ae is given by (x’+ G’ + (F’), F’); clearly the degree of
xCW’+ G’+(F’) is d deg (F’), since deg (F’)_>deg (G’). Thus we have
(F, G) and deg ()= deg (F)= 1-I= d as required.

1.10. It follows from Proposition 6.9 that for any -GA2,

(21) deg (0) -> 2ength (-/2

(see 0.1). Hence, if H is a subgroup of GA of bounded degree, then H is of
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bounded length (see Definition 0.33). The following proposition is then
immediate from Proposition 0.35.

1.11 PROPOSITION. Let k be a field. Suppose H is an abelian subgroup of
bounded degree in GA2(k). Then H is conjugate either to a subgroup of
Af2(k), or to a subgroup of EE(k).

1.12. I wonder if some analogue of Proposition 1.11 is true for GA,(k),
n > 2. If so it could be useful in treating the polynomial cancellation
problem:

Suppose R is a k-algebra such that R[Y] =k k[X, Xn]. Then is

R k k[Xl,..., Xn_l]?

(We refer the reader to [14] for a further discussion of this problem.) In the
situation R[Y] k[X1,... Xa], we get two abelian subgroups of GA,(k) of
bounded degree in the following ways. Given c k*, let qc: R[Y]-- R[Y]
be the R-automorphism defined by Y-- cY. Since R[Y]= k[X,... Xa],
c qc defines a monomorphism k*---- GA,(k). In addition, for any a k*,
we can define 7: R[Y] - R[Y] by Y-> Y+ a. Then a -> 7 defines an
additive monomorphism k+-->GA,(k). It is not hard to see that these
inclusions yield subgroups of bounded degree. It would be extremely helpful
if one knew that such subgroups were conjugate in GAE(k) to some more
managable subgroup (e.g. Afn).

1.13. In order to be able to apply the theorems of 0 to GA2, we will
study the effects of conjugating elements of B by elements of I and J.

Let x k, and let

v B.
rl r2

Computing, we see that

a(x)

0 r r2
!)

xw + 13 w i)x x2w x13 l,{ xw

xr + r2 r
(22) We see that s() B if and only if w O, and in this case we have

a(x) x(u-v) u

xr + r2 rl
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Now let f c2Y2 +... + caYa e k[Y], c O. Writing s and eft) in vector
notation, we see that

se(f) (X-f(Y), Y)(uX+ wY+ rl, vV+ rE)(X + f(Y), Y)

(uX+ wY- uf(Y)+f(vY+ r2)+ rl, vY+ r2)

In particular, we see that

(23) seer) B if and only if f(vY+ r2) uf(Y) is linear or constant.

Now, for any v, r k,

f(vY+ r) v’ Ar
t-‘ Y’ + vDf(r)Y+ f(r).

2= --t =i

(D denotes th derivative.) If the characteristic of k is zero, the above can
be written

a

f(vY+ r)=
v

yi.
i=o i!

Clearly, then, f(vY-r2)-uf(Y) is linear or constant if and only if

a(t)(24) vi " At2 uq
t=i

for i= 2 d. In this case we have

(25)

(putting i-d in (24)), and

(26) s"q)

d

w + vDf(r2) v

rx + f(rq) r2

We will study how abelian subgroups of types 2 and 3 occur as
subgroups of GA2(k) (see Theorem-Definition 0.3). In light of Lemmas
0.21, 0.22, 0.25, and 0.26, the following assumptions are in order.
Suppose we are given sequences {a(x)}= I and {e)}=l J, and

abelian subgroups S_,S B, i>_ 1, such that, upon letting a a(x) and
e, e ), we have

(27) Si_,= S[e’fqB, S[= S,fqB ]’or >_ 1.

These will be the standing assumptions in 1.14-1.19.
As in 0.24 and 0.26, we let

It follows from (27) that
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Let F be the union of this chain. For each of the polynomials {f}7=1, write

(30) f q.2y2 +... + q.a,Ya’, q.a, O.

The following statements are immediate from (22), (23), and (26).

(31) S’= x(u-v) u v s S and =0
LX r2-- xr r rl r2

(32) Si-1 w + Dlf (rE)
rx + f(r9

0 v Sf
/’2 /’1 /’2

and fi (vY+ r2) uf (Y) is linear.
Since B EaBE, we have the exact sequence 1 E B BE 1 and
so for Si-1 and Sf we have the exact sequences

of abelian groups, where K_x S-1 N2, T_I is the image of S-1 in B2;
and similarly for Kf and T.
We will write U(n) for the group of n-th roots of unity in k.

1.15. PROPOSITION. (a) Suppose

Then u va, and v ua,+. Hence u, v e U(4+4+-1).
(b) Suppose

Then v ua,+ and u va,+. Hence u, v U(d+d+- 1).
(c) The homomorphism T U(di+ld+E-1) defined by

is injective, hence carries Tf onto a subgroup U(n).
(d) If K 1, then Sf is conjugate in A to T IqD2(cB2c 1).

Proof. Suppose

W

By (22) we see that, for some re k, f(vY+ r)-uf(Y) is linear, and therefore
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u va’ (see (25)). Suppose

(; 0),
It follows from (31), and what has just been said, that v ua,/.

Again, suppose

It follows from (22) that, for some w’ k,

e T,
W /)

and so v Ud’+. Now suppose

We conclude from (31), and the above, that u va,/. This proves (a) and
(b).
To see that the homomorphism of (c) is injective, we observe that, if

then v ua’+l, by (b), and w x(v-u), by (31).
We will now prove (d). It follows from (31) that

s v S w=0

rl r2

Call this group $. The projection of S on B2 is clearly T N D2. Suppose s,
s’S, 1. Write

S S

kr’ t’
Now

ss’ vv’ and s’s 0 vv’
\u’r + r’ v’t + t’ ur’ + r vt’ +

Since S is abelian, ss’ s’ s, and so

u r + r’ ur’ + r and v" + t’ vt’ + t.
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Therefore

(u’- 1)r (u 1)r’ and (v’- 1)t (v 1)t’.

Since S c S,, and since K, 1, it follows from (a) that u, v, u’, v’ 1 (because
s, s’ 1). Therefore we can write

r r’ t’
u 1 u’ 1

and
v-1 v -1

Thus we have c, d k such that for each s $, s # 1, with

S

then c r[(u- 1), d v/(v- 1). Upon letting

one easily verifies that

Sq’- V

0

Therefore Sq is the projection of S onto B2, which is T fqD. We have
showed that S’a(x,)-lq= S= T fqD2, which proves (d).

1.16. PRoPOSiaaor. Either Tf 1 for all >- 1, or K$ 1 for all 1. In the
later case, K_ 1, for all i 1.

Proof. We make the following claims, for each integer i 1.

Claim 1. If K 1, then K[ 1.
This is apparent from (31). For if

1 Kf, 1,

rl r2

then

0 1 eK, 1.

r2 rl + x,r2

Claim 2. If Kf 1, then K_I 1.
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Suppose

Then, by (76), we have

w 1 e S,: 1,

r f (r) r
for some wk. But, by (31), w=x,(1-1)=0. Hence Kfv 1.

Claim 3. If K 1, or if K 1, then K, Kj_I 1, for ]--< i.
This is immediate from Claims 1 and 2.
Claim 4. If T 1, then T 1.
Assume T 1. Let

By (31), we see that

W

for some w’ k, and w xi (u v). Since T 1, then w’ 0, u v 1, and so
w 0. Therefore T[ 1.
Claim 5. If T,/I 1, then Tf 1.
Assume T[+I 1. Let

By (31) we see that w x(u-v). By (31) and (32) we see that

r+.
Therefore u v 1 and w 0. Therefore Tf 1.

Claim 6. One of the following holds.
(al
(b) K 1
(c) Each element of K is of the form
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and each element of Ti is of the form

Assume neither of situations (a) and (b) holds. We can choose

v S

Cl c2

such that

and

1 e K,: 1.

/’2

Write s s’t’, where

S’= V B2, t’ 1 2"
0 c c

(s’ and r’ may not be in S.) Since S is abelian, we have if= t; and since 2
is abelian we have ’= t. The equation ts’= s’t tells us that

(
o i)W V V

ru + r2w r2v r r2

i.e., that ru+r2w=rx and rv=r2. Thus if r20, then v= 1. By (a) of
Lemma 1.15, u 1, and hence, by the first equation above, w 0. But this
contradicts the fact that

Therefore r2=0. It follows from the first equation, above, that u 1.
Therefore v 1 ((a) of 1.15) and

s= 1 t= 1

cl c2 rl 0

and the claim follows easily.
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Claim 7. Either Tf 1 or K[ =1.
We examine $ in the light of Claim 6. If T 1, then T[ 1 by Claim 4. If
K 1, then K[ 1 by Claim 1. Now suppose (c) of Claim 6 holds. Let

v S
1"1 1"2

It follows from (31) that w xi(v-u), and

1"2 1" -I- X1"2

Then u v 1, by (c), and so w 0. This proves that $i K, i.e., that T 1.
Claim 7 is proved.
Now, Proposition 1.16 follows from Claims 3, 5, and 7.

1.17. Do. Given a polynomial f e k[Y], with f=2 c, and
p char (k), we. say that f is an additive polynomial if q 0 whenever is
not a power of p.

(Note: For p 0, this just says that f cY.)

1.18. oeoso. If all but a finite number of the polynomials
are additive, and if Tf 1 for i 1, then the chain (29) is stationary.

Proof. We will show that S Sf and Sf S,, Tf+ 1 and f+ is
additive. This implies that Hf H H+, whence the proposition.

then s,* B (sinceTo show that S S’,*+ we must show that if s S+,
S o+e’,* B). Since T+ 1, s is ol the form

1

1

Since + is additive, f+(g+ r) f+()+f+(r) for any reK. In particular
f+ (+ r) f+ (Y) is constant, and so by (23) we see that s,* s(f,* e B.
Now, by (32) we see that each element of S is of the form

+vD+(r) v where v s Sf+.
r +.(r) r

But since Ti+l 1, u v 1, and w=O. And since f+l is additive, and

f+l k[Y]2, Df= O. It follows that S c 2, and so, by (22), S., S.,) B.
This proves that S S,, as required.

1.19. PROPOSITION. Suppose Tf 1 or all i>_ 1, and suppose infinitely
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many o]’ the polynomials }= are not additive (e.g. i1 the chain (29) is non-
stationary--by Proposition 1.18). Then the groups Si-, Sf are finite or >- 1.

Proo] We need this lemma.

LEnVA. Suppose ]’ k[Y] is not additive. Then there are only finitely
many constants re k ]or which ]’(Y+r)-]’(Y) is a constant.

Proo] o] lemma. Write [ g+ where is additive and g has no additive
terms, i.e., g=__ bYi, and b =0 whenever is a power of p =char (k).
We may assume bd 0. Clearly it suffices to prove the lemma for g. For
r k, we have

g(Y’+ r)- g() br’- + g(r)
i=1

Hence if g(Y+r)-g(Y)ek, we must have Y,=i+()b,rt-i=0, i=
2 d- 1. Since d is not a power of p, at least one of the coefficients (),
(), (d) is non-zero in k. If (a!)0, we have

(dt])
i+1

Since ba(ai) 0, the above algebraic constraint on r is non-trNial, and so
only finitely many constants r satisfy it. This proves the lemma.

Proo[ o[ the Proposition. We assume each T 1 and that infinitely many
[’s are not additive. Recalling the notation of 1.2, we write l(r, r2) for the
corresponding element o 2. Since T 1, each element o S’ is o this orm.

Claim 1.

S {/(r2 + xr-x+(r), r +/+(r2)) I/(r, r2) S+
and [+(Y-r)-[+(Y) k}.

By (32), we deduce that the elements of S are the elements

( Df+(r) 1

where l(r, r)eSL and fi+(Y+r)-+l(r) is linear or constant. By (31)
we see that the elements of Sf are the elements

0 1

where l(r,r)eSf+l, /+(Y+r)-+(Y) is linear or constant and
Df+(r) 0. These last two conditions say that f+(Y+ r) f+(Y) is
constant, since f+ e k[Y]. This proves Claim 1.
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Claim 2. Suppose 1 -< <. There exist polynomials F, G k[T, T2] with
degT (G)>_ degT, (F) such that the leading (highest power) T-coefficient in
G is a constant, and such that each element of S is the form l(F(r, r2),
G(r,r2)) where l(r,r2)S, and f(Y+r2)-f(Y) is a constant. If i=-1,
we take

F T2 xT xf/(T2), G T +fi+(T2)

and refer to Claim 1. Now we perform induction on j-i. By induction we
have F and G satisfying the requirements in the claim, such that each
element of Sf+x is of the form l(F(r, rE), G(r, r2)) where l(r, r2) S and

f(Y- rE) fi (Y) k. By Claim 1, we see that the polynomials

F’ G x,F- x,f+(G), G’ F+f+(G)
satisfy the requirements for S.
Now, to prove the proposition, it is enough to show that S is finite

whenever// is not additive. (This follows from (27).) There are infinitely
many f’s which are not additive so suppose f+ and f+ are not additive,
with ] > 1. By Claim 2, we can choose polynomials F, G k[T, T2] such that
each element of Sf+ is of the form l(F(r, r2) G(r, r2)), where l(r, r2) S+
and f+(Y+ r2)-fi+i(r2), k.. Since f+i is not additive, the lemma tells us that
only finitely many constants r2 satisfy this condition. By Claim 1 each
element of Sf is of the form

(34) l(G(r, rE)-XF(r, r2)-xf+(G(r, r2)), G(r, rE)+ f+(F(r, r2)))

where l(r, r2) Sf+i, fi+i(Y+ r2)-fi+i(Y) k, and

(35) f,+(Y+ G(r, r2))-f+(Y) k.

Now f/ is not additive, and so G(r, r,) can take on only finitely many
values in order for the above condition to be satisfied. Since the coefficient
of the highest power of T in G(T, T2) is a constant, we see that for each
value of r2, there are only finitely many values of r such that G(r, r2)
satisfies (35). Therefore, each element of S is of the form (34), where r and
r2 each take on only finitely many values; and so Sf is finite.

1.20. Now we drop our assumptions, made in 1.14, and assume that H is
an abelian subgroup of GA2(k) of type 2, with respect to the decomposition
GA2 A , E of (16) (see Theorem-Definition 0.3). This. means that the
graph of groups Y T[H, where T is the tree on which GA2 acts (see 0) is
a filtering tree, with no maximal vertex. Thus we are in the situation of
Lemma 0.21. We apply that theorem to get the data {a}= L {e}= J,
S+, Sf B as specified, and upon letting H_, H be defined as in the
theorem H is conjugate to the union of

Ho H H H_ Hf H
which is non-stationary. We can now apply Propositions 1.15, 1.16, 1.18,
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and 1.19. We let K_, T_x, Kf, T be as in (33). According to Proposition
1.16, either each T[ 1 or each K 1. In the first case, we apply Proposi-
tions 1.18 and 1.19 to get that each Sf (= Kf) is a finite subgroup of 2.
Thus we can say that each H (and hence each H) is conjugate in GA2 to a
finite subgroup of 2. Obviously this case can’t be realized if char (k)= 0,
since then each element of 2 has infinite order. In the case K[ 1 for all
i_> 1, we have each K 1 (by 1.16), and so by (d) and (a) of Proposition
1.15, each S is conjugate in A to a subgroup of D of the form

0

for some integers d, n, with (d, n)= 1 (since u is a power of ua). Whence the
following theorem.

1.21. THEOREM. If H is an abelian subgroup of type 2 in GA2 (with
respect to the decomposition GA2 A , E of (16)), then them exists a
(non-stationary) chain

Ho H = I-I_ Hi
such that H [,.J,o t-I, and such that (a) each H, is conjugate in GA2 to a
finite subgroup of 2, or (b) each H, is conjugate to a subgroup of D2 of the
form

{( u0) u U(n)}
where d and n are integers, depending on i, with (d, n)= 1. If char (k)=0,
case (b) holds.

Note. We will see in Examples 2.2 and 2.5 that both the possibilities (a)
and (b) in the conclusion of Theorem 1.21 can be realized.

1.22. COROLLARY. GA2(k) has no abelian subgroup of type two in each of
the following cases:

(1) kisfinite
(2) char (k)=0 and k contains only finitely many roots of 1.

1.23. Now suppose that H is an abelian subgroup of type 3 in (A2

A ,s E. This means that the reduced graph of groups Y’ (see 0) is a
directed loop (see Theorem-Definition 0.3). According to Lemma 0.25, and
Lemma 0.26, there exists {a}I, {b}x.l, S_, SB, g=
ba,.e,....ae, such that, upon letting H,_, Hf be defined as in 0.25, we
have

F Ho H H H,_x Hf H
(everywhere stationary, since H is abelian) and H is conjugate in GA2 to
F(g) GA2. Again we can apply Propositions 1.16 and 1.15, which tell us
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that either F is a (possibly infinite) subgroup of 2, or else G is conjugate to
a subgroup of D2 of the form

0

where (n, d)= 1. Proposition 1.19, guarantees that, if char(k)=0, and if
F , then F 1, since none of the polynomials are additive, and there
are no non-trivial finite subgroups of . We have proved the following
theorem.

1.24. THEOREM. If H is an abelian subgroup of type 3 in (A2(k)
(=A , E), then them exist a subgroup F H and an element g H which is
not conjugate to any element of A or E (and therefore has infinite order such
that H F (g), and such that (a) F is con]ugate in GAE(k) to a subgroup of
2, or (b) F is conjugate to a subgroup of D2 of the form

where n and d are integers and (n, d)= 1. I[ char (k)=0, case (b) holds.

Note. We will see in Examples 2.9 and 2.10 that both the possibilities (a)
and (b) in the conclusion of Theorem 1.24 can be realized.

2. Examples of abelian subgroups in GA(k)

2.1. In this section we will display some examples of abelian subgroups
of type 2 and 3 in GA:z(k), for various kinds of fields k. We do this by
employing the technical apparatus furnished by Lemmas 0.22 and 0.26. We
will often be referring to the systems I and J of coset representatives of A
and E, respectively, modulo B (see 1.6 and 1.7).

2.2. Example. Let k be a field which contains all the roots of 1. Let

a a(0) 0 J
0

for each integer >- 1. Let {}_ be a strictly increasing sequence of integers
>-2 such that didi+-1 divides di++2-1, and such that p =char (k) does
not divide ddi/ 1 (If p > 0, we can form such a sequence by taking d p,
d2 p2, di+2 P+q- d -p. Then dearly

(d,+l- 1)(pd,+ + 1)= d,+d,+2-1,

and one sees by induction that p does not divide d+d+2-1. If p =0, let
d 2, da 3, d+e dd++ di + 1.) Let f ya, e k[Y], and let e e(f)e .
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Let

\0 0

Sf va’+l v U(di+ld+2-1)
0

for i_> 1. We observe from (22) of 1.13 that Sf S,= S.’,OB. From (23),
(24), and (25), we conclude that

Sfe’ f3 B Sfe(fi) fq B

v 0 0
o

0 1
v U(d+ldi/2-1), and fi(va,/lY)-vf(Y)}.
is linear or constant

The condition fi()di+ly)--)fi(Y) is linear or constant says that va’a,+lYa’
vYa’, i.e., that va,a,+l-= 1. Since dd+-I divides di+ld+z-1, the condi-
tions v U(d+d+2-1) and vaA+<= 1 may be replaced by the condition
v U(did+l- 1). If v U(dd+x- 1), and if u va,+l, then v ua,. Thus we
see that from (36) that

(37) s_ Sf’ fq B Sf’.

The proper containment results from the fact that U(dd+x-1)
U(d+xd+a-1), which follows from the fact that p d+xd+2-1. Therefore
the hypothesis of Lemma 0.21 are satisfied by these data, and so, upon
letting H_I, Hi be defined as in this lemma, we take H to be the union of
the non-stationary chain

Then, according to the lemma, H is an abelian subgroup of type 2 in GA2.
Viewing this example in the light of Theorem 1.21, we observe that case

(b) of the conclusion of the theorem holds in this example, since each S is of
the required form.

2.3. A further analysis of the preceding example shows that if we define
the isomorphisms qi: SI U(di+ldi+2-1) by

if is odd,
if is even



ACTIONS ON THE AFFINE PLANE 609

then following diagram commutes:

H- H

U(d,+- 1) U(+d+2-1)

This shows that H is isomorphic to the union of the groups U(d+-1).
Note that the requirement p (dd+-1) was only used to insure that the

containment of (37) is proper for each i>_ 1. This is actually more than one
needs to apply Lemma 0.21. The hypothesis of this theorem is met if only
the proper containment of (37) holds for infinitely, many integers >- 1. Since
the proper, containment for holds precisely when U(dd+-l)
U(d+d+2-1) is proper, we can replace the condition p [ dd+-1 by the
condition

U(dd2-1) U(dEd- 1) ... U(dd+- 1) U(d+d+2-1) ...
is non-stationary.

It follows that if k has infinitely many roots of 1, we can find an abelian
subgroup H of type 2 in GA2(k) which is isomorphic to the group U of all
roots of 1 in k, provided we can choose the sequence {}=1 in such,a way
that for each integer n, n divides dd+-1 for sufficiently large. For, if the
d’s can be so chosen, the union of the groups U(d+- 1) is all the roots of
1. In fact, this can be done, as follows. List the prime numbers {p}.=x in
order. We want to arrange that (1) dd+x- 1 divides d+d+2-1, and that (2)
(p... p) divides dd+-1. For the sake of choosing the d’s inductively,
we will also arrange that (3) p d. Now, the conditions are satisfied (where
they make sense) if we let d=3, d2=5. Suppose we have defined
d dt+ such that (3) is satisfied for i= 1,..., t+ 1, (2) is satisfied for
i= 1..., t, and (1) is satisfied for i=l, t-1. Let n be a positive
integer. If we were to let dt+= nddt+x + d-n, we would have

(ndt+x + 1)(dtdt+- 1)= dt+xdt+2-1,

and so (1) would be satisfied for t. By (2) and (3) for + 1 we see that
none of the primes p ,p,+ divides d,+x, and so the integer n can be
chosen so that nd,+----1 (mod (px... p,+x)’+x), by the Chinese Remainder
Theorem. With n so chosen, we see that (2) is satisfied for i= + 1 (since
nd,+ + 1 divides d,+d,+2-1). To be able to continue the induction, we must
insure that (3) is satisfied for + 2, i.e., that P,+2 ’ d,+2. Suppose that, with
n chosen as above, we have

Pt+2 dr+2-- nd,dt+x + d, n.

Then Pt+2[ dtd+-l, since ddt+x-1 divides d,+d+2-1. Therefore upon
replacing n by n +(p... pt+)’+x, we see that condition (3) is satisfied, for

+ 2, and conditions (1) and (2) remain intact.
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Thus we have proved:

2.4. THEOREM. Let k be a field containing infinitely many roots of 1.
There exists a subgroup H of GA2(k) which is isomorphic to the group U of
roots of 1 in k, but which is not conjugate to any subgroup of Af2 or E2. Any
such subgroup H is of type 2.

Proof. All is proved, except the last statement. But any subgroup of type
3 contains an infinite cyclic subgroup (see Theorem-Definition 5.1), and
therefore is not isomorphic to U.

2.5. Example. The following lemma enables us to exhibit a different
kind of type 2 abelian subgroup in GA2(k), when ’char (k)> 2.

LEMMA. Let k be a field of characteristic p > 0, such that k contains the
algebraic closure of Fp. Let n be a positive integer, and let f k[Y] be defined
by f (Y- yp.)a where d is any integer > 1 such that p d. Then if r
we have jr(Y+ r)=f(Y). The elements of F() are precisely those elements
r k for which deg (f(Y+ r)-f(Y))<_ 1.

Proof. This follows readily from the fact that the elements of F(o,) are
precisely the roots of Y-Yo".
Now, to give the example, we let Fp be the algebraic closure of F, and

assume k is a field containing F. As in example 2.2 we let

ai a(0) 0 /,
0

for each integer i> 1. Let {Pi},l be a list of all the primes, and let
n(i)=(pl.., p)*. Let e2,_=e:i=e)J, where ] =(y_ yv-,,,)a, where d
is an integer > 1 such that p d. For each integer i_> 1, let

(38)

S2i-1

S2i--2 Ge2(Y(o.,,,}) 1
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Now, given

S :(k),

it follows from the lemma, and from (23) and (26) of 6.13, that s, B if
and only if ’(p.,o), and in this case, s:, s, since both f(t) and Dff(t) are
zero. Also, we see from (22) of 1.13 that s,B, and

s’,- 1

It follows that

S2i- s, t’) B S2i,, S_ S?’__-i B S 2-1

S2i--2 2i--lCtezi- B 2i--lC’e2’-, Si--2 2,ca2t-x--1 B S’-’2i_1

We have satisfied the hypothesis of Lemma 0.22, and so, upon letting _,
H be defined as in the theorem, we have a non-stationary chain

(39) HoHHc"’-H""
and the union H is an abelian subgroup of te 2 in GA2(k). Since is
conjugate to S, a finite subgroup of 2(k), we see that case (a) of the
conclusion of Theorem 1.21 is realized in this example.

2.6 In fact, in this example, H is conjugate to 2((.,+,) (by (38)), and
the induced isomorphismH2(F(,.,,+,) is such that the diagram

H H+

commutes. By the choice o the n,’s, we have Fv,,, Fv, and so

U (E-%)=(F).

It follows that H(Fv).
One really doesn’t need to assume k Fv to construct an example. The

only thing one needs to know is that condition (b) o Lemma 0.22 is
satisfied. (is has the effect o insuring that the chain (39) is non-stationary.)
This can be accomplished by assuming that k Fv, the algebraic closure o
Fv in k, is infinite. With this assumption, let F= k Fv, k Fv.,,, (n(i)
defined as in 2.5). Then the chain F, Fu F... is non-stationary, the
union being F. Upon replacing Fv.,o by in (38), the hothesis o Lemma
0.22 is again satisfied, and we get a non-stationary chain

H0 H H. H,_, H H, .
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such that the union H is an abelian subgroup of type 2. In this case, Hi is
conjugate in GA2 to Le2(F+I), and the diagram (39) commutes, replacing
F(o.,,+I, and F(o.,,+2, by F+I and F+2 respectively. Therefore H 2(F), and
we have the following theorem.

2.1. THEOREM. Let k be a field of characteristic p O. Let F be the
algebraic closure of Fp in k, and assume F is infinite. There exists a subgroup
H of GAE(k) which is isomorphic to the additive group F2 which is not
conjugate to any subgroup of Af2 or E2. Any such subgroup H is of type 2.

Proof. We need to prove the last statement. Any subgroup of type 3 has
an element of infinite order, and hence is not isomorphic to F2.

(Note. One can also produce an abelian subgroup Hc GA2 of type 2
such that H is isomorphic to the additive group of F k

2.8. To produce examples of type 3, we need only to give an abelian
subgroup Fc B and an element g GA:z which is not conjugate to any
element of A or E, and which commutes with every element of F. In this
case, one sees from Theorem-Definition 0.3 that the subgroup (F, g)=
F. (g) is an abelian subgroup of type 3.

2.9. Example. Let d, d’> 1 be integers. Let

a 0 a (0) e/.
0

Let f, f’e k[Y]2 be defined by f= ya, f,= yd’ and let e e(f), e’= e(f’)J.
Let k be a field containing all the (dd’-l)th roots of 1, and let

F= ua’

0

Let g eae’a. We claim that g commutes with every element of F. For any
diagonal element

we have

S 19 . D2,
0

Sa-" tl

0

by (22) of 1.13. By (23), (24), and (26) of 1.13, we see that s B if and only
if u ve, and in this case s s; and s’ B if and only if u va’, and in this
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case se’ s. If s F, then v ua’ and u va, and it follows that

v 0 v 0
S
g

S
eae’a

S
ae’a

bl [A S.

0 0

Hence g commutes with every element of F. Clearly g is not conjugate to
any subgroup of A or E, since g is cydidy reduced (see 0.1). It follows from
2.8 that H=(F, g) is an abelian subgroup of type 3 in GA2(k). In fact,
H=F(g).

In light of Theorem 1.24, note that case (b) of the conclusion holds for
this example.

2.10. Example. Let k be a field of characteristic p 0, and let n, m-> 1
be integers. Assume kF(o,,), F(o). Let f=(Y-YW)a, f’=(Y-Y")a

where d is an integer > 1 such that p J’ d and let e e(f), e’= e(f’) J. Let

a 0 a (0) e L
0

Let

F=

and let g eae’a’. For any element

s 1 e(k)

we have

by (22) of 1.13. By (23) and (26) of 1.13, and by the lemma of 2.5, we see
that se B if and only if F(o,), and in this case se= s; also se’ B if and
only if F(o), and in this case s’= s. Now it follows easily that if s F,
sg= s. Therefore g commutes with every element of F. Also; g is cyclidy
reduced, hence not conjugate to any element of A or E. It follows, using
2.8, that H=(F, g) is an abelian subgroup of type 3 in GA:(k). In fact,
H= (Fx(g).
Note that case (a) of Theorem 1.24 holds in this example. The author

does not know if an example exists where the group F is an infinite
subgroup of ,(2(k).
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3. Actions of commutative k-group schemes on the affine plane

3.1. For any field (or ring) k a k-group scheme is a functor from the
category of k-schemes to the category of groups which is represented by a
map a: x -- of k-schemes. An action of on a k- scheme St is a
functor from the category of k-schemes to the category of groups acting on
sets, represented by a map

3.2. Given an action " x of on , one can easily see that the
map

idx T:xx,
(where id is the projection onto ) is an isomorphism.

3.3. Letting =spec (k), we have the group homomorphism from the
group Hom (, ) of points in (k-rational points) into Aut () which
takes Hom (, ) to the element of Aut () gNen by the composite

=x )x.

3.4. Two actions ? and ’ of on are said to be equivalent if there
exists an automorphism p o such that ’ is given by the composite

idxo ,,/ o
+Se ;x--,--->.

This is equivalent to saying that idx /" x St-- dx Sf is given by the
composite

idxo idx,V idxo
x -----> x ------> x > J x,.5".

3.5. Now suppose we take St A2(k)= spec (k[X, Y]), the affine plane;
and let be some affine k-group scheme spec (R). Suppose we have an
action /"A2--A2 on the affine plane. Then / corresponds to a k
algebra homomorphism k[X, Y] R[X, Y], which is determined by a vec-
tor (P, Q), with P, Q R[X, Y]. According to 3.2, the vector (P, Q) also
determines an automorphism of R[X, Y], i.e., (P, Q) represents an element
of GA2(R) (see 1.1). By 3.4 two actions, determined by vectors (P, Q) and
(P’, Q’), which in turn represent , ’ GA2(R), are equivalent if and only if
there exists q GA2(k) such that ’= O(,(R)R.

3.6. It follows from 3.3 that an action / of on A2, given by (P, Q),
gives us a homomorphism from the (abstract) group Hom (R, k) into
Autk (k[X, Y])= GA2(k). This homomorphim carries Hom (R, k)onto
(q(P), if(Q)), where b is the extended homomorphism qtk[X, Y].

3.7. Now suppose k is a field. Let =spec(R) be a commutative
k-group scheme, and /an action of on A2. We have, as in 3,6, an induced
homomorphism Hom (R, k)-- GA2(k). It is clear from 3.6 that the image H
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of this homomorphism is an abelian subgroup of GA2(k) which is of
bounded degree (in the sense of 1.8), since the degree of any element of H
is at most max (deg P, deg Q). Therefore, by Proposition 1.11, H is conju-
gate in GA2(k) to a subgroup of Af2 or E2. It follows from 3.5, that after
replacing 3’ by an equivalent action, we may assume H Af2 or H E2.

3.8. In order to obtain the results in this section, we must appeal to the
following proposition, which arises from the theory of linear algebraic
groups. We denote by U2 the lower triangular unipotent subgroup of GL2,
and by D2 the diagonal subgroup.

PROPOSITION. If k is an algebraically closed field, then any abelian sub-
group of GL,(k) whose Zariski closure is connected is conjugate to a subgroup
of the lower triangular subgroup.

For the proof we refer the reader to [3, Theorem 15.4]. Note that such an
abelian subgroup of GL, may be replaced by its Zariski closure, which is
again abelian [3, Chapter I].

3.9. PROPOSITION. Suppose k is a field, and suppose k’ is some field extension
of k. Suppose H is a subgroup of GL2(k) which is conjugate in GL2(k’) to a
subgroup of U2(k’). Then H is conjugate in GL2(k) to a subgroup of U2(k).

Proof. Let

be such that Hc U2(k’). Clearly a can be chosen to be in SL2(k’).
Let

Then

b 1 bdh b2h0( 0)0--1 ( d d2h 1-bdh)1 )(h 01)(-dc -ab)=(1+
is in H. Each element of H has the form (40), where h varies. Now, if b 0,
Hc U2(k) and we are done. If d 0, H is contained in the upper triangular
unipotent group, and so H conjugated by (0 ) is contained in U2(k).
Otherwise, b, d 0. By (40) we see that 1-bdh, -b2h k whenever

If H is non-trivial, choose h to be non-zero, and it follows that bd-1 k. Let

/=
-c

B(k’),
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and let

1 bd)-.=a/=
0 1

Then/3 GLE(k), and Ha= /-1(H)3,. Since H’a U2(k’), and since U2(k’)
is normal in B2(k’), we see that Ha c UE(k’)ffl GLE(k)= U2(k).
Now we are prepared to prove the following proposition.

3.10. PROPOSITION. Suppose k is a field, and qJ=spec(R) is.an affine
commutative k-group scheme which is reduced, and assume that the k-
rational points form a dense set in . Any action o[ c on A2(k) is equivalent
either to an action given by a vector o[ the [orm

(41) (uX+ f(Y), vY+ s)

where u, v R*, s R, f R[Y], or to an action given by a vector of the form

(42) (aX+ bY+ r, cX+ dY+ t) where( c)d GL2(R), and r, R.

Proof. As in 3.7 we may replace the action of d on/k2 by an equivalent
action and assume that the image H of the induced homomorphism
Hom (R, k)--- GA2(k) is contained in Af2 or E2. Since d is reduced, and
since the k-rational points are dense in d, it follows that ff x R vanishes at
each k-rational point, then x 0. Now, the action of d on A2 is represented
by a vector (P, Q), with P, Q R[X, Y] (see 3.5). If Hc E2, then when we
evaluate (P, Q) at any k-rational point, we get a vector of the form (41) with
u, v k*, s k, f k[Y]. Therefore, (P, Q) itself is of the form (41) with u, v,
s e R, f R[Y], since no non-zero coefficients vanish throughout
Hom (R, k). Since (P, Q) determines an element of GA2(R) (see 3.5), we
must have u, v R*.
On the other hand, if Hc Af2, then when we evaluate (P, Q) at any

k-rational point we get a vector of the form (42) with

c)d GLE(k), r, tk.

It follows that (P, Q) is of the form (42), and that

c

since (P, Q) determines an element of GA2(R).

3.11. THEOREM. Suppose k is an algebraically closed field, and suppose
d spec (R) is a connected, reduced, affine, commutative k-group scheme.
Then any action of cg on A2(k) is equivalent to an action given by a vector of
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the form
(43) (uX+ f(Y), vY+s)

where u, vR*, sR, fR[Y].

Proof. According to Proposition 3.10, the action is equivalent either to
one of the required form, or else to an action given by

(44) (P, Q) (aX+ bY+ r, cX+ dY+ t) with
d

GL2(R), r, R.

In the latter case, (P, Q) determines an element of Af2(R). Since

Af2(R) 2(R) xl GL2(R),

the matrix

determines an algebraic group homomorphism -- GL2(k). The image H
of Hom (R, k)--GA2(k) is contained in Af2(k), and the projection T of H
onto GL2(k) is the (dosed point) image of the algebraic group homomorph-
ism. Since is connected, T is connected. We appeal to the proposition of
3.8 to conclude that T is conjugate in GL(k) to some subgroup of BE(k). It
follows that H in conjugate in Af2(k) to a subgroup .2B2 B. Thus after
conjugating (P, Q)Af(R) by an appropriate element of GL:(k) (this
amounts to replacing the action of on A2 by an equivalent action) we may
assume that Hc B. Hence the coefficient c of (44) vanishes everywhere, and
therefore c 0, since is reduced. Thus we see that (P, Q) is of the form
(43), with f a linear polynomial.

4. Actions of vector groups on the affine plane

4.1. For any ring k, the k-group G (n dimensional vector group) is the
affine k-scheme spec (kiT1 T,]), together with the map G G---G
defined by the homomorphism

k[T T,,] -- k[T,..., T,] k[T, T,]
k[T,..., T,, T’,..., T]

which sends T to T + Tf, for i= 1, n. Or, in other words,

G2 G ... G (n times)

where Ga=G. We will simply write T and T’ for T,..., T, and
T T’,, respectively.

4.2. An action of G2 on A2(k) is given by a vector (P, Q) with P,
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O k[T, X, Y] (see 3.5) satisfying the conditions

(a) (P(T+ T’, X, Y), Q(T+ T’, X, Y))
(P(T, X, Y), Q(T, X, Y)). (P(T’, X, Y), Q(T’, X, Y)),

(b) (P(0, X, V), O(0, X, Y))= (X, V).

(The vector multiplication of (a) is performed as if we were composing
elements of GAE(k[T, T’]) (see 1.1).) Such a vector (P, Q) necessarily
determines, an element of GA2(k[T]) (see 3.5).

4.3. The (abstract) group of k-rational points Hom (kiT], k) can be
identified with the group (k+)". (We write k+ for the additive group in k.)
An action (P, Q) of G on A2 gives a homomorphism (k+)" ---GA,(k)
which takes

(c) (cl c,) (k+)" to (P(c, X, Y), Q(c, X, Y)) GA2(k).

4.4. Recall from Theorem 2.7 that if k is a field of characteristic p 0
such that k is an infinite algebraic extension of Fv, then there exists a
subgroup of GA2(k) which is isomorphic to (k+)2 which is not conjugate to
any subgroup of Af2 or E2. Thus there exist faithful (non-algebraic) actions
of (k+)E--and in fact k+--on A2 which are not "linear" or "elementary", up
to equivalence.

4.5. Of course, if Hc GA2(k) (k a field) is the image of a homomorph-
ism (k+)" --GA,(k) arising from an (algebraic) action of G on/k2, then H
is of bounded degree, and hence is conjugate to a subgroup of Af2 or E
(Proposition 1.11). This is the principle which has already been exploited, in
a more general setting, to obtain Proposition 3.10 and Theorem 3.11. Now
we will show, in proving Theorem 4.9, how this fact allows us to describe
explicitly all actions of G on A2 (and in 5, all actions of tori on k2), up to
equivalence. First, some preliminaries.

4.6. DEFINITION. Let fk[T,..., Tn]. We say that /: is an additive
polynomial if

(45) [(T + T, T, + T’,)= f(T T,)+ f(T’, T’,)

(Note that if k is an infinite field, this is equivalent to saying that f defines an
endomorphism of (k/)".)

4.7. PROPOSITION. Suppose k is a domain and fk[T, T,,]. If
char (k)= 0, then f is additive if and only if f is linear and homogeneous. If
char (k) p > 0, then f is additive if and only if f is a k-linear combination of
monomials of the form T’.

Proof. The sufficiency in each statement is obvious. The necessity, for
n 1, follows from the fact that if a positive integer, d is not a power of p,
then at least one of the coefficients (),..., (aa_) is non-zero in k. For n > 1,



ACTIONS ON THE AFFINE PLANE 619

we reason as follows. Write

f +

where fo,..., da k[T1, Tn-1]. Putting Tn T’,= 0 in (45) we see that fo
is additive, and hence by induction is of the required form. Now we
substitute only T’,=0 in (45) to get f(T+T’,...,T,_x+T’,_t)=
fi(T, Tn) for 1,..., d. This dearly implies that fl,..., fa k. Finally
we set T T,_ =0= T T’,_ in (45) and appeal to the case
n 1 to see that, for 1,..., d, f 0 if is not a power of p. (When p 0,
this says that f2 fa 0.) This proves that f is of the required form.

(Note. Proposition 4.7 shows that, for n 1, Definition 4.6 agrees with
the definition of additive polynomial given in 1.17.)

4.8. Remark. Suppose f k[Tx,..., T,]. If f is an additive polynomial,
then f defines an endomorphism of (k+)n. We have already remarked that
the converse is true when k is an infinite field. However, if k F<o.>, the
polynomial (T’- T)a defines the zero endomorphism on k/, but is not
additive, if d isnot a power of p.

4.9. THEOREM. Suppose k is an infinite field. Any action of the n-
dimensional vector group G, on the affine plane A2(k) is equivalent either to
an action of the form

(46) (X+go(T)+gI(T)Y+’" + ga(T)Ya, Y)
where go,..., ga k[T,.. T,,] are additive polynomials; or to an action of
the form

(47) (X+ g(T), Y/ h(T))

where g, h k[T, Tn] are additive polynomials.

The proof of this theorem is done in 4.10-4.27.
4.10. Let /be an action of G on/Ik2. "y is given by a vector (P, Q), with

P, Q kiT, X, Y], satisfying (a) and (b) of 4.2. Let H be the image of the
induced homomorphism (k+)"-.GA2(k) (see 4.3). Since k is infinite, no
polynomial in k[T] vanishes on k" (this says that the k-rational points of G
form a dense set), and so according to Proposition 3.10, we can replace - by
an equivalent action, and assume that either (P, Q) is of the form

(48) (uX+ f(Y), vY+ s)

where u, v k[T]* k*, s k[T], f k[T, Y] (i.e. H= E2); or (P, Q) is of
the form

(49) (aX+ bg+ r, cX+ dg+ t) where
d

e GL2(k[T]), r, kiT],
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(i.e. Hc Af2). We will dispense with the second possibility by again replac-
ing /by an equivalent action. Note that, if k were assumed to be algebrai-
cally closed, we could appeal to Theorem 3.11.

3.11. In any case, we can make the base change to k, the algebraic
closure of k. The action /extends to an action /of Ga(/) on/k2(/), and /
is given by the vector (P, Q). Let H be the image of (k+)n--GA2(k). If
(P, Q) is of the form (49), we have

Af2(k) Af2(k)

Recall that Af2 ’2 GL2. Let T, T be the respective images of H, H in
GLE(k), GL2(k). Then T is the (closed point) image of the algebraic group
homomorphism Ga(k) GL2(k) defined by

Since G,(k)is connected, T is connected. Therefore, by the Proposition of
3.8, T is conjugate in GL2(k) to a subgroup of B2(k). But there are no
non-trivial algebraic homomorphisms from a vector group into a torus (one
can convince himself of this by an easy direct argument), and so we must
have T, and hence T, conjugate in GL2(k) to a subgroup of U2(k), the lower
triangular unipotent group. We apply Proposition 3.9 to conclude that T is
conjugate in GL2(k) to a subgroup of U2(k).

It follows that H is conjugate in Af2 so a subgroup of aEU2 Af2.
Therefore, if we replace /by the appropriate equivalent action, - is given
by a vector (P, Q) of the form (X+ bY+ r, Y+ t). In particular, /is of the
form (48) of 4.10.

4.12. Thus we have shown that any action /of G on A2 is equivalent
to one defined by a vector (P, Q) of the form (48). Note that the argument
of 4.11 was necessary to show that - is equivalent over k to such an
actionmnot merely equivalent after going to /.

4.13. So now we may assume / is given by (P, Q) of the form (uX+
f(Y), vY/ s) with u, v k*, s k[T], f k[T, Y]. It follows from (b) of 4.2
that u v 1. It follows from (a) of 4.2 that s is an additive polynomial in
k[T1, Tn ]. Write

f(Y) go + glY+"" + gaYa,

with go, gx ga k[T]. If s 0, we can deduce from (b) of 4.2 that each
of go,..., ga is an additive polynomial. Hence, if s 0, the action is of the
form (46) of 4.9, as required.

4.14. Otherwise, (P, Q) is of the form

(50) (X+ f(Y), Y+ s)
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where kiT, Y], and s kiT] is a non-zero additive polynomial. As above,
write

(51) f(Y) go / glY+"" / gYa

where go ga kiT], g 0. If d -0, we again appeal to (b) of 4.2 to see
that go is additive, and so (P, Q) has the form (47) specified in the theorem.
In the case d > 0 we will show that we can conjugate (P, Q) GA2(k[T]) by
a well chosen elementary automorphism in GA2(k) which has the effect of
leaving the form (50) of (P, Q) intact, but lowering the degree d of . This
will prove the theorem, since conjugating (P, Q) by an element of GAE(k) is
tantamount to replacing /by an equivalent action (see 3.5).

4.15. Since (P, Q) is of the form (50), condition (b) of 4.2 says that

(X+f(T+ T’, Y), Y+s(T+ T’))

(52) (X+ f(T, Y), Y+ s(T))(X+ f(T’, Y), Y+ s(T’))

(X+ f(T, Y) + f(T’, Y+ s(T)), Y+ s(T) + s(T’)).

One sees, then, that

(53) [(T+ T’, Y) f(T, Y) + f(T’, Y+ s(T)).

Now

(54) [(T’, Y+ s(T))= g(T’)s(T)’-’ Y’)
i=0

and so (53) and (54) imply that

(55) g,(r+ r’)= g,(r)+g,(T’)+ g(r’)s(r)-’, i=0, 1 d.)
t=i+l

In particular, we see that the polynomial

A,(T, T’)= Y. g,(T’)s(T)’-
t=i+l

has the property that A(T, T’)= A(T’, T), since A(T, T’)=
g T+ T’) g (T) g T’).
For any polynomial A kiT, T’] we will say that A is T, T’-symmetric if

A(T, T’)= A(T’, T). We will be repeatedly exploiting the fact that the
polynomials A(T, T’) are T, T’-symmetric.

4.16. Given hk[Y], we have e(h)GA2(k) given by (X+h(Y), Y).
Direct computation shows that

(P, Q)’(") (X+ f(T, Y), Y+ s(T))
(56)

(X+ f(T, Y)- h(Y) + h(Y+ s(T)), Y+ s(T)).
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In particular, upon letting h cY", where c k, (56) becomes

(p, Q)e(cv,o (X+ f(T, Y), Y+ s(T))"(cvm)
(57)

(X+ f(T, Y)- cY + c(Y+ s(T))", Y+ s(T)).

Note that the effect of (57) on (P, O)= (X+f(T, Y), Y+ s(T)) is to replace
f(T Y) by [(T, Y)-cY" + c(Y+ s(T))". We wish to choose c and m so that
the conjugation (57) lowers the degree d (in Y) of f. This will prove the
theorem, as was explained in 4.14. We begin by proving the following
technical lemma.

4.17. LEMMA. Suppose the action (P, O) is o the form (X+f(T, Y), Y+
s(T)) with

f go -I- gYq q- q- ga,qYd’q,

where go,..., ga,q kiT] and q is a power of p =char (k). (If p =0, then
q 1). Let u be an integer such that 1 <-u <-d’ and p X u + 1; and let a k.
There exists an elementary automorphism q GA2(k) such that

(P, O) (X+ f’(T, V), V+ s(T))

where

f,= g+ gyq +... + g,,ya,,
g6,..., g, kiT], g= gq for i> u, and g= g-as(T)’.

Proof. In (57) of 4.16, take m (u + 1)q, c =-a/(u + 1), and we see that
e(cY’), works.

4.18. Now we assume that d (= degv f)> 0. Let q be the highest power
of p char (k) which divides every integer ] for which g 0, and write

(58) f go + gY" +" + ga,Y’"
where d d’q. (If p 0, then q 1.) Note that, with f in this form, equation
(55) becomes

(59) G,(T+ T’)= g,(r)+ g,(T’)+ ’. g(T’)s(T)(-,
=i+l

i=0, 1, d’.

This uses the fact that ()= () in k.
4.19. We first assume that p " d’ and p A" d’+ 1. Equation (59) with
(d’- 1), says that

ga,_(T+ T’) g(a,-),(T) + gca,-).(T’) + d’ga(T’)s(T)’.

Thus we see that d’ga(T’)s(T)" must be T, T’-symmetric. Since d’ and s(T)
are non-zero (in kiT]), this easily implies that ga(T)=cs(T) for some
non-zero c k. Since p ’ d’+ 1, we see by Lemma 4.17 that we can perform
a conjugation of (P, O) by an element of GA(k) which has the effect of
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cancelling ga(T)= cs(T)q, and thereby lowering the degree (in Y) of f. Thus
we can lower the degree (in Y) of f by an appropriate conjugation, as long
as d’, d’+1 0 in k. This completes the proof of the theorem for the case
char (k)= 0, and so we will proceed under the assumption p > 0.

4.20. We will dispense with the case p ld’+ 1 by showing it cannot
occur. Suppose p ld’+l. We again appeal to the equation (59), with
i=d’-I to see that ga(T)=cs(T) for some non-zero c k. This can be
done just as in 4.19, since d’ 0 in k.

Let us first assume d’ + 1 p, i.e. d’> p- 1. We.write (59) with p- 1 to
get

T’ ( ) (T,)s(T)(t_p+l)q(60) g(p_)(T+ T’)= g(p_)(T)+ gp_),( )+ g
,=p p-1

Since (p-_ 1) =p 0 in k, we see from (60) that the polynomial

A(T, T’)= ’. T),,_o+l)q
,--o+ p-

g(T’)s(

is T, T’-symmetric. (Note that since d’> p-1, we also have d’> p, and so
the above sum is non-empty.) However, this is impossible because s(T)2
divides A(T, T’), but since ga(T’) (= ga,(T’))= cs(T’), and since (va_’l) 0 in
k (this follows from the fact that p I(d’+ 1). p does not divide

(d’- p + 1)t (p 1)! p 1

in Z), one sees that s(T’)2 does not divide A(T, T’). This violates the
T, T’-symmetry of A(T, T’), and gives a contradiction, when d’+1 p.

4.21. If d’ + 1 p we must make a special argument to get the contradic-
tion. As we have seen in 4.20, ga(T)= g(o_l)q(T)= cs(T), with c

4.22. We claim that, by conjugating (P, Q) by a well-chosen element of
GA2(k), we can arrange that, for ] 1 p-1, there exists q k, 0
such that g(p_j(T) qs(T)j.

4.23. We already have this for ] 1. Assuming this has been arranged
for ] 1 m 1, with 1 < m _< p 1, we study the polynomial gp-m(G)
by writing the equation (59) for i= p-m- 1. We get

(61)

mg(p-(T’)s(T).
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Call this polynomial B(T, T’). Note that all the binomial coefficients

p-re-1’ l<r<_m,

are non-zero in k (since 0 < p-r< p). Therefore we have

(62) B(T, T’)= bls(T’)qs(T)’ + b2s(T’)2qs(T)(m-)"

+"" + b,,,_s(T’)-)"s(T)2" mg,_,,),(T’)s(T)"
with b,...,b,,_k,q:O (also m0 in k). Now B(T,T’) is T,T’-
symmetric, by (61) and S(T)" divides B(T, T’). Therefore s(T’)" divides
B(T, T’). Let

B(T, T’)
D(T, T’)=

s(T)"s(T’)"

Then D(T, T’) is a polynomial, and is T, T’-symmetric. It follows from (62)
that s(T’)" divides g(p_,o,(T’), and

(63) D(T, T’) bs(T)("-"+ b2s(T’)"s(T)("-2"

4-’’’ 4- bm_lS(T’)(m-)"s(T)" m
g(p--m)q(T’)

s(T’)"

(64) bl T).s( + as(T)" g(p_,,),(T).
m

Since p does not divide p-m+1, Lemma 4.17 tells us that we can
conjugate (P, Q) by an appropriate element of GA2(K), and this will have
the effect of subtracting as(T)" from go_,,),(T) without altering
go-,,+),,..., go-),= ga, and without introducing power of Y in ]’(T, Y)
which are not divisible by q. And so, after this conjugation, we have
g(o_,,)(T) c.s(T)TM, where c,, =-b/m k, 0 (see (63)). Thus the claim
of 4.22 is established.

4.24. We write the equation (59) with i= 0, and we get (in view of the
claim)

p.,1
J. (p-’)q(65) go(T+ T’)- go(T)- go(T’) /., cis(T ) s(T)

we have

g(p-m)qg(’-)" (0)= -m (T).bs(T)("-)q-m
s" s"

g,o-,). (0). k,a sq
Hence, letting

Since s is additive, we have s(0)= 0. ,Since D(T, T’) is T, T’-symmetric, we
have D(T, O)= D(O, T), which implies, according to (63) that



ACTIONS ON THE AFFINE FLANE 625

Let w(T) be the non-zero homogeneous form of minimal degree in s(T).
Since s(T) is an additive polynomial, w(T) is of the form alT’+ + anT,"
for some integer e->0. It follows from (65) that the non-zero form of
minimal degree in go(T+ T’) go(T) go(T’) is Y.=I- qw(T’)’w(T)(’-’, and
the degree of this form is p’+Xq. In fact, if we let h(T) be the homogeneous
form of degree p’+Xq in go(T), we must have

(66) h(T+ T’)- h(T)- h(T’) ox q(T’)iw(T)(-".

However, this equation gives a contradiction, as follows. Since w(T) O, we
may assume a@ 0. Note that each of the terms

(67) ca’T’"’T"(’-’, ] 1 p-1

appears in the right hand side of (66). On the other hand, if we substitute
T T 0 T T’, into h(T+ T’) h(T) h(T’), we get zero,
since h is homogeneous and deg h is a power of p, and so a term like (67)
cannot possibly appear in (66).

4.25. Thus we have shown that the situation p l(d’+ 1) cannot occur.
The only situation we have left to deal with is the case p ld’ (see 4.19).

4.26. Assume p[d’. Recall that f= go+gY’’ "+ ga,Ya’, where d
d’q, and q is the highest power of p which divides each of the integers ] for
which g @ 0. We want to show that we can conjugate (P, Q) by a carefully
chosen element of GA2(k) which "cancels out" those terms gY" in f for
which p , i. With this accomplished, f is of the form

f go + g,Y’’+" +. ga,,,,Ya’’

where q’ =pq and d"= d’/p. We can repeat this process until we have p , d",
and then go to the first case treated to lower the degree (in Y) of f.
We will cancel the unwanted g’s (i.e., those for which p , i) starting from

the top.
4.27. For each integer u such that 1--<u-<d’, let C be the following

statement.

(68) C: Let be an integer such that u-<i-< d’. If p , i, then g(T)= 0.
If p i, and if s(T)’ divides g,(T), then (g/s)(0)=0.

4.28. The statement Ca, is just the statement that if s(T) divides
ga(T) ga,(T), then (ga/s)(0) 0. Since p , d’+ 1, we see by Lemma 4.17
that this can be arranged by conjugating (P, Q) by an appropriate au-
tomorphism in GA2(k), which has the effect of adding cs(T)’ to ga(T) (and
probably disturbing some of the lower g’s) without raising the degree of f.
We will prove that if 1 <--u <-d’, and if C+1 holds, then we can perform a

conjugation of (P, Q) as in Lemma 4.17, which disturbs only those g,’s for
which ] <_-u, to arrange that C holds. This will prove the theorem, because
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C1 says that giq 0 whenever p ’ ], and so we can replace q by pq, as was
explained in 4.26.
So assume Cu+l holds. In order to make arrangements for Cu, we must

consider five cases.
4.29. Case L p lu. In this case, we need only to arrange that if s(T)

divides g(T), then (g/sq)(0)=0. Since p , (u+ 1), this can be accom-
plished using Lemma 4.17, just as we did in 4.28 for the case u d’.

4.30. Case II. plu-x. Now we must arrange that g =0. We write
equation (59) with u- 1. Since giq 0 if > u and p , ] (by Cu+l), we get

(69) gt,-1),(T + T’)- g,_l)q(T)- gu_l)q(T’)

a, u- 1
g,(T’)s( + ug(T’)s(T)’

Call the above polynomial A(T, T’). Then A(T, T) is T, T’-symmetric.
Obviously s(T)" divides A(T, T’), and therefore s(T’)" must divide
A(T, T’). Upon studying the right hand side of (69) we see that s(T’)" must
divide gj, (T’) whenever p ] and (,L1) 0 in k; and also s (T’) divides
g(T’). Consider the polynomials

A(T, T’) A(T, T’)
B (T, T’) and B’(T, T’)

s(T)" s(T’)"

Obviously B(0, T)=B’(T, 0). Now, B(0, T)= ugh(T), since s(0)=0. Since
(gi,/s")(0) 0 whenever > u and p l] we see from (69) that

ugB’(T, O) . (O)s(T).
Hence, upon letting a=(g,,/s’)(O)k, we have g(T)=as(T)’. Since
pp ’ u + 1 (unless p 2), we can appeal to Lemma 4.17, and conjugate (P, Q)
by an appropriate element of GA2(k) which cancels g(T), and leaves
gi(T), u < j <-- d’, intact. And so now Cu holds.

4.31. Case III. p lu+l, pu+l. Again, we write equation (59) for
i= u-1. For each ]> u such that gq0, we have P i, and therefore
(L1) 0 in k, since p , u-1 (unless p 2see the footnote in Case II).
Thus equation (59) is

g(,-1),(T + T’)- g(,-1),(T)- gt,-1),(T’) ug(T’)s(T)’.

Therefore ug(T’)s(T)" is T, T’-symmetric, and since u, s(T)q q: 0 (in kiT]),
we must have g(T)= as(T) for some a k. We claim a 0. (Note that we

The case p 2 requires a special argument here. If p 2, then case II is covered by cases III
and IV. The proof in case IV holds if p 2. However, in case III, we encounter a difficulty in
getting g(T) to be of the form as (T), a k. But since this much is accomplished in case II,
for p 2, we can patch cases II and III together to cover the case 2[u- 1, 2 u + 1.
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cannot employ Lemma 4.17 to cancel g(T) as we did in Cases I and II,
since p lu / 1.) We write equation (59) with i= p-1. For each ]> u such
that gjq 0, we have p , and so (pL1) 0 in k. Also (p_l) P 0 in k, and so
the equation is

go-1)q(T+ T’)-g-I)’(T)-g-I’(T’)=
t=o+l P

_t 1
gt,(T’)s(T)’-+1.

This is a non-empty sum, since u > p. Note that s(T)2q divides this polyno-
mial. Since the polynomial is T, T’-symmetric, s(T’)2" must divide it also. It
follows that s(T’)2 divides g(T’) whenever (pL)0 in k. Now, (01) 0 in
k, since p lu / 1 (this was explained in 4.20, for d’) and so s(T’)2’ divides
g(T’) as(T’)’, which implies that a 0. Hence C holds.

4.32. Case IV. p u + 1. In this case we can argue as in Case III (Case II
if p 2) that g(T) ( g_q(T)) as(T)’ for some a k. We claim a 0.
Assume a 0. We will arrive at a contradiction by a similar procedure to

that of 4.21-4.24 where we proved the impossibility of p d’/ 1.

(70) We claim, as in 4.22, that, by conjugating (P, Q) by a well-chosen
element of GA2(k) which leaves gj, intact for j > u we can arrange
that, for ]=1,...,p-1, there exists qk,v0 such that
g(o_q(T) qs(T)j.

This is already the case for 1, letting c a. As in 4.23, we assume that
this has been arranged for ] 1,..., m-1, where 1 <re--<p-1, and we
write equation (59) for i=p-m-1. Now, as long as m <p-l, all the
binomial coefficients (o--x) are zero in k whenever p[i since p , p-m- 1.
Therefore, if m <p-1 this equation is equation (61) of 4.23, and we can
argue just as in 9.23 that after suitable conjugation, g(p_,,)q(T) is of the form
c,,,s(T)’’ with c,, k, 0; and the higher g,’s remain undisturbed.
When p > 2 we must make a special argument for the last step when

m p- 1. In this case the coefficients (_,_1) are all l, and so when we write
(59) with i= 0, we get

go(T+ T’) go(T) go(T’)

Call this polynomial B(T, T’). Obviously B(T, T’) is T, T’-symmetric, and
s(T)q divides B(T, T’), and therefore s(T’)q divides B(T, T’). It follows that
s(T’)q divides each of the polynomials gjq(T’) where ]>_p, and also $(T’)q
divides g(T’). Since the assertion C (68) holds, we have (gq/s’)(0)= 0, for
]-> p. Let D(T, T’) be the polynomial B(T, T’)/s(T’)’s(T)q. Then D(T, T’) is
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T, T’-symmetric, and we have g(T)/s(T)’= D(O, T), since s(0)= 0. Also

D(T, O)= cls(T)(-:)’+--z (0)

since (gq/sq)(0)= 0 for ] >-p. By the T, T’-symmetry of D(T, T’), we have
D(T, O) D(O, T), and therefore g(T) cls(T)-2)’s(T)’ + bs(T)’ where
b (g/s’)(O) k. Since p > 2, we know that p ’ 2, and so, by Lemma 4.17
we can conjugate (P, Q) by an element of GA2(k) to subtract bs(T) from
g(T). ter doing so, we have (T)=cs(v-s(T)=cxs(T)- as
required in the claim (70). is validates the claim.
And so we arrange that go_o,(=qs(", qk, 0, for ]=

1,..., p-1. As in 4.24, we study the equation (59) with i= 0, which is

(71)

Upon letting w(T) be the non-zero homogeneous form of minimal degree in
s(T) we see from (71) that the non-zero form of minimal degree in
go(T+ T’) go(T) go(T’) is

(72) ’ qw(T’)i’w(T)(’-J)’.
j=l

(Note. The fact that gq(0)= 0 shows that the first summation of (71) does
not contribute to the form of minimal degree in go(T+ T’)-go(T)-go(T’).)
Since w(T) is an additive form, its degree is a power of p, say p, and
w axTx’+ + a,T,". The degree of the form (72) is p+q. If we let h(T)
be the form in go(T) of degree p+Xq,, we must have, by (71),

19--1

h(T+ T’)- h(T)- h(T’)= . qw(T’)Uw(T)-’,
i=1

which is the same equation as (66) in 4.24, and leads to the same contradic-
tion.
Thus we have shown, by contradiction, that g(T)= gtp_l(T) 0, which

implies that Cu holds.

4.26. Case V. p ’ u + 1, p ’ u, p ’ u- 1. Write equation (59) with
u- 1. Since p li whenever ] > u and gq 0 (by Cu+x) we have (u_)= 0 in k,
and so the equation is

g(,_x)q(T+ T’)- gtu_)q(T)- g(,_l)q(T’) ug(T’)s(T)’.

Since u0 in k, and since ug(T’)s(T)’ is T, T’-symmetric, it follows that
g(T) bs (T)’ for some b k. Now we can employ Lemma 4.17 to perform
a conjugation of (P, Q) by an element of GAz(k) which cancels g,q(T), so
that C, holds.
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4.27. This completes the proof of Theorem 4.9. Note that the crux of
the argument comes in 4.10, where it depends on the act that the abelian
subgroups of bounded degree in GA2(k) are all conjugate to linear and
elementary subgroups. The rest of the proof, although lengthy and notation-
ally difficult, is conceptually fairly straightforward.

In the case n 1, the theorem can be refined as follows.

4.28. COROLLARY. Suppose k is an infinite field. Any action of G on the
affine plane A2(k) is equivalent to an action given by a vector of the form

(X+go(T)+gx(T)Y+"" + ga(T)Ya, Y)
where go ga are additive polynomials in k[T] (one variable).

Proof. (We present the proof assuming char (k)=p>0. Basically the
same proof works if char (k)- 0, but things are simpler.) Given an action 3
of Ga on A2, Theorem 4.9 tells us that 3 is equivalent either to an action
given by such a vector, or else to an action given by (P, Q) of the form
(X+ g(T), X+ h(T)), where g, h k[T] are additive polynomials. Suppose
g, h 0, and let .aT, bT be the leading (highest degree) terms of g and h,
respectively. Suppose u-> v. We conjugate (P, Q) by

e 1’-’ X-- GA(k).

(This gives us an action equivalent to /.) Conjugating (P, O) by
e(-(bla)Y-) we get

x+gYO X-g_

(X+ g(T)- h(T)’’-’, Y+ h(T)

The leading term of -(a/b)h(T)p’- is -aT, which cancels the leading
term of g(T). Thus we have replaced g(T) by an additive polynomial of
lower degree. Of course, we can do a similar thing if v-> u (conjugate by
(X, Y-(a/b)Yp’-’) instead) to lower the degree of h(T). We can continue
this until we have either g 0 or h 0. If h 0, we are done, since (P, Q) is
of the form specified in the corollary, with d 0. If g =0, we conjugate
(P, Q) by (Y, X) GA2(k) to get (X+ h(T), Y), which is of the required
form. This proves the corollary.

4.29. If k is algebraically closed, so that G and A2 are algebraic groups
in the classical sense, we restate Theorem 4.9 and Corollary 4.28 (in reverse
order) in terms of the action of closed points.

Restatement for the case where k is algebraically closed. (1) (Rentschler,
Miyanishi). Any action of Ga on the affine plane A2 is equivalent to an
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action of the form

t. (x, y)= (x + go(t)+ gl(t)y +"" + ga(t)y a, y)

where go,..., ga are additive polynomials.
(2) Any action of the n-dimensional vector group G on/k2 is equival-

ent either to an action of the form

(tl t,). (x, y)= (x + go(t)+ gl(t)y +... + ga(t)ya, y)

where go ga are additive polynomials in tl,..., t,; or to an action of the
form

(t t)(x, y) (x + g(t), y +,h(t))

where g and h are additive polynomials in t t.

. Actions of tori on the affine plane (Gutwirth’s theorem)

5.1. For any ring k, the k-group G (the n-dimensional torus) is the
affine k-scheme spec (A) where A k[T, T-]]*=, the map GG,-->G
being given by the homomorphism

A-->A (R) A- k[T, Tf, T-, Tf-1]=
which sends T to TTf, for 1 n. We will write just T for T,..., T,
and T-x for T,..., T, so that A=k[T, T-I], A (gA-
kiT, T’, T-, T’-].

5.2. An action of G, on A2 is given by a vector (P, Q) k[T, T-, X, Y]
(see 3.5) satisfying the following conditions:

(a) (P(TT’, X, Y), Q(TT’, X, Y))
(P(T, X, Y), Q(T, X, Y)). (P(T’, X, Y), Q(T’, X, Y))

(b) (P(1, X, Y), Q(1, X, Y))= (X, Y).
(The vector multiplication of (a) is performed as if we were composing
elements of GA2(k[T, T’, T-, T’-;]) (see 1.1).) Such a vector (P, Q) neces-
sarily determines an element of GA2(k[T, T-;]) (see 3.5).

5.3. For G, the (abstract) group of k-rational points
Hom(k[T, T-l], k) is identified with the multiplicative group (k*). An
action (P, Q) of G on A2 gives rise to the homomorphism (k*)"--GAE(k)
which takes

(u) (u u) (k*)" to (P(u, X, Y), Q(u, X, Y)) GA2(k).

5.4. One sees from Theorem 2.4 that if k is an infinite field extension of
1, there exist subgroups of GA2(k) isomorphic to k* which are not
conjugate in GA2 to any subgroup of Af2 or E2. Thus there are faithful
(non-algebraic) actions of k* on A2 which are not "linear" or "elementary",
up to equivalence.
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5.5. However, if k is a field and HGAz(k) is the image of a
homomorphism (k*)"--> GA: induced by an (algebraic) action of G, on A2,
then H is of bounded degree, and so H is conjugate to a subgroup of Af2 or
E2 (Proposition 1.11). As with actions of vector groups on A2 (4), we will
exploit this fact to prove Theorem 5.9 which explicitly describes actions of
tori on A2, up to conjugacy.

5.6. DEFINmO. Let f k[T, T-]=, f:0. We say that is a multip-
licative (Laurant) polynomial if

(73) f(T, T’,..., T,,T’,,)= f(T,..., T,)f(T’,..., T’,).

(Note that if k is an infinite field, this is equivalent to saying that ]’ defines an
endomorphism of the group (k*)").

5.7. PROeOSlTION. Suppose k is a domain and [’ k[T, -T ]=,
Then f is a mulfiplicafive polynomial if and only if f is a Laurant monomial,
i.e., f is of the form I-L"= T.,, where a a, Z.

Proof. The if is obvious. Conversely, suppose f is multiplicative. Write
f (1-I= T,). g in such a way that g e k[T,..., T,] and g is not divisible in
k[T,..., T,] by any of the variables. Then g is also multiplicative. We
claim g= 1. In equation (73) with g instead of f, set T T’,_
1, T’,- 0 to get

g(T,..., T,_x, 0)- g(T,..., T,). g(1 ,1, 0).

Since T, doesn’t divide g, g(T T,_, 0) 0, and so g(1,..., 1, 0): 0, e
k. It follows that g e k[T,..., T,_]. We continue this to get g e k. Since g
is multiplicative, g 1.

5.8. Remark. One easily verifies that. if k is a domain, the units of
k[T, T-]"__x are precisely the elements u where f is multiplicative and
uk*.

5.9. THEOREM (Gutwirth). Suppose k is an infinite field. Any action of the
n-dimensional toms G on the ane plane A2(k) is equivalent to an action of
the form (u(T)X, v(T)Y) where u, v k[T, TT, ]’__ are Lauram monomials
(i.e., mulfiplicafive ).

The proof of Theorem 5.9 is done in 5.10-5.15, and it is like the proof of
Theorem 4.9 in that we first use the fact that abelian subgroups of GA(k)
of bounded degree are conjugate to linear or elementary type subgroups,
and then complete the proof by making observations about the polynomials.

5.10. Let /be an action of G on A given by (P, Q) satisfying (a) and
(b) of 5.2. Let H be the image of the induced homomorphism (k*)--
GA(k) (see 3.6). The field k is infinite, and so no polynomial in k[T, T-]
vanishes on (k*), i.e., the k-rational points of G form a dense set. By
Proposition 3.10 we can replace /by an equivalent action and assume that
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either (P, Q) is of the form

(74) (uX+f(Y), vY+ s)

with u, v kiT, T-l]*, s kiT, T-I], f kiT, T-, Y] (i.e. Hc E2); or (P, Q)
if of the form

(aX+bY+r, cX+dY+t)(75)

where

c)d GL2(k[T, T-]),

r, t k[T, T-] (i.e. Hc Af2). We will deal with both possibilities.
5.11. First assume (P, Q) is of the form (44). Since u and v are units in

k[T, T-], and since u(1)= v(1)= 1 by (b) of 5.2, we see by 5.8 that u and v
are Laurant monomials. Condition (a) of 5.2 says that

(u(TT’)X+f(TT’, Y), v(TT’)Y+ s(TT’))
(u(T)u(T’)X+ u(T’)f(T, Y) + f(T’, v(T)Y+ s(T)), v(T’)v(T)Y

In particular,

(76)

+ v(T’)s(T)+ s(T’)).

If 0, write [(T, Y) go+ g Y+" + gaYd

k[T, T-l], gd = 0. Then equation (76) implies that
with go gd

(77) ga (TT’) u(T’)ga(T) + v(T)dga(T’).

A close look at (77) tells us exactly what ga is, up to constant multiple. The
Laurant monomials form a k-basis for k[T, T-]. All the monomials appear-
ing in gd(TT’) are T, T’-symmetric. It follows from (77) that u(T) and u(T)
are the only monomials which can appear in ga(T). For if a monomial w(T)
appears, with w u, vd, then u(T’)w(T) is not symmetric, and it appears in
u(T’)gd(T). However, u(T’)w(T) is dearly not cancelled by any term of
v(T)ag(T’), since wv, and so u(T’)w(T) appears in ga(TT’)--a con-
tradiction. Therefore gd(T)= au(T)/bv(T) for some a, be k. The fact that
gd(1) =0 (see (b) of 5.2) implies that b =-a, and so gd(T)= au(T)-av(T)d

and a0.
5.12. Now, if we conjugate (P, Q) by an element of GAE(k), the

resulting vector gives an action equivalent to -. (This was explained in 3.5
and used extensively in 4. Upon performing the computation, one sees that
conjugating (P, Q) by (X+aYd, Y) GA2(k) yields

(78) (uX+f(Y)- auY’ + a(vY+ s)d, vY+ s).

Note that the leading (highest degree) term (in Y) of -auYa+ a(vY+ s)d
is (-au+ava)Y. This cancels the leading term of f(Y), which is gayd.

f(TT’, Y) u(T’)f(T, Y) +f(T’, v(T)Y+ s(T)).
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Hence the vector (78) is of the form (uX +/e,(y), vY+ s) with deg./’ < d.
Observe that this argument works to cancel / entirely if d 0. We can
continue to conjugate until we get ]’ 0, i.e., /is given by (uX, vY+ s). We
conjugate this vector by (Y, X) GA2(k) to get (vX+ s, uY) and employ the
same reasoning as above (with d 0) to eliminate s. The resulting action is
given by (vX, uY), which is of the form required.

5.13. Now assume (P, Q) is of the form (75) of 5.10, so that Hc A/2
The projection T of H onto GL2(k) is the image of the algebraic group
homomorphismGGL2 defined by ( ,]). Therefore T is connected, since
G, is connected. It follows from [3, Prop. 8.4, p. 203] that the image of T is
conjugate in GL,(k) to a subgroup of D2.

5.14. It follows that we can conjugate (P, Q)=(aX+bY+r, cX+dY+t)
by an element of GL2(k) ( GA2(k)) to get (uX+ r’, vY+ t’) where r’, t’
kiT, T-l]. Now the vector is of the form (74), a situation which we have
already treated. This concludes the proof of Theorem 5.9.

5.15. If k is algebraically closed, so that G and A2 are algebraic
groups, we restate Theorem 5.9 in terms of the action of closed points.

Restatement for the case when k is algebraically closed. Any action of the
n-dimensional t0rus G on the affine plane A2(k) is equivalent to an action
of the form

(q t,). (x, y)= (tT... t,-x, t...
where a a,,/3,...,/3, Z.

This is the assertion proved by Gutwirth in [5].
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