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ABELIAN SUBGROUPS OF Aut, (k[X, Y]) AND
APPLICATIONS TO ACTIONS ON THE AFFINE PLANE

BY
DAvVID WRIGHT

Introduction

In this study, we apply some theorems of group theory to study algebraic
and non-algebraic actions of algebraic groups on the affine plane. The main
object of study is the group Aut, (k[X, Y]), which is denoted by GA,(k).
When k is a field this group has a decomposition as an amalgamated free
product A 5z E of groups (§1). Since GA,(k) is (up to anti-isomorphism)
the group of algebraic isomorphisms of the affine plane A*(k), any action of
a commutative algebraic group G on A?*(k) gives rise to a group
homomorphism G— GA,(k), the image of which homomorphism is then an
abelian subgroup of GA,(k). Abelian subgroups of any amalgamated free
product A *z E may be understood group theoretically, up to conjugacy, in
terms of the groups A and E, and the containments B< A and B < E, using
certain results from combinatorial group theory, especially a theorem of
Moldavanski (see 0.5). These essential facts are laid out in §0. By these
means we are able to give a classification of any action of an algebraic group
on the affine plane, up to equivalence (3.10 and 3.11).

The main theorem of §4 (Theorem 4.9) explicitly describes, up to equival-
ence, actions of the n-dimensional vector group G on the plane, as long as
the field k is infinite. This generalizes the results of R. Rentschler and M.
Miyanishi ([11] and [8]), which describe actions of G, on the affine plane.

In Section 5, we employ these methods to give another proof of Gut-
wirth’s theorem [5], which describes, up to equivalence, actions of the
n-dimensional torus G}, on the plane. Again, we assume only that the field
k is infinite. (Certain generalizations of this theorem involving faithful
actions of tori on n-space can be found in [2] and [4].)

The writer is indebted to Professor Hyman Bass, who suggested these

group theoretic methods as a means of describing actions of groups on the
plane.

0. Some facts about subgroups of amalgamated free products

0.1. Notation. When G is a group and H is a subgroup of G, a right
coset of G modulo H is an element of the coset space on which G acts on
the right. Hence if g€ G, Hg is a right coset. If h € G, we conjugate h by g
by writing h® = g 'hg. Also, for H< G, we write H® for g~"Hg. We write
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(h, g) for the subgroup of G generated by h and g. Similarly, we write (H, g)
for the subgroup generated by H and g.

Let A, E, and B be groups. Given monomorphisms B— A and B—E, we
can form G = A *g E, the free product of A and E, amalgamated over B.

Let I, resp. J, be a system of non-trivial right coset representatives of A,
resp. E, modulo B. (Here, and from now on, we identify B as a subgroup of
A, and of E.) Let W be the set of all words spelled using elements of I and J
in alternating fashion, including an empty word x. Given a word we W, let
|w| denote the element of G obtained by multiplying the letters of w in
order. The map B X W— G defined by (b, w)—>b |w| is a bijection (see §1 of
[12]). Given an element ge G, we call the corresponding element (b, w)e
B X W the normal form of g. Thus each element of G has a unique normal
form. We define the length of g€ G to be the length of the word w. This is
independent of I and J

Let g e G with normal form (b, w). We say that g is cyclicly reduced if w
is non-empty, and if w begins with an element of I and ends with an
element of J, or vice versa. Every element of G is either (1) conjugate in G
to an element of A or E, or (2) conjugate to a cyclicly reduced element; and
(1) and (2) are mutally exclusive. (See 1.3 of [12].) If g is cyclicly reduced,
then clearly length (g%) = d length (g). Hence g is of infinite order.

0.2. There are some facts from combinatorial group theory which will be
exploited to obtain the main results of this paper. These results have to do
with the classification of abelian subgroups of a group G which is an
amalgamated free product A *g E. First I shall state the main group-
theoretic theorem, due to Moldavanski [11], which describes how such
subgroups can occur.

0.3. Theorem~Definition (Moldavanski). Suppose G =A *z E, and
suppose H is an abelian subgroup of G. Precisely one of the following
situations holds.

(1) H is conjugate (in G) to a subgroup of A, or H is conjugate to a
subgroup of E.

(2) H is not conjugate to any subgroup of A or E. There exists an infinite
nested chain of subgroups Hoc Hy< ---<H,_ ;< H,< - such that H=
Ui~ H;, and such that each H, is conjugate in G to a subgroup of B. (The
chain is necessarily non-stationary.)

(3) H=Fx(g), where F is conjugate to a subgroup of B, and g is not
conjugate to any element in A or E. Hence g is of infinite order.

We say that H is an abelian subgroup of type 1, 2, or 3 accordingly.

0.4. This theorem has been proved by combinatorial group theoretic
methods similar to those used in proving similar theorems for free groups.
The reader is referred to Karrass and Solitar’s very lucid treatment [7], in
which this comes as a corollary to a much more general theorem (Theorem 6

of [7)].
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I will merely outline a proof which uses the Bass—Serre theory of groups
acting on trees, as presented in [12], and which provides a method for the
explicit construction of subgroups of type II and IIl. There are four main
lemmas (0.21, 0.22, 0.25, and 0.26), from which 0.3 follows immediately.
The lemmas themselves will be important for my purposes because they
provide a method for determining whether or not certain types of abelian
subgroups can occur, and, if so, how to construct them.

0.5. Let (% X) be the following graph of groups [12, §3]:

Vie—— U,

where 4, =A, 9,,=E, % =B and the monomorphisms 4,—9,, 4—9,,
are those given in 0.1. (Referring to the notation of [12], we have written ¢
to represent both the edges t and f.) The graph X is a tree, and the
fundamental group (%, X, X) of (%, X) [12, §5] is the group G.

0.6. As in [12, §4], we construct the tree X = X(%, X, X); and we have
an action (on the nght) of Gon X and a projection p: X — X which induces
an isomorphism X/G — X. In addition, we have a section s: X —>X such that

G, (the stabilizer in G of s(v,))= A, G, =E, and G, =

0.7. The tree X can be realized in the following way. Let °W' be the set
consisting of all the non-empty words in W, together with two formally
“empty” words x; and x;. The vertices in X correspond bijectively to
elements of W. Given a word w e W, we write v(w) for the corresponding
vertex in X. We formally declare that x; begins with an element of J, and
that x; begins with an element of I. Now, given two words w, w'e W, not
both empty, the vertices v(w) and v(w’) are connected by an edge in X if
and only if w’ is obtained from w by dropping the first letter, or vice versa.
In addition, the vertices v(x;) and v(x;) are connected by an edge.
Whenever vertices v and v’ in X are connected by an edge, we write t(v, v")
for the edge connecting them. If v = v(w), v’ = v(w'), with w, w’'e W, we will
also write t(w, w') for t(v, v'). We will say that a vertex v(w) of X is of type
A if w begins with an element of J, and of type E if w begins with an
element of I.

0.8. We now describe the action of G on X. The action will be transitive
on vertices of type A and transitive on vertices of type E. Note that, for any
g € G, we can write g =a |w| with ae€ A, and w a word in W’ beginning with
an element of J, and this expression is unique. Similarly, we can write
g =e |w'| where ec E and w'e W begins with an element of I. Given ge G
and v(w) a vertex in X, then v(w): g is defined as follows. If v(w) is a
vertex of type I, write |w| g=a |w'| with ac A, w' e W, and let v(w) - g=
v(w"). If v(w) is a vertex of type J, write |w| g =e |w’'| with e E, w'e W and
let v(w) - g=v(w').

0.9. Obviously, each edge in X connects a vertex of type A and a vertex
of type E. Given any segment ‘

ve—ev’
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with v of type A and v’ of type E, there exists g € G such that v - g=x; and
v' - g=x; (For example, suppose v’ =v(w), where we W begins with an
element of I, and v = v(ew), where e e J. Then take g=|w|™%)

0.10. The stabilizers of the vertices in X are the conjugates of A and E
in G. The stabilizers of edges are the conjugates of B in G. More precisely,
given a vertex v(w) in X, then one sees that

G = {A'W' if v(w) is of type A,
P T gL v(w) if of type E.

Suppose h e J. Let w be a word beginning with an element of I. Upon letting
v=0v(w), v'=v(hw), then v and v’ are connected by an edge t(v, v'), and
G, oy =B™\. The same is true if heI and w is a word beginning with an
element of J. The stabilizer of the edge connecting v(x;) and v(x;) is B.

0.11. The projection p: X— X sends v to v, if v is of type A, and to v,
if v is of type E. We choose the section s: X— X so that s(v,) = v(x;) and
s(vp) = v(xy). .

0.12. Let H be a subgroup of G. Then H acts on X by restriction, and
we form the graph of groups (%, Y) where Y = X/H, as in §5 of [12]. Upon
choosing a maximal subtree T in Y we form the fundamental group
7%, Y, T) [12, §5]. There exists a section s Y—X such that s|; is a
morphism of graphs. Such a section s induces an isomorphism
§: m(%, Y, T)— H such that for any vertex v in Y and for any edge e in T,
the isomorphism carries ¥, onto H,,, and ¥, onto H,, [12, §5].

0.13. Employing the technique, and using the terminology, introduced in
[1], we can choose a maximal filtering forest D in Y, and form a reduced
graph of groups (#’', Y'). The vertices in Y' correspond to the connected
components in D. The edges in Y’ correspond to edges in Y which aren’t in
D. If T is a maximal subtree of Y which contains D, then T corresponds. to
a maximal subtree T' in Y’, and there is a canonical isomorphism

'771(%, Y’ T‘)_),n.l(%l’ YI, Tl)~

The graph (%', Y’) contains no directed edges.

0.14. Suppose H is a subgroup of G = A *z E, and that (%, Y), D, and
(%', Y') are as in 0.13. Let us further assume that the graph Y’ consists of
one point with no edges. Clearly this happens precisely when D =Y, i.e.,
(%,Y) is a filtering tree of groups. Therefore we have 7,(%#,Y,Y)=
m(#',Y',Y)=H.

0.15. 1If the filtering tree of groups (%, Y) has a maximal vertex v, then
the map

H,—m(X,Y,Y)=H

is an isomorphism (see 1.6 of [1]). If we lift v to a vertex v’ in X, then %, is
identified with the stabilizer H,, and so H,»= H. But H,,y= H N Gy,,. By
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0.10, we see that H is a subgroup of either a conjugate of A or a conjugate
of E.

0.16. Conversely, if H is a subgroup of either a conjugate of A or a
conjugate of E, then there is a vertex v’ of X which is fixed by the action of
H on X. If v’ projects to v in Y, and if T is a maximal subtree of Y, then the
map #,—> (¥, Y, T) is an isomorphism. It follows that T=Y (otherwise
there would be projections (%, Y, T) onto Z which, when restricted to #,,

were trivial), and that (¥, Y) is a filtering tree of groups, v being a maximal
vertex.

0.17. Now suppose that H is a subgroup of G, and that (¥,Y) is a
filtering tree of groups with no maximal vertex. This will be the standing

assumption in 0.17-0.21. In this case there exists in Y an infinite directed
geodesic

6Y) U1 Vo U1 Uy U3

with no maximal vertex, and

lim %, = m,(%, Y, Y)=H.

Upon choosing a section s of the projection p: X— Y, we can choose the
isomorphism (%, Y, Y)—H so as to identify ¥, with H,,,=H N G,e,).

0.18. Recalling the construction of X (0.6), we have s(v;)=v(w;) for
some w; € W, and the geodesic (1) lifts to

Q(W—1) Q(Wo) 2(W1) Q(Wz) ..
to ty ty

in X. Since (1) is directed, we have
(2) Hu(w_1)=HtQCHv(wo)=Ht1c ttt.

This chain is non-stationary, since (%, Y) has no maximal vertex, and the
union is H.

0.19. We may assume that v(w_;) is of type A. Otherwise, we can
remove the first vertex and relabel. We are interested in describing the
subgroup H - up to conjugacy in G. Therefore, we are free to replace H by
any conjugate H®, and at the same time apply the automorphism of X which

arises from multiplication by g. In other words, we have a commuting
diagram

XxH —»X
VL
XXHt—->X

where X -—~>X' is a multiplication by g, and H— H?® is conjugation by g. (The
notation X X H is an abuse.)
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0.20. The point is that we may replace H by an appropriate conjugate,
and assume that w_; =x; and wo=x;. This follows from 0.19 and 0.9. It
follows, since the vertices v(w;) lie successively along a geodesic, that there
exist sequences {a;}~, < I and {e};>, = J such that

wi=e; Wy = a4€4,
3 W3 = €448y, W4 = Qyeza4€4,. ..,
Wi 1= €0;_1€1 """ A1€1, W2 =a4;€; °°* A1€y,....
The vertex v(w,) is of type A if i is odd and of type E if i is even. According
to 0.10, the nested non-stationary chain (2) is
HNA=HNBc<HNE=HNB™
cHNA™'=HNB"!c HNE™!=HNB"!

“ .
c HNAM2-'= HNB™2lc HNEM='= H N B™a+!

For each integer i =1, let

I—Ii_1 =HnN Alwm—sl =HnN Blw2i—2l,
H: =HnN Elwzi—2| =HnN Blwzl—l‘

(5

so that the nested non-stationary chain (4) becomes

(6) H,cH,cH,c---cH,_,cH/cH,c---.
For each integer i =1, let

@) Si_i=HP3=",  §/=HMwa"

Since B™!c E™! and B™!c A™! for each integer i =0, we can see from
(5) that

(® H,_,=H{;NBY2-! and H!=H,NB™x

for each integer i = 1. Conjugating the groups in the first equation of (8) by
|wa,i_o| 7", referring to (7), we get

Si-—l = H;‘Wm—zl_l NB= s{lwm—lllwzi—zl—l NB= S:et N B.

Conjugating the groups in the second equation of (8) by |w,_,|™", and
referring to (7), we get

S: = Lﬂ“’zi-ll_1 NB= Sliwzi| Iy =2 NB= S;‘A NB.
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Thus for each integer i =1, we have
(9) Si—l = S{e‘ﬂB and S{= S?‘nB
It follows that

S cB&S,_ =S/ (by (9)
& sl}”:_il—zl = Sgeﬁlwzx—zl

(10) PN S‘~‘121‘_2| = s:lwm_ll
@H’i_l = H:.

Similarly it follows that

(11) SHcB&S!=SH&H!=H,.

Since the nested chain (6) is non-stationary, one concludes from (10) and
(11) that there are infinitely many integers i =1 for which either

(12 Si“¢B or SX¢B
The following lemma summarizes the preceding discussion (0.17-0.20).

0.21. LemmA. Let H be a subgroup of G = A *g E such that the graph of
groups (¥, Y) (as in 0.12) is a filtering tree of groups which has no maximal
vertex. Then there exist sequences {a;};-, < I and {e,};-,<J (I and J are as in
0.1) and subgroups S,_,, S!< B, i=1 satisfying:

(@ S,_1=S!*NBand S!=S"NB fori=1.

(b) There are infinitely many integers i=1 for which either S!“¢ B, or
S ¢ B such that, upon letting {w;};—, < W (see 0.7) be defined by w_, = X,
Wo= X5, Wai_1=€Wy;_» and Wy = aW,;_, for i=1, and upon letting H,_, =
Stwazl Hr = §Mwail for i =1, then we have a nested, non-stationary chain

Hy,cH,<H,<--- <H,_,<cH!<cH,<---
in G, and H is conjugate in G to the union.

Moreover, the argument above can easily be retraced to obtain the
following converse to Lemma 0.21.

0.22. LEMMA. Suppose we are given sequences {a;};—, < I and {¢}—,<J I
and J as in 0.2) and subgroups S,_,, S!< B, i =1, satisfying:

(@ S,_1=S!*NBand S!=SNB fori=1.

(b) There are infinitely many integers i =1 for which either S!*¢ B or
St B. Let {w,}j=_,< W (see 0.7) be defined by w_,=x;, Wo=X;, Wo;_1 =
eWsi_p and wy =awy_; for i=1, and let H,_, =S4, H!= S/l for
i=1. Then we have a nested, non-stationary chain.

Hoc‘H'ICch ++cH,_,cH/cH,c -
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in G, and upon letting H be the union of this chain, the graph of groups
(%,Y) (as in 0.12) is a filtering tree which contains no maximal vertex.

0.23. Suppose H is a subgroup of G=A *gE, and that (¥,Y), D, and
(#',Y') are as in 0.13. We further assume that the graph Y' consists of one
vertex v’ and one edge t',

Y'=vet,

and that t' is a directed edge. The fact that t' is directed means that one of
the monomorphisms #, 3%, is an isomorphism. In this case, D has one
connected component, which is, of course, a filtering tree, and Y has
precisely one edge t which is not in D. The fact that ¢’ is directed implies
that ¢ is connected to a maximal vertex v, in D, and that ¢ is directed away
from v,. (This is all immediate from the construction of (¥’, Y') in [1].)

0.24. Let v; be the other edge in Y to which ¢ is connected. Since v; and

v, are connected in 1D by a unique geodesic, which is directed toward v,, we
have a circuit

W<

in Y which is directed clockwise (as indicated). One can easily see that when
we remove any one of the edges t, 0<i=n-—2, the remaining graph of
groups D, is a filtering tree, and v,_, is a maximal vertex in D,. Thus the
reduced graph of groups (', Y') could have been constructed using D,
instead of D, and it would be a directed loop. We see then, that after
possibly replacing D by some D; with 0<i=n—2, and relabeling the
vertices in & (by rotation), we may assume that v; =v_, is the image of a
vertex in X which is of type A (see 0.7). Once this adjustment is made, we
see that v; comes from a vertex of type A in X if i is odd, and v, comes from
a vertex of type E in X if i is even. Hence n is even; say n =2r. We may
proceed from here in a manner similar to that of 0.17-0.20 to obtain the
following lemma.

0.25. LemMmA. Let H be a subgroup of G = A *g E such that the graph of
groups (#',Y") (as in 0.13) is a directed loop. There exists an integer r=1
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and elements a,,...,a,€l, ey,...,e.cJ, beB, and subgroups
S0, S84, S, ..., S, S, of B satisfying

(a) S,_l— S“NBand S!=S*NBfori=1,...,r,

(b) S, =S,
such that, upon letting w_,, Wo, Wy, ..., W, €W (see 0.7) be defined by
W_1 =X, Wo=Xj, Wpi_1 = €Waq;_» ald Wy, = aiwy;_q fori=1,...,r, and letting

H,_, =837 for i= 1 .r+1, Hi=8™x-! for i=1,...,r, and letting
g=b |w2,| (=ba,e, * - - a,e,) we have a nested chain

H,cH,cH,c---cH!cH,

and H§=H, and H is conjugate in G to the subgroup (H,, g) of G. Since
H{=H, > H, we have a nested chain

HycHicHfc.---cHf '<Hfc
Let F be the union of this chain. Then (H,, g) = FX(g).
Again, there is a converse to the preceding lemma.

0.26. LEMMA. Suppose we are given an integer r=1, and elements
ay,....a€l, e,...,e,eJ (I and J as in 0.1), beB, and subgroups
S0, S1, 8%, ..., S, S! of B satisfying

(@ S,_1=S!“NBand S!=S*NBfori=1,...,r,

(b) S, =S5
Let w_i,wg, Wi,..., W, €W (see 0.7) be deﬁned by w_;=x;, wo=2x;,
Woi1=€Wzi_» and Wa =a;Wy_, for i=1,...,r, and let H,_,= S 2 for

i=1,...,r+1, H/=8!=+ for i=1,...,r, and let g= b |wa,|
(=bae, - * * a,e,). Then we have a nested chain

HOCH'chlc e cHrCHr
and H§=H,(> H,).
Let F be the union of the nested chain

HycHEcHYc---cHE 'cHfc

and let H=(F, g)(=(H,, g)). Then H is the semidirect product F X(g), and g
is of infinite order. Let v be the image in Y of the vertex v(x;) and let t be the
image in 'Y of t(x;, x;). Then D=Y —{t} is a filtering tree, in fact it is a
maximal filtering forest in Y, and v is a maximal vertex. The reduced graph of
groups (', Y') with respect to D is a directed loop.

Furthermore, let us record that we can extend the given data to sequences
{ai}, 1<L{e) <, and subgroups S:_1, S!< B, for i =1, in such a way that
¢ .=H,_,,, and H®=H!,, for i=1. Hence F is the union of

Hy,cHicH,c---cH_;cH/cHc--

0.27. I can now give a proof of Theorem 0.3, based on the preceding
lemmas, and the main result of [1]. Let H be as in the theorem. Since H is
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abelian, then according to §6 of [1], (%', Y’') is either a point or a doubly
directed loop.

If Y'is a point then Y is a filtering tree. If Y has a maximal vertex, then
H is conjugate to a subgroup of A or E (see 0.15), and so (1) holds. If Y
has a maximal vertex, then it follows from Lemma 0.21 that (3) holds.

If Y'is a doubly directed loop, we can apply Lemma 0.25. In the notation
of 0.25, we see that H is conjugate in G to the group (F, g), which is a
semidirect product F x(g). But since H is abelian, we have (F, g) = F X(g).
Now, F is the union of the chain Hyc Hic HE < --- which, in our
situation, is stationary, since H is abelian. Therefore F = Hy=S,< B. The
element g, being cyclicly reduced, is not conjugate to any element of A or
E. And so (2) holds.

Clearly (1), (2), and (3) are mutually exclusive, so the theorem is proved.

0.28. CoroLLARY. Suppose H is an abelian subgroup of G = A *g E, and
suppose B is finite. Then H is an abelian subgroup of type 1 or type 3.

Proof. The finiteness of B rules out the possibility of the non-stationary
chain of situation (2) in 0.3.

0.29. CorOLLARY. Suppose B is normal in both A and E, and suppose H

is an abelian subgroup of G = A *g E. Then precisely one of the following
holds.

(@) H is conjugate in G to a subgroup of A or E.
(b) H=Fx(g), where F< B, and g is not conjugate to any element of A
or E. (Hence g is of infinite order.)

Proof. Since B is normal in both A and E, B is normal in G. We see,
then, that situation (2) of 0.3 cannot occur, because each H;—and hence
H—would be contained in B. Thus we are left with the possibilities (1) and
(3). In case (3), F must be contained in B.

The following corollary is a well known fact.

0.30. CoroLLARY. Suppose B={1}, i.e., G=A * E, and suppose H is an
abelian subgroup of G. Then H is conjugate in G to a subgroup of A or E, or
H =(g) (infinite cyclic), where g is not conjugate to any element of A or E.

Proof. This immediate from either of 0.28 and 0.29.

0.31. Example. The group PSL,(Z)=SL,(Z)/{=1} is isomorphic to
Z/2Z * Z/3Z (see [12, Chapter II]). The only non-trivial abelian subgroup
of PSL,(Z) are the conjugates of Z/2Z, the conjugates of Z/3Z, and the
infinite cyclic subgroups.

0.32. Example. The group SL,(Z) is isomorphic to Z/4Z %y, Z/6Z
where Z/4Z is generated by
(1 o)
-1 0/°
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G )

1 1

(ibid.). The non-trivial abelian subgroups of SL,(Z) are the conjugates of
Z/4Z, the conjugates of Z/6Z, the conjugates of Z/3Z(< Z/6Z), the group

Z/2Z, the infinite cyclic subgroups, and the subgroups of the form (Z/2Z) x
(g), where (g) is infinite cyclic. This all follows form Corollary 0.29.

and Z/6Z is generated by

0.33. DeFiniTiON.  Given G = A *g E, and H any subgroup of G, we say
that H is a subgroup of bounded length if there exists an upper bound for
the length of the elements of H (see 0.1). We say that H is of unbounded
length if no such bound exists.

0.34. One readily verifies that if H< G is a subgroup of bounded length,
then any subgroup which is conjugate to H is of bounded length. Further-
more, if H contains an element h which is cyclicly reduced, then H is of
unbounded degree, since length (h)*=d length (h). It follows that if H
contains an element which is not conjugate to any element of A or E, then
H is of unbounded length, because any such element is conjugate to a
cyclicly reduced element (see 1.3 of [12]).

0.35. PRrOPOSITION. Suppose H is an abelian subgroup of G= A *gE.
Then H is of bounded length if and only if H is conjugate to a subgroup of A
or E (i.e. H is of type 1).

(Remark. This proposition is probably true without the assumption that H
is abelian.)

Proof. The “if” is clear, in view of the remarks in 0.34. We must show
that if H is abelian and of bounded length, H cannot be of type 2 or 3 (see
Theorem-Definition 0.3). Any subgroup of type 3 contains an element
which is not conjugate to any element of A or E, and so H cannot be of
type 3.

Suppose now that H is of type 2. This means that the graph of groups
(%, Y) is a filtering tree with no maximal vertex. By Lemma 0.21, there
exists data {a;};—. < I, {e,};=1<=J, and S,_,, S; < B, for i =1, satisfying (a) and
(b) of 0.21, such that upon letting H,_,, H! be defined as in 0.21, H is
conjugate to the union of

HocHicH,c - cH_cH<Hc:

In fact, we may assume that H is the union, since replacing H by a
conjugate doesn’t alter the bounded length condition. Condition (b) of 0.21
guarantees that for any integer m, there exists n>m such that either
S’¢ B or S*¢ B. Assume the latter. Let s€ S, such that s%¢ B. Since
H, =S "% then s** %=t is in H. The length of ¢t is 2n —1, since
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s*¢ B. We can do a similar thing in the case S/+¢& B. This shows that H is
of unbounded length—a contradiction—and so the proposition is proved.

0.36. Example. Let k be a field, and let k[T] be the polynomial ring in
one variable over k. The group GL,(k[T)) is a free product with amalgama-
tion as follows: GL,(k[T])= GL,(k) *p,) B»(k[T]) where B, denotes the
lower triangular subgroup (see [12], Chapter II).

The set
_f(x 1 }
I_{(l 0) xek

forms a system of non-trivial right coset representatives of GL,(k) modulo
B,(k). This fact is easily seen, and will be demonstrated in 1.6. The set

7={( )

forms a system of non-trivial coset representatives of B,(k[T]) modulo
B,(k).
Let

feMTL,  fO)=0, fro}

‘= (:v‘ O)GBz(k).

v

A direct computation shows that if, for some a € I, we have t* € B,(k), then
w=0. On the other hand, if there exists eeJ such that ¢t € B,(k), then
u = v. Obviously, if both of these conditions hold, then ¢ is a scalar matrix.
Let us denote by C,(k) the scalar matrices in GL,(k). C,(k) is the center of
GL,(k[T)).

We claim that there are no abelian subgroups of type 2 in GL,(k[T]). In
light of Lemma 0.21, suppose there exist sequences {a;}i—,< I, {e}i=.<=J
and subgroups S;_;, S!< B,(k), i =1 satisfying (a) of the theorem. We will
show that (b) cannot possibly be satisfied, which, according to the theorem,
will prove the claim.

Let te S! for some i=1. According to condition (a), there exists s € S;
such that ¢ = s*%. Therefore s is of the form

© o)

with u, v € k*. There also exists re S, such that s =r%+, If

e} )

e:—l-ll = (__]f- 2) € Ja

then
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and since s+ = r € B, we must have u = v. Therefore s € C,(k). Since t = s%,
t = s. This shows that S/ < C,(k). It follows from (a) that S;_; = C,(k). Since
Si_1, S!< C,(k) for i=1, we see (b) does not hold.

Now suppose H < GL,(k[T]) is an abelian subgroup of type 3. Then, by
Lemmas 0.25 and 0.26, we have the same data {a;}, {e;}, S;_;, S; as above,
with S;_;=8/*NB and S!=S*NB, and an element beB,(k), g=
ba.e, - - - a;e; such that H is conjugate in GL,(k[T]) to Fx(g) where F is
the union of

(13) H,cH§cH§c---cH§ 'cH§c---

Just as in the last paragraph, we can argue that S;_;, S/ < C,(k). It follows
from (13) that F=H,=S,, and that H is actually equal to F x(g') where g’
is conjugate to g.

We have proved the following proposition.

0.37. ProrosiTioN. Let k be a field. Suppose H is an abelian subgroup of
GL,(k[T]). Then precisely one of the following situations holds.

(a) H is conjugate in GL,(k[T]) to a subgroup of GL,(k) or B,(k[TJ).

(b) H=Fx{g) where F< C,(k), and g is not conjugate to any element of
GL,(k) or B,(k[T)) (hence g is of infinite order).

0.38. Remark. We define the degree of an element ye GL,(k[T]) (or
GL, (k[T]) to be the maximum of the degrees of its entries—i.e. the degree
of vy as an element of the graded ring of 2 X2 matrices with coefficients in
k[T]. One can prove by an easy induction argument that if a,,...,a, €1,
e,...,eeJ (I and J as in 0.36), and if

()

i . 1 B
with d; =deg (f;), then
deg(asey, ..., ae)=deg(eia,,...,ea)

=deg(eiay,...,€_10,,6)=d;+ - +d,.
(In fact, this is one way to see that GLy(k) *g_q) B2(k[T]— GL(k[t]) is an
isomorphism.) Thus if y=a,e - a.e,, and if d=d,+ - +d, then
deg (y") = nd. In particular, we can see that for any y e GL,(k[T]),

deg (y) > (length y —1)/2.

Let H< GL,(k[T]). We say that H is a subgroup of bounded degree if
there is an upper bound for the degrees of the elements of H. It follows
from the above remarks that if H is of bounded degree, then H is of
bounded length. Therefore, we can apply Proposition 0.35 to get:

0.39. ProOPOSITION. Any abelian subgroup of GL,(k[T]) which is of

bounded degree is conjugate either to a subgroup of GL,(k) or to a subgroup of
B,(k[TD.
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1. The group GA,(k)

1.1. Suppose k is a ring. We denote by GA, (k), or just GA,, the group
of k-automorphisms of the polynomial ring k[X;,...,X,]. An element
o€ GA, is determined by a vector (Fy,...,F,), when F,,...,F, €
k[X;,...,X.], and so we write ¢ =(F,,...,F,). If ¢=(F,,...,F,) and
v=(Gy,...,G,), then

v =(Fy(Gy, ..., G),...,F.(Gy, ..., G

1.2. The group GL,(k) is identified as a subgroup of GA,(k) by the
monomorphism which sends the invertible matrix (c;) to the vector

(Zax) coa.
i i=

The additive group k" is identified as subgroup of GA, via the
monomorphism l: k"> GA, defined by l(cyyennrc)=
Xi+cy, ..., X, +c,), and we write &, for the image of l. The additive
group k[X,,...,X,] is identified as a subgroup of GA,(k) via the
monomorphism e: k[X,, ..., X,]— GA, defined by

e(f)=(X1+f(X2a LR ’Xn)’ X29 RS Xn);

we write &, for the image of e. We call the elements of &, elementary
automorphisms.

1.3. The group GL, normalizes &, (in GA,), and &,GL, is a semidirect
product, the action of conjugation of GL, on %, being given by l(c)®=c - g,
where ce k", ge GL, (c - g denotes matrix multiplication). We denote by
Af, the subgroup ¥, XGL, < GA,. Elements of Af, are called linear
automorphisms. One easily verifies that Af, is isomorphic to the subgroup
of GL, (k) consisting of matrices of the form

€Y

where ge GL,(k), c € k™. (This matrix gets identified with g - I(c) € Af,(k).)
We will often write elements of Af, as matrices, rather than as vectors.

1.4. The diagonal subgroup D, of GL, normalizes &,, and the action is
given by

e(f(Xs, ..., X)) =e(rf(r3'Xs, ..., 1 X))

(14) where r =

0 . r,
The subgroup of GA, generated by &, and D, is a semidirect product. The
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subgroup of GA,, generated by &, XD, and %, is a product (¢, xD,) " %,,
although neither of these groups normalizes the other. We will denote this
group by E,. Each element of E, has the form

(15) X+ X, ..., X )+c, . Xo+cC,, ..., 1. X, +¢,)

where ry,...,r,€k* ci,...,co€k.

1.5. For the case n=2, and k a field, the linear and elementary au-
tomorphisms generate the entire automorphism group. This was proved by
Jung in [6] for the case when k has characteristic zero, and was generalized
to arbitrary characteristics by van der Kulk in [13]. In fact, the group
GA,(k) is the free product of the groups Af, and E,, amalgamated along
their intersection, which is the semidirect product £, X B,, where B, denotes
the lower triangular subgroup of GL,. Upon letting A = Af,, E=E,, and
B =%,%XB,, we have

(16) GA,=A *3E.

(See [10, p. 31] or [12, §5] for a proof of this. Both these references furnish
a more complete description of the group GA,(k).)

For the rest of §1 we will be assuming that k is a field.

1.6. We will choose a system of non-trivial left coset representatives of
A modulo B. Since A=%,XGL,, and B=%XB,, we can do this by
choosing representatives of GL, modulo B,. We claim that the set

1
v G o)l==d
) I 1 o) |*€ k
is such a system. Given
a= (z b) eGL,

d
with b# 0, a is represented (modulo B,) by

(% o)
1 0of
since, upon letting u = det (a), we have

e —ond (€ )= (7 o)

Furthermore, if x# y, then
(OG0 =66 )6 e
1 o/\1 o/ \1 o/\1 —y/ V0o 1 2

which shows that
x 1 y 1)
(1 0) and (1 0




594 DAVID WRIGHT

represent distinct left cosets modulo B,. Hence upon identifying A with the
subgroup

* % 0
* % (
E I I |

of GL; (see 1.3), we see that the set

x 1 0
(18) 1={(1 0 0) xek]
0 01

is our system of left coset representatives of A modulo B. We will let

x 1 0
(19) a(x)=(1 0 O)GI.
0 0 1

1.7. We now choose a system of non-trivial left coset representatives of
E modulo B. Let k[Y]= Yk[Y]. We claim that

(20) J={e(f)|fek[YF, f#0}

is such a system. (See 6.2 for notation. Here we consider GA, to be the
automorphism group of k[X, Y].) This is seen as follows. Let

e=WwX+g(Y)+r,vY+s)eE
(see (15)), where u, vek*,r,sek, and ge k[Y]. Let

1 0 0
u
1
g = 0 s 2 |enm
_,_g(_£>
o/ s 4
u v

Writing B in vector notation, we have

S
o)
8 =(1X___v_,l Y_ﬁ),
u u v v

Direct computation shows that

Be=e(f)e¥&, where f'=¢g (%— Y=i—)——g (—%)G k[Y].
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Write f'=a, Y+ - - - +a,Y* Since ¢¢ B, then d > 1. Now e(—a,Y) € B, and
e(—a,Y)Be=e(f) where f=a,X>+-: -+a,X*ek[Y].

Thus we see that ¢ is represented by e(f) modulo B. Furthermore, if
f1, € k[YFP~{0}, and if f,#f,, then

e(fe(f) ' =e(fe(—f)=e(fi—f)¢B,

since f; —f, is not linear. This shows that the elements of J represent distinct
left cosets modulo B.

1.8. DerFintTiON.  Given ¢ =(F, G)€ GA,(k) we define the degree of ¢
(deg (¢)) to be maximum of the total degrees of the polynomials F and G.
Given a subgroup H < GA,(k), we say that H is of bounded degree if there
is an upper bound for the degrees of the elements of H; we say that H is of
unbounded degree if no such bound exists.

1.9. PROPOSITION. Suppose we are given a,,...,a, €I, ey,...,e,€J (as
defined in (62) and (64)), with e;=e(f;), and d;=deg(f,) fori=1,...,r.
Then

deg (ase; - * - ae,)=deg (e;a; * - - ea,)=deg (e,a; * * * ¢,10,_1¢,)=]] d
i=1

Proof. It is evident that multiplication of an automorphism on the right
or left by a linear automorphism does not alter its degree, and so we only
need to prove

deg(ase; - - ae)=]] d.
i=1

Let ¢ = a,e, - - - ae,. We will prove the following statement, by induction: If
¢ =(F, G), then deg (¢)=deg (F)=II;_, d;. For r =0 this makes sense, and
is obviously true. Suppose it is true for r—1. Let

o'=ae " a_se,_,=(F,G).
Then by induction, deg (¢') =deg (F')=II;Z} d.. Let

amair=(i 3)

Then ¢ =¢'ae, is given by (xF'+G'+f,(F), F'); clearly the degree of
x,F'+G'+f,(F") is d; deg (F'), since deg(F")=deg (G'). Thus we have ¢ =
(F, G) and deg (¢)=deg (F)=[I;_, d; as required.

1.10. It follows from Proposition 6.9 that for any ¢ € GA,,
(21) deg ((P) > 2(1ength (@)—1)/2
(see 0.1). Hence, if H is a subgroup of GA, of bounded degree, then H is of
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bounded length (see Definition 0.33). The following proposition is then
immediate from Proposition 0.35.

1.11 ProrosiTioN. Let k be a field. Suppose H is an abelian subgroup of
bounded degree in GA,(k). Then H is conjugate either to a subgroup of
Af,(k), or to a subgroup of E,(k).

1.12. I wonder if some analogue of Proposition 1.11 is true for GA, (k),
n>2. If so it could be useful in treating the polynomial cancellation
problem:

Suppose R is a k-algebra such that R[Y] =, k[X,, ..., X,]. Then is
R =i k[XD S | Xn——l]?

(We refer the reader to [14] for a further discussion of this problem.) In the
situation R[Y]=k[X,,...X,], we get two abelian subgroups of GA, (k) of
bounded degree in the following ways. Given c € k*, let ¢.: R[TY]— R[Y]
be the R-automorphism defined by Y+ cY. Since R[Y]=k[X,,...X],],
¢ —> ¢, defines a monomorphism k* — GA, (k). In addition, for any a € k*,
we can define v,: R[IY]— R[Y] by Y+ Y+a. Then a+> v, defines an
additive monomorphism k*— GA,(k). It is not hard to see that these
inclusions yield subgroups of bounded degree. It would be extremely helpful
if one knew that such subgroups were conjugate in GA,(k) to some more
managable subgroup (e.g. Af,).

1.13. In order to be able to apply the theorems of §0 to GA,, we will
study the effects of conjugating elements of B by elements of I and J.

Let xek, and let
u 0 0
s§= (w v O) €B.
re r, 1
Computing, we see that

0 1 Oy/u 0 Oyyx 1 O
5™ =(1 —-x 0) (w v 0) (1 0 0\)
0 0 0/\r, r, 1/\O 0 1

xw+v w 0
=l xu—x*w—xv u—xw 0)
xr t+r, r 1

(22) We see that s*® e B if and only if w=0, and in this case we have

v 0 0
s“"‘)=(x(u-v) u 0).
xry+r, rp 1
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Now let f=c,Y?*+: - +c, Y e k[YP, c#0. Writing s and e(f) in vector
notation, we see that

sP=(X-f(Y), VYuX+wY +r, oY + )X +f(Y), Y)
=uX+wY—-uf(Y)+f@Y+r)+r,vY+r)
In particular, we see that
(23) s*PeB if and only if f(vY +r,)—uf(Y) is linear or constant.
Now, for any v, rek,
fY+r)= iz v‘(ti (;)c,r“i)Yi + oD, f(n)Y +£(r).

(D, denotes ith derivative.) If the characteristic of k is zero, the above can
be written

foY+r)= .io LD;{_(_@ Y.
Clearly, then, f(vY —r,) —uf(Y) is linear or constant if and only if
(24) vt i (:>ctr5'1 =ug
fori=2,...,d. In this case we have
25) vi=u

(putting i = d in (24)), and

u 0 0
(26) §e® = (w +vDyf(ry) v 0) .
ry+f(ry) r, 1
1.14. We will study how abelian subgroups of types 2 and 3 occur as

subgroups of GA,(k) (see Theorem-Definition 0.3). In light of Lemmas
0.21, 0.22, 0.25, and 0.26, the following assumptions are in order.

Suppose we are given sequences {a(x)}i—;<I and {e(f)}-,<J, and
abelian subgroups S;_{, S!< B, i=1, such that, upon letting a, = a(x;) and
e, = e(f,), we have

(27) Si-1=S8{%NB, S{=S*NB fori=1.

These will be the standing assumptions in 1.14-1.19.
As in 0.24 and 0.26, we let

(28) Hi-—l = S?_‘_‘I‘e‘“’. T H: = S;eiai—l. a8y
It follows from (27) that
(29) H,cH,<H,c---cH,_;<H!cH,c---.
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Let F be the union of this chain. For each of the polynomials {f;};-,, write
(30) fi = i,2Y2 +e et ci,di Yd‘, ci,d. # 0.
The following statements are immediate from (22), (23), and (26).

v 0 O\|/u O O
31 S§={(xi(u—v) u 0) (w v O) €S, and w=0},
rp=xr, r 1 ri 1 «

u 0 0 u 0 O
32 S_.= {(W +Dfi(r,) O O) (w v 0) €S
re r, 1

ri+£(r) r, 1
and f;(vY +r,)—uf,(Y) is linear}.

Since B =%,%XB,, we have the exact sequence 1 - ¥,—>B—>B,—1 and
so for S;_; and S! we have the exact sequences

(33) 1-K_1—8 1—>T_,—1, 1-K{—>S/->T/—>1

of abelian groups, where K, =S, N%,, T;_, is the image of S,_; in B;
and similarly for K! and T!.
We will write U(n) for the group of n-th roots of unity in k.

1.15. ProrosITION. (a) Suppose

(u O)GTi-l-
w v

Then u=v% and v =u%+. Hence u, ve U(d;,1d;,—1).
(b) Suppose
(u O)e T!.
w v

Then v =u%+ and u=v%+. Hence u, ve U(d;,1d;,,—1).
(c) The homomorphism T!— U(d; .d;,,—1) defined by

u

is injective, hence carries T! — onto a subgroup U(n).
(d) If K;=1, then S! is conjugate in A to T, ND,(=B,< B).

(u O)GTi—p
w v

By (22) we see that, for some rek, f;(vY +r) — uf,(Y) is linear, and therefore

Proof. Suppose
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u=0"% (see (25)). Suppose

It follows from (31), and what has just been said, that v = u%+.
Again, suppose

u 0
( ) eT,_q:
w v
1t follows from (22) that, for some w'ek,
0
(% e
w v
and so v = u%+:. Now suppose
( " 0) eT!.
w v

We conclude from (31), and the above, that u = v%+=, This proves (a) and
(b).

To see that the homomorphism of (c) is injective, we observe that, if

(u O)GT{,
w v

then v =u%+, by (b), and w=x;(v—u), by (31).
We will now prove (d). It follows from (31) that

u 0 O
§lat) = {(w v 0) eS|w= 0}.
re r, 1

Call this group S. The projection of S on B, is clearly T; N\ D,. Suppose s,
s'eS, #1. Write

u 0 0 uw 0 0
s=(0 v 0), s’=(0 v 0).
r t 1 rot 1

uu 0 0 u'u 0 0
ss' = ( 0 v’ O) and s's= ( 0 v’ O) .
ur+r vt+t 1 ur'+r o'+t 1

Since S is abelian, ss'=s's, and so

Now

u'r+r=ur'+r and vt+t=vt'+t.
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Therefore
Ww—-Dr=u—-1r and @' -Dt=@-1t.

Since S < S, and since K; =1, it follows from (a) that u, v, u’, v'# 1 (because
s, 8'# 1). Therefore we can write

’

ro_r and t t'
u—-1 u'—1 v—1 -1’

Thus we have c, d € k such that for each s€ S, s# 1, with

u 0 0
s=(0 v 0),
r t 1

then ¢ =r/(u—1), d =v/(v —1). Upon letting

1 00
q=(0 1 0)
c d 1
u 00
s“=(0 v 0).
0 0 1

Therefore S is the projection of S onto B,, which is T; N D,. We have
showed that §’*®71= §9 = T; N D,, which proves (d).

one easily verifies that

1.16. ProrositioN. Either T!=1 for alli=1, or K!=1 for all i=1. In the
later case, K;,_1=1, for all i=1.

Proof. We make the following claims, for each integer i =1.

Claim 1. If K;=1, then K!=1.
This is apparent from (31). For if

1 0 0
(0 1 o)ng,aeL

rh rn 1

then

1 0 0
(0 1 O)eKiﬁé 1.

r,y ri+xr, 1
Claim 2. If K!=1, then K,_,=1.
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1 0 0
(0 1 O)GKi_l,sﬁ 1.
rp r, 1
Then, by (76), we have

1 0 0
( w 1 O)ES{ﬁﬁ 1,
ri—fi(r) rn 1

for some we k. But, by (31), w=x,(1—1)=0. Hence K!#1.

Suppose

Claim 3. If K;=1, or if K/=1, then K/, K;_, =1, for j=i.
This is immediate from Claims 1 and 2.
Claim 4. If T;=1, then T!=1.

Assume T;=1. Let
(u 0)6 T!.
wor

(v, O)ETi
w u

for some w e k, and w = x;(u—v). Since T;=1, then w'=0, u=v =1, and so
w =0. Therefore T!=1.

Claim 5. If T{,;=1, then T,=1.
Assume T?,,=1. Let
(u O)G T.
w v

By (31) we see that w =x;(u—v). By (31) and (32) we see that

v O
(0 u)eT{“'

Therefore u=v=1 and w=0. Therefore T!=1.
Claim 6. One of the following holds.
(@ T=1
b)) K;=1
() Each element of K; is of the form

1 00
(0 1 0)
r 0 1

By (31), we see that



602 DAVID WRIGHT

and each element of T; is of the form

(W 2)

Assume neither of situations (a) and (b) holds. We can choose

u 0 O
s=(w v O)eS
C1 Cy 1

such that
(u 0)=;é 1,
w v
and
1 0 O
t=(0 1 O)GKi,sél.
r. rp 1

Write s =s't’, where

u 0 0 1 0 O
s'=(w v O)GBz, t'=(0 1 0)63,’2.
0 0 1 ¢, ¢ 1

(s’ and r' may not be in S,.) Since S; is abelian, we have ¢* =t; and since &£,
is abelian we have t* =t. The equation ts'=s't tells us that

u 0 0 u 0 0
( w v 0) = (w v 0) ,
riut+rnw rnv 1 rh rp, 1

i.e., that r,u+r,w=r; and r,o=r,. Thus if r,#0, then v=1. By (a) of
Lemma 1.15, u =1, and hence, by the first equation above, w =0. But this
contradicts the fact that
( " O)ae 1.
w

Therefore r,=0. It follows from the first equation, above, that u=1.
Therefore v=1 ((a) of 1.15) and

1 0 O 1 0 0
s=(w 1 0), t=(0 1 0)
¢ ¢ 1 rr 0 1

and the claim follows easily.
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Claim 7. Either T!=1 or K!=1.
We examine S, in the light of Claim 6. If T;=1, then T} =1 by Claim 4. If
K; =1, then K!=1 by Claim 1. Now suppose (c) of Claim 6 holds. Let

u 0 O
(w v 0) eS!
ro rp, 1

It follows from (31) that w=x;(v—u), and

v 0 0
(O u 0) €S,
r, ri+xr, 1

Then u =v =1, by (c), and so w =0. This proves that S, =K, i.e., that T;=1.
Claim 7 is proved.

Now, Proposition 1.16 follows from Claims 3, 5, and 7.

1.17. DernmioN. Given a polynomial fek[Y], with f=Y ¢Y', and
p =char (k), we say that f is an additive polynomial if ¢; =0 whenever i is
not a power of p.
(Note: For p =0, this just says that f=cY.)

1.18. ProrosiTion. If all but a finite number of the polynomials {f;};~,
are additive, and if T!=1 for i=1, then the chain (29) is stationary.

Proof. We will show that S,=S!% and S!=8%, if T/.;=1 and f,, is
additive. This implies that H! = H, = H!,,; whence the proposition.

To show that S; = S/%4:, we must show that if s €S/, ,, then s%+1€ B (since
S, =S4 NB). Since T!,,=1, s is of the form

1 0 0
(O 1 0) .
r, r, 1

Since f,,, is additive, f,, (Y +r)={f,1(Y)+f,,1(r) for any r € K. In particular
fis1(Y + 1) —f..1(Y) is constant, and so by (23) we see that s%~ = s’ e B,
Now, by (32) we see that each element of S; is of the form

u 0 0 u 0 O
(w+vD1ﬁ+1(r2) v 0) where (w v O)GS{“.

ri+fin(r) r, 1 ro rp 1

But since T!.;=1, u=v=1, and w=0. And since f,,, is additive, and
fie1€k[ YR, Dif =0. It follows that S; = £,, and so, by (22), S#=Sf*c B.
This proves that S!= S, as required.

1.19. ProrosITION. Suppose T!=1 for all i=1, and suppose infinitely
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many of the polynomials {f;};=, are not additive (e.g. if the chain (29) is non-
stationary—by Proposition 1.18). Then the groups S;_,, S! are finite fori=1.

Proof. We need this lemma.

Lemma. Suppose fe k[Y] is not additive. Then there are only finitely
many constants r€ k for which f(Y +r)—f(Y) is a constant.

Proof of lemma. Write f =g+ / where £ is additive and g has no additive
terms, i.e., g=Yi—; b)Y, and b, =0 whenever i is a power of p =char (k).
We may assume b, # 0. Clearly it suffices to prove the lemma for g. For
rek, we have

e(Y+1)—g(Y)= Z (z 1 (i‘) b,r"i) Yi+g(r)

Hence if g(Y+r)—g(Y)ek, we must have Y&,  (Obr =0, i=
2,...,d—1. Since d is not a power of p, at least one of the coefficients (),
D, .. (4% is non-zero in k. If (;%)#0, we have

5 (g e
N br it =0
t=d—j+1 d—j !

Since by(,2;)# 0, the above algebraic constraint on r is non-trivial, and so
only finitely many constants r satisfy it. This proves the lemma.

Proof of the Proposition. We assume each T? =1 and that infinitely many
fi’s are not additive. Recalling the notation of 1.2, we write I(r,, r,) for the
corresponding element of &£,. Since T} = 1, each element of S! is of this form.

Claim 1.

St ={l(ry+ xir1 = Xf; +1(r2), 11+ £ 1(r2)) | l(ry, 1) e Sl

and f,.(Y- "2)_fi+1(Y) ek}.
By (32), we deduce that the elements of S; are the elements

1 0 O
<D1fi+1("2) 1 0)
ritfia() rno 1

where I(ry, r,)€ S!,, and f;, (Y +r,)—fi11(ry) is linear or constant. By (31)
we see that the elements of S! are the elements

1 0 0
( 0 1 0)
ra—=Xr —Xfia(r2) rit+fia(r) 1

where I(r, )€ S/, fii1l(Y+r)—f,1(Y) is linear or constant and
D,f,,1(r,)=0. These last two conditions say that f, . (Y+r)—f.(Y) is
constant, since f,,, € k[ Y]°. This proves Claim 1.
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Claim 2. Suppose 1=i <j. There exist polynomials F, G € k[T, T,] with
degr, (G)=degr, (F) such that the leading (highest power) T;-coefficient in
G is a constant, and such that each element of S! is the form [(F(ry, r,),
G(ry, ry)) where l(ry, ry)€ S}, and f;(Y+r,)—f,(Y) is a constant. If i=j—1,
we take

F= T2—x1Tl_xlf;'(T2)’ G=T,+f..(T)

and refer to Claim 1. Now we perform induction on j—i. By induction we

have F and G satisfying the requirements in the claim, such that each

element of S/,, is of the form I(F(ry, 1,), G(ry, 1,)) Where I(ry, r,)€ S} and

fi(Y—r))—f,(Y)ek. By Claim 1, we see that the polynomials
F'=G-xF-xfi;1(G), G'=F+f:(G)

satisfy the requirements for S!.

Now, to prove the proposition, it is enough to show that S! is finite
whenever f,,, is not additive. (This follows from (27).) There are infinitely
many f;’s which are not additive so suppose f;., and f,.; are not additive,
with j> 1. By Claim 2, we can choose polynomials F, G € k[T, T,] such that
each element of S, is of the form I(F(ry, 1,), G(ry, 1,)), where I(ry, r,) € S!.;
and f;.;(Y +r)) —fi.;(r,) € k. Since f;.,; is not additive, the lemma tells us that

only finitely many constants r, satisfy this condition. By Claim 1 each
element of S/ is of the form

(B34) U(G(ry, 1) = xF(ry, 12) = xfi11(G(r1, 12)), G(ry, 1) + fi 11 (F(ry, 12)))
where 1(ry, 1)) € Sy, fisi(Y+1)—fij(Y) €k, and
(35) fisr1(Y+G(ry, 1)~ fi1(Y) €k

Now f;,, is not additive, and so G(ry, r,) can take on only finitely many
values in order for the above condition to be satisfied. Since the coefficient
of the highest power of T, in G(T,, T5) is a constant, we see that for each
value of r,, there are only finitely many values of r, such that G(ry,r,)
satisfies (35). Therefore, each element of S! is of the form (34), where r; and
r, each take on only finitely many values; and so S/ is finite.

1.20. Now we drop our assumptions, made in 1.14, and assume that H is
an abelian subgroup of GA,(k) of type 2, with respect to the decomposition
GA,=A x5 E of (16) (see Theorem—Definition 0.3). This means that the
graph of groups Y = T/H, where T is the tree on which GA, acts (see §0) is
a filtering tree, with no maximal vertex. Thus we are in the situation of
Lemma 0.21. We apply that theorem to get the data {a,}{, <1, {e};=, <],
Si+1, S!c B as specified, and upon letting H;_,, H; be defined as in the
theorem H is conjugate to the union of

Hy,cHi<H,c::--<H,_,<cH{<cH;<--:
which is non-stationary. We can now apply Propositions 1.15, 1.16, 1.18,
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and 1.19. We let K;_;, T,_,, K!, T! be as in (33). According to Proposition
1.16, either each T!=1 or each K!=1. In the first case, we apply Proposi-
tions 1.18 and 1.19 to get that each S! (=K!) is a finite subgroup of %£,.
Thus we can say that each H! (and hence each H,) is conjugate in GA, to a
finite subgroup of £,. Obviously this case can’t be realized if char (k) =0,
since then each element of &£, has infinite order. In the case K!=1 for all
i=1, we have each K; =1 (by 1.16), and so by (d) and (a) of Proposition
1.15, each S! is conjugate in A to a subgroup of D, of the form

{6 )
0 u?
for some integers d, n, with (d, n) =1 (since u is a power of u¢). Whence the
following theorem.

ue U(n)}

1.21. TeeoreM. If H is an abelian subgroup of type 2 in GA, (with
respect to the decomposition GA,=A *gE of (16)), then there exists a
(non-stationary) chain

HOCHIC "’CH—ICI_LC e

such that H= \Ji_q H,, and such that (a) each H; is conjugate in GA, to a
finite subgroup of £,, or (b) each H, is conjugate to a subgroup of D, of the

form
{6 )
0 ut
where d and n are integers, depending on i, with (d, n)=1. If char (k)=0,

case (b) holds.

Note. We will see in Examples 2.2 and 2.5 that both the possibilities (a)
and (b) in the conclusion of Theorem 1.21 can be realized.

ue U(n)}

1.22. CoroLLARY. GA,(k) has no abelian subgroup of type two in each of
the following cases:

(1) k is finite

(2) char (k)=0 and k contains only finitely many roots of 1.

1.23. Now suppose that H is an abelian subgroup of type 3 in GA, =
A *g E. This means that the reduced graph of groups Y' (see §0) is a
directed loop (see Theorem~Definition 0.3). According to Lemma 0.25, and
Lemma 0.26, there exists {a}i=.<I, {bY~.<J, Si_;, S/cB, g=
ba.e. - - - ase;, such that, upon letting H;_,, H! be defined as in 0.25, we
have

F=H0=H’1=H1=-~-= i_1=H€=IIi=0--

(everywhere stationary, since H is abelian) and H is conjugate in GA, to
Fx(g)< GA,. Again we can apply Propositions 1.16 and 1.15, which tell us
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that either F is a (possibly infinite) subgroup of &,, or else G is conjugate to
a subgroup of D, of the form

{6 u)
0 u

where (n, d)=1. Proposition 1.19, guarantees that, if char (k)=0, and if
Fc¥%,, then F=1, since none of the polynomials f; are additive, and there

are no non-trivial finite subgroups of £,. We have proved the following
theorem.

ue U(n)}

1.24. TueoreM. If H is an abelian subgroup of type 3 in GA,(k)
(=A x5 E), then there exist a subgroup F < H and an element g € H which is
not conjugate to any element of A or E (and therefore has infinite order such
that H= F X (g), and such that (a) F is conjugate in GA,(k) to a subgroup of
%,, or (b) F is conjugate to a subgroup of D, of the form

{6 )
0 ut
where n and d are integers and (n, d)=1. If char (k) =0, case (b) holds.

Note. We will see in Examples 2.9 and 2.10 that both the possibilities (a)
and (b) in the conclusion of Theorem 1.24 can be realized.

ue U(n)}

2. Examples of abelian subgroups in GA,(k)

2.1. In this section we will display some examples of abelian subgroups
of type 2 and 3 in GA,(k), for various kinds of fields k. We do this by
employing the technical apparatus furnished by Lemmas 0.22 and 0.26. We
will often be referring to the systems I and J of coset representatives of A
and E, respectively, modulo B (see 1.6 and 1.7).

2.2. Example. Let k be a field which contains all the roots of 1. Let

010
i=a(0)=(1 0 O)EJ
0 0 1

for each integer i = 1. Let {d,};>., be a strictly increasing sequence of integers
=2 such that did;,,—1 divides d;,,d;.,—1, and such that p = char (k) does
not divide did, ., —1 (If p>0, we can form such a sequence by taking d, = p,
d,=p?, di.,=pdid;.,+d;—p. Then clearly

(didi 1 —D(pdis1+ 1) =d;1din—1,

and one sees by induction that p does not divide d,,,d;.,—1. If p=0, let
d,=2,d,=3,d,=dd ., +d+1) Let f=Y%eck[Y], and let ¢, = e(f) € J.
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4,

v4 0 0
Si_1= {( 0 v 0)
0 0 1
v 0 O
S{={(0 v 0)
O 0 1

for i=1. We observe from (22) of 1.13 that S!=S%=S*NB. From (23),
(24), and (25), we conclude that

S*NB=S*"NB

ve U(dd,.,— 1)},

veU(d;1di2— 1)}

v 0 O
= {(O Dd‘“ 0 veE U(di+1di+2— 1), and fi('vd“'IY)—vfi(Y)}.
0 0 1lis linear or constant

The condition f,(v4+Y)—of,(Y) is linear or constant says that v44Y% =
vY%, i.e., that v44+'=1, Since dd,,,—1 divides d,,,d;.,—1, the condi-
tions v € U(d;;1d;.,—1) and v*4+~'=1 may be replaced by the condition
veU(dd;.,—1). If veU(dd;,,—1), and if u=v%+, then v=u*. Thus we
see that from (36) that

(37) Si.1=S/“NBg S,

The proper containment results from the fact that U(dd,,,—1)g
U(d;.d;.»— 1), which follows from the fact that p | d;,,d;.,— 1. Therefore
the hypothesis of Lemma 0.21 are satisfied by these data, and so, upon
letting H;_,, H; be defined as in this lemma, we take H to be the union of
the non-stationary chain

H,cH)<H,<-:--<H,_;<HcH/c---.

Then, according to the lemma, H is an abelian subgroup of type 2 in GA,.

Viewing this example in the light of Theorem 1.21, we observe that case
(b) of the conclusion of the theorem holds in this example, since each S; is of
the required form.

2.3. A further analysis of the preceding example shows that if we define
the isomorphisms ¢;: S! — U(d;,,1d;1,—1) by

o 38 _V if i is odd,
i 00 1 v if iis even
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then following diagram commutes:

(Y < H;
I !
U(didi+1 - 1) < U(di+1di+2— 1)

This shows that H is isomorphic to the union of the groups U(dd; ., —1).

Note that the requirement p f (d,d;.,,— 1) was only used to insure that the
containment of (37) is proper for each i =1. This is actually more than one
needs to apply Lemma 0.21. The hypothesis of this theorem is met if only
the proper containment of (37) holds for infinitely many integers i = 1. Since
the proper, containment for i holds precisely when U(dd;.,—1)<
U(d;,1d;.»—1) is proper, we can replace the condition p | d;d;.,—1 by the
condition

U(dyd,—1)c U(dds— e+ - -« U(didi— 1) = U(diydin— 1) -

is non-stationary.

It follows that if k has infinitely many roots of 1, we can find an abelian
subgroup H of type 2 in GA,(k) which is isomorphic to the group U of all
roots of 1 in k, provided we can choose the sequence {d;}{~, in such a way
that for each integer n, n divides d;d;.,—1 for i sufficiently large. For, if the
d;’s can be so chosen, the union of the groups U(d,d; ., — 1) is all the roots of
1. In fact, this can be done, as follows. List the prime numbers {p,};~, in
order. We want to arrange that (1) dd;.., — 1 divides d,.,d;.,— 1, and that (2)
(py -+ p) divides did;..,— 1. For the sake of choosing the d,’s inductively,
we will also arrange that (3) p; /d;. Now, the conditions are satisfied (where
they make sense) if we let d;=3, d,=5. Suppose we have defined
dy,...,d. ., such that (3) is satisfied for i=1,...,t+1, (2) is satisfied for
i=1,...,t and (1) is satisfied for i=1,...,t—1. Let n be a positive
integer. If we were to let d,.,=nd.d,.,+d,—n, we would have

(nd, 1+ 1)(dd, 11— 1) =d,11d, 12— 1,

and so (1) would be satisfied for i =¢. By (2) and (3) for i =t+1 we see that
none of the primes p,,...,p., divides d.,,, and so the integer n can be
chosen so that nd,.;=—1 (mod (p; * * * p,+1)'""), by the Chinese Remainder
Theorem. With n so chosen, we see that (2) is satisfied for i =t+1 (since
nd,.,+1 divides d,.,d,.,—1). To be able to continue the induction, we must
insure that (3) is satisfied for i =t +2, i.e., that p,., | d..,. Suppose that, with
n chosen as above, we have

Di+2 I d;o=ndd, . +d,—n.

Then p,., ) dd,.,—1, since dd,,,—1 divides d,.,d,,,— 1. Therefore upon
replacing n by n+(p, - * p.+1)'", we see that condition (3) is satisfied, for
i =t+2, and conditions (1) and (2) remain intact.
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Thus we have proved:

2.4. THeEOREM. Let k be a field containing infinitely many roots of 1.
There exists a subgroup H of GA,(k) which is isomorphic to the group U of
roots of 1 in k, but which is not conjugate to any subgroup of Af, or E,. Any
such subgroup H is of type 2.

Proof. All is proved, except the last statement. But any subgroup of type
3 contains an infinite cyclic subgroup (see Theorem-Definition 5.1), and
therefore is not isomorphic to U.

2.5. Example. The following lemma enables us to exhibit a different
kind of type 2 abelian subgroup in GA,(k), when char (k) > 2.

Lemma. Let k be a field of characteristic p>0, such that k contains the
algebraic closure of F,. Let n be a positive integer, and let f € k[ Y] be defined
by f=(Y—Y"")* where d is any integer >1 such that p | d. Then if r eF»,
we have f(Y +r)=f(Y). The elements of F~ are precisely those elements
r € k for which deg (f(Y+r)—f(Y))=1.

Proof. This follows readily from the fact that the elements of F,. are
precisely the roots of Y—Y"".

Now, to give the example, we let F, be the algebraic closure of F,, and
assume k is a field containing F,. As in example 2.2 we let

010
ai=a(0)=<1 0 O)eI,
0 0 1

for each integer i>1. Let {p,}=, be a list of all the primes, and let
n(@)=(p; - p). Let e,_,=e, =e(f,) €], where f,=(Y—Y?"")% where d,
is an integer >1 such that p; / d;. For each integer i =1, let

1 00
Séi = $2(F(pn(t+1))) = {(O 1 O) r, t € F(pn(i-n))},
r t 1
1 00
SZi—l = {(0 1 0) re F(pn(H-l)), te F(pn(l))},
r t 1
1 0
,2i—1 = {(0 0) re F(pn(i)), te F(pn(iﬂ))},
r

1
1 00

SZi—-Z = gz(F(pn(l))) = {(0 1 0) rte F(pn(i))}.
r t 1

(38)

-~ = O
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1 0O
s= (O 1 O) e Z,(k),
r ¢t 1

Now, given

it follows from the lemma, and from (23) and (26) of 6.13, that s°» € B if
and only if t €F,~), and in this case, s®» = s, since both f;(t) and D,f;(t) are
zero. Also, we see from (22) of 1.13 that s{e B, and

1 0 0
“‘“(0 1 0)
t r 1
Sri-1=852NB g S5, Shi-1=8327NB=8%",

S22 =S527 NB g S5y, S5 ,=83274NB=8%",

We have satisfied the hypothesis of Lemma 0.22, and so, upon letting H;_;,
H] be defined as in the theorem, we have a non-stationary chain

(39) HOCH'chlc"’CI'Ijach;CH}C

It follows that

and the union H is an abelian subgroup of type 2 in GA,(k). Since H; is
conjugate to S;, a finite subgroup of £,(k), we see that case (a) of the
conclusion of Theorem 1.21 is realized in this example.

2.6 Infact, in this example, H;; is conjugate to £,(F ) (by (38)), and
the induced isomorphism H%;—> £,(F,~«+v)) is such that the diagram

% < Hy
AL L
$2(F(pn(i+1))) c $2(F(pn(t+2)))
commutes. By the choice of the n;’s, we have | F»o,=F,, and so

.L_J LoF ) = Lo(F,).

It follows that H = $2(F ).

One really doesn’t need to assume k DF to construct an example. The
only thing one needs to know is that condltlon (b) of Lemma 0.22 is
satisfied. (This has the effect of insuring that the chain (39) is non-stationary.)
This can be accomplished by assuming that k ﬂFp, the algebraic closure of
F, in k, is infinite. With this assumption, let F=k ﬁFp, F,=kNFynoy (n(i)
deﬁned as in 2.5). Then the chain F,< F,< F;< - - - is non-stationary, the
union being F. Upon replacing F,-«y by F; in (38), the hypothesis of Lemma
0.22 is again satisfied, and we get a non-stationary chain

H,«cH,cHj<---<cH, ;<H!<cH,<---
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such that the union H is an abelian subgroup of type 2. In this case, H; is
conjugate in GA, to ¥,(F,,,), and the diagram (39) commutes, replacing
F ey and Fne) by F,,, and F,,, respectively. Therefore H = %,(F), and
we have the following theorem.

2.1. TueoreM. Let k be a field of characteristic p#0. Let F be the
algebraic closure of F, in k, and assume F is infinite. There exists a subgroup
H of GA,(k) which is isomorphic to the additive group F*> which is not
conjugate to any subgroup of Af, or E,. Any such subgroup H is of type 2.

Proof. We need to prove the last statement. Any subgroup of type 3 has
an element of infinite order, and hence is not isomorphic to F>.

(Note. One can also produce an abelian subgroup H< GA, of type 2
such that H is isomorphic to the additive group of F=k ni?,,.)

2.8. To produce examples of type 3, we need only to give an abelian
subgroup F< B and an element g€ GA, which is not conjugate to any
element of A or E, and which commutes with every element of F. In this
case, one sees from Theorem-Definition 0.3 that the subgroup (F, g)=
F - (g) is an abelian subgroup of type 3.

2.9. Example. Let d, d'>1 be integers. Let

010
a=(1 0 0)=a(0)eI.
0 0 1

Let f, f'e k[ YT be defined by f=Y? f'=Y? and let e=e(f), e’ =e(f)eJ.
Let k be a field containing all the (dd’-1)th roots of 1, and let

u 0 O
F= {(O u? O)
0O 0 1

Let g = eae’a. We claim that g commutes with every element of F. For any

diagonal element
u 00
s = (0 v O) eD,,
0 0 1

v 0 O
s¢ =(0 u O),
0 0 1

by (22) of 1.13. By (23), (24), and (26) of 1.13, we see that s° € B if and only
if u=v°, and in this case s® =s; and s¢ € B if and only if u = v, and in this

ue U(dd’—l)}CB.

we have
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case s¢ =s. If seF, then v=u? and u =v% and it follows that

v 0 O¢° v 0 0
§8 = go9e’a = gae'a =(0 u 0) = (0 u 0) =S§.
0 0 1 0 0 1

Hence g commutes with every element of F. Clearly g is not conjugate to
any subgroup of A or E, since g is cyclicly reduced (see 0.1). It follows from
2.8 that H=(F, g) is an abelian subgroup of type 3 in GA,(k). In fact,
H = F x{g).

In light of Theorem 1.24, note that case (b) of the conclusion holds for
this example.

2.10. Example. Let k be a field of characteristic p#0, and let n, m=1
be integers. Assume k<Fg., F,n. Let f=(Y-Y"), f=(Y-Y"")*
where d is an integer >1 such that p | d and let e =e(f), ¢'=e(f)eJ. Let

010
a=(1 0 0)=a(0)eI.
0 0 1

1 0 O
F={(0 1 0)
r ¢t 1

and let g =eae’a’. For any element

1 00
s = (O 1 0) e L(k)
r t 1

1 0 O
s¢ =(O 1 O)
t r 1

by (22) of 1.13. By (23) and (26) of 1.13, and by the lemma of 2.5, we see
that s® € B if and only if t€F,, and in this case s°=s; also s* € B if and
only if teFq~), and in this case s*=s. Now it follows easily that if seF,
s® =s. Therefore g commutes with every element of F. Also, g is cyclicly
reduced, hence not conjugate to any element of A or E. It follows, using
2.8, that H=(F, g) is an abelian subgroup of type 3 in GA,(k). In fact,
H = (Fx(g).

Note that case (a) of Theorem 1.24 holds in this example. The author
does not know if an example exists where the group F is an infinite
subgroup of £,(k).

re F(pm), te F(pn)},

we have
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3. Actions of commutative k-group schemes on the affine plane

3.1. For any field (or ring) k a k-group scheme ¥ is a functor from the
category of k-schemes to the category of groups which is represented by a
map a: 9X9%— G of k-schemes. An action of § on a k- scheme & is a
functor from the category of k-schemes to the category of groups acting on
sets, represented by a map y: YxXF > &.

3.2. Given an action y: X ¥ — ¥ of 4 on &, one can easily see that the
map

idXy:49xXF > EXZ,

(where id is the projection onto %) is an isomorphism.

3.3. Letting J =spec (k), we have the group homomorphism from the
group Hom (7, 9) of points in J (k-rational points) into Aut (¥) which
takes ¢ € Hom (7, 9) to the element of Aut (&) given by the composite

@ Xid v
FP=I XL —a>EGXSF > .
3.4. Two actions v and vy’ of 4 on & are said to be equivalent if there
exists an automorphism p of & such that v’ is given by the composite
idxp v p1
Y+P —YxP —-F — .
This is equivalent to saying that idX«y': ¥X¥ —> ¢XF is given by the
composite

idxp idxy idxp—1

Gx P GXSP ——>GXSP Gx 9.

3.5. Now suppose we take & = A%(k)=spec (k[ X, Y]), the affine plane;
and let 9 be some affine k-group scheme spec (R). Suppose we have an
action v: 9XA?—A? on the affine plane. Then y corresponds to a k
algebra homomorphism k[X, Y]— R[X, Y], which is determined by a vec-
tor (P, Q), with P, Qe R[X, Y]. According to 3.2, the vector (P, Q) also
determines an automorphism of R[X, Y], i.e., (P, Q) represents an element
of GA,(R) (see 1.1). By 3.4 two actions, determined by vectors (P, Q) and
(P’, Q'), which in turn represent ¢, ' € GA,(R), are equivalent if and only if
there exists ¢ € GA,(k) such that ' = &R,

3.6. It follows from 3.3 that an action y of ¢ on AZ?, given by (P, Q),
gives us a homomorphism from the (abstract) group Hom, (R, k) into
Aut, (k[X, Y])= GA,(k). This homomorphim carries ¢ € Hom (R, k) onto
(¢(P), (Q)), where & is the extended homomorphism ¢ ®, k[X, Y].

3.7. Now suppose k is a field. Let §=spec(R) be a commutative
k-group scheme, and y an action of 4 on A%. We have, as in 3.6, an induced
homomorphism Hom (R, k) = GA,(k). It is clear from 3.6 that the image H
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of this homomorphism is an abelian subgroup of GA,(k) which is of
bounded degree (in the sense of 1.8), since the degree of any element of H
is at most max (deg P, deg Q). Therefore, by Proposition 1.11, H is conju-
gate in GA,(k) to a subgroup of Af, or E,. It follows from 3.5, that after
replacing y by an equivalent action, we may assume H < Af, or H< E,.

3.8. In order to obtain the results in this section, we must appeal to the
following proposition, which arises from the theory of linear algebraic
groups. We denote by U, the lower triangular unipotent subgroup of GL,,
and by D, the diagonal subgroup.

ProrosiTion.  If k is an algebraically closed field, then any abelian sub-
group of GL, (k) whose Zariski closure is connected is conjugate to a subgroup
of the lower triangular subgroup.

For the proof we refer the reader to [3, Theorem 15.4]. Note that such an

abelian subgroup of GL, may be replaced by its Zariski closure, which is
again abelian [3, Chapter I].

3.9. PrROPOSITION.  Suppose k is a field, and suppose k' is some field extension
of k. Suppose H is a subgroup of GL,(k) which is conjugate in GL,(k") to a
subgroup of U,(k'). Then H is conjugate in GL,(k) to a subgroup of U,(k).

Proof. Let
a b ,
a= (c d)e GL,(k"

be such that H* = U,(k'). Clearly a can be chosen to be in SL,(k').

Let
10\ ..
(h o)eH'

a(l O>a_1__ (a b)(l 0)( d —b)_ (1+bdh —b%h )

h 1 c d/\n 1/\-c a d*h  1—bdh

is in H. Each element of H has the form (40), where h varies. Now, if b =0,
H < U,(k) and we are done. If d =0, H is contained in the upper triangular

unipotent group, and so H conjugated by (} §) is contained in U,(k).
Otherwise, b, d# 0. By (40) we see that 1—bdh, —b*h € k whenever

10\ ..
(h 0>€H‘

If H is non-trivial, choose h to be non-zero, and it follows that bd~* € k. Let

d 0
=2 L)eBw,

Then
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and let
1 bd\1?
f=ay= ( 0 1 )
Then B € GL,(k), and H? =y '(H*)y. Since H* € U?(k’), and since U,(k')
is normal in B,(k'), we see that H® < U,(k') N GL,(k) = U,(k).
Now we are prepared to prove the following proposition.

3.10. ProrposITION. Suppose k is a field, and 4 =spec (R) is an affine
commutative k-group scheme which is reduced, and assume that the k-
rational points form a dense set in 4. Any action of 4 on A*(k) is equivalent
either to an action given by a vector of the form

41) (uX+f(Y),vY+s)

where u, ve R*, se R, fe R[ Y], or to an action given by a vector of the form

(42) (aX+bY+r,cX+dY+t) where (Z ;) € GLy(R), and r, te R.

Proof. As in 3.7 we may replace the action of 4 on A? by an equivalent
action and assume that the image H of the induced homomorphism
Hom (R, k) = GA,(k) is contained in Af, or E,. Since ¥ is reduced, and
since the k-rational points are dense in %, it follows that if x € R vanishes at
each k-rational point, then x = 0. Now, the action of ¥ on A? is represented
by a vector (P, Q), with P, Qe R[X, Y] (see 3.5). If H< E,, then when we
evaluate (P, Q) at any k-rational point, we get a vector of the form (41) with
u, vek* sek, fek[Y]. Therefore, (P, Q) itself is of the form (41) with u, v,
seR, feR[Y], since no non-zero coefficients vanish throughout
Hom (R, k). Since (P, Q) determines an element of GA,(R) (see 3.5), we
must have u, v e R*.

On the other hand, if H< Af,, then when we evaluate (P, Q) at any
k-rational point we get a vector of the form (42) with

a C
(b d)e GL,(k), rtek.

It follows that (P, Q) is of the form (42), and that

(5 S)eorw,

since (P, Q) determines an element of GA,(R).

3.11. THEOREM. Suppose k is an algebraically closed field, and suppose
% =spec (R) is a connected, reduced, affine, commutative k-group scheme.
Then any action of 4 on A>(k) is equivalent to an action given by a vector of
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the form
43) (wX+f(Y), vY +5)
where u, ve R*, seR, fe R[Y].

Proof. According to Proposition 3.10, the action is equivalent either to
one of the required form, or else to an action given by

a c
b d

In the latter case, (P, Q) determines an element of Af,(R). Since
Af2(R)=%,(R) X GLy(R),

(44) (P,Q)=(aX+bY+r, cX+dY+1) with ( )e GL,(R), 1,teR.

the matrix

a ¢
(b d) € GL:R)

determines an algebraic group homomorphism % — GL,(k). The image H
of Hom (R, k)— GA,(k) is contained in Af,(k), and the projection T of H
onto GL,(k) is the (closed point) image of the algebraic group homomorph-
ism. Since ¥ is connected, T is connected. We appeal to the proposition of
3.8 to conclude that T is conjugate in GL,(k) to some subgroup of B,(k). It
follows that H in conjugate in Af,(k) to a subgroup £,B,= B. Thus after
conjugating (P, Q)€ Af,(R) by an appropriate element of GL,(k) (this
amounts to replacing the action of 4 on A? by an equivalent action) we may
assume that H < B. Hence the coefficient ¢ of (44) vanishes everywhere, and
therefore ¢ =0, since ¥ is reduced. Thus we see that (P, Q) is of the form
(43), with f a linear polynomial.

4. Actions of vector groups on the affine plane

4.1. For any ring k, the k-group G (n dimensional vector group) is the
affine k-scheme spec (k[T,, ..., T,]), together with the map G"X G" — G"
defined by the homomorphism

k[T,,..., T, 1> k[Ty, ..., T,1Qk[Ty, ..., T,]
=k[Ty,..., T, T, ..., T:]
which sends T, to T;+T!, for i=1,...,n. Or, in other words,
G;=G, X+ XG, (n times)

where G,=GL. We will simply write T and T’ for T;,...,T, and
T4, ..., T, respectively.
4.2. An action of G? on A*(k) is given by a vector (P, Q) with P,
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Qekl[T, X, Y] (see 3.5) satisfying the conditions

(@ (P(T+T,X,Y), Q(T+T,X,Y))
=(P(T, X, Y), Q(T, X, Y)) - (P(T", X, Y), Q(T', X, Y)),

(b) (PO, X, Y), QO, X, Y))=(X, Y).

(The vector multiplication of (a) is performed as if we were composing
elements of GA,(K[T, T']) (see 1.1).) Such a vector (P, Q) necessarily
determines an element of GA,(k[T]) (see 3.5).

4.3. The (abstract) group of k-rational points Hom (k[T], k) can be
identified with the group (k*)". (We write k™ for the additive group in k.)
An action (P, Q) of G on A? gives a homomorphism (k*)" — GA, (k)
which takes

©=(c,...,c)ek™) to (Pl X, Y), QX Y) e GA,(k).

4.4. Recall from Theorem 2.7 that if k is a field of characteristic p#0
such that k is an infinite algebraic extension of F,, then there exists a
subgroup of GA,(k) which is isomorphic to (k*)* which is not conjugate to
any subgroup of Af, or E,. Thus there exist faithful (non-algebraic) actions
of (k*)>—and in fact k*—on A? which are not “linear” or “elementary”, up
to equivalence.

4.5. Of course, if H<= GA,(k) (k a field) is the image of a homomorph-
ism (k*)*— GA, (k) arising from an (algebraic) action of G* on A2, then H
is of bounded degree, and hence is conjugate to a subgroup of Af, or E,
(Proposition 1.11). This is the principle which has already been exploited, in
a more general setting, to obtain Proposition 3.10 and Theorem 3.11. Now
we will show, in proving Theorem 4.9, how this fact allows us to describe
explicitly all actions of G on A” (and in §5, all actions of tori on A2), up to
equivalence. First, some preliminaries.

4.6. DeFiNiTION. Let fek[T,,...,T,]. We say that f is an additive
polynomial if

(45) f(T1+T,19 c e Tn+T:t)=f(T1’- R Tn)+f(Ti9' . ,Tﬁ)

(Note that if k is an infinite field, this is equivalent to saying that f defines an
endomorphism of (k*)".)

4.7. ProPOSITION. Suppose k is a domain and fek[T,,...,T,]. If
char (k) =0, then f is additive if and only if f is linear and homogeneous. If
char (k) =p >0, then f is additive if and only if f is a k-linear combination of
monomials of the form T?'.

Proof. The sufficiency in each statement is obvious. The necessity, for
n =1, follows from the fact that if a positive integer d is not a power of p,
then at least one of the coefficients (9), ..., (;%,) is non-zero in k. For n>1,
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we reason as follows. Write
f=fotfiT,+- - +fTs,

where fo,...,d; €k[T,,..., T,_,]. Putting T, = T?, = 0 in (45) we see that f,
is additive, and hence by induction is of the required form. Now we
substitute only T,=0 in (45) to get f(T,+T% ..., T, 1+Th )=
fi(Ty,..., T,) fori=1,...,d. This clearly implies that f,, ..., f, € k. Finally

we set Ty=-+-+=T,_,=0=T,=---T',_, in (45) and appeal to the case
n=1tosee that,fori=1,...,d, f;=0if i is not a power of p. (When p=0,
this says that f,= - - - f; =0.) This proves that f is of the required form.

(Note. Proposition 4.7 shows that, for n =1, Definition 4.6 agrees with
the definition of additive polynomial given in 1.17.)

4.8. Remark. Suppose fek[T,,...,T,]. If f is an additive polynomial,
then f defines an endomorphism of (k*)". We have already remarked that
the converse is true when k is an infinite field. However, if k =F,, the
polynomial (T®—T)* defines the zero endomorphism on k*, but is not
additive, if d is not a power of p.

4.9. THEOREM. Suppose k is an infinite field. Any action of the n-

dimensional vector group G% on the affine plane A*(k) is equivalent either to
an action of the form

(46) (X+go(T+g (Y + -+ +g(TNYY)

where g, ..., 2. €k[Ty, ..., T,] are additive polynomials; or to an action of
the form

(47) (X+g(T), Y+h(D))

where g, he k[T, ..., T,] are additive polynomials.

The proof of this theorem is done in 4.10-4.27.

4.10. Let vy be an action of G on AZ. v is given by a vector (P, Q), with
P, Qek(T, X, Y], satisfying (a) and (b) of 4.2. Let H be the image of the
induced homomorphism (k*)"— GA,(k) (see 4.3). Since k is infinite, no
polynomial in k[T] vanishes on k™ (this says that the k-rational points of G}
form a dense set), and so according to Proposition 3.10, we can replace y by
an equivalent action, and assume that either (P, Q) is of the form

(48) (WX +f(Y),vY +5s)

where u, v e k[TT*=k*, sek[T], fek[T, Y] G.e. H=E,); or (P, Q) is of
the form

(49) (aX+bY+r,cX+dY+f) where (: ;)GGLz(k[T]), r,tek[T],
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(i.e. H< Af,). We will dispense with the second possibility by again replac-
ing y by an equivalent action. Note that, if k were assumed to be algebrai-
cally closed, we could appeal to Theorem 3.11.

3.11. In any case, we can make the base change to k, the algebraic
closure of k. The action vy extends to an action y of G,(k) on A%(k), and ¥
is given by the vector (P, Q). Let H be the image of (k*)"— GA,(k). If
(P, Q) is of the form (49), we have

H < H
N n .
Af,(k) < Af,(k)

Recall that Af,=%,XGL,. Let T, T be the respective images of H, H in
GL,(k), GL,(k). Then T is the (closed point) image of the algebraic group
homomorphism G"(k)— GL,(k) defined by

b o)

b d/

Since G"(k) is connected, T is connected. Therefore, by the Proposition of
3.8, T is conjugate in GL,(k) to a subgroup of B,(k). But there are no
non-trivial algebraic homomorphisms from a vector group into a torus (one
can convince himself of this by an easy direct argument), and so we must
have T, and hence T, conjugate in GL,(k) to a subgroup of U,(k), the lower
triangular unipotent group. We apply Proposition 3.9 to conclude that T is
conjugate in GL,(k) to a subgroup of U,(k).

It follows that H is conjugate in Af, so a subgroup of £,U,< Af,.
Therefore, if we replace y by the appropriate equivalent action, v is given
by a vector (P, Q) of the form (X+bY +r, Y +1t). In particular, v is of the
form (48) of 4.10.

4.12. Thus we have shown that any action y of G" on A? is equivalent
to one defined by a vector (P, Q) of the form (48). Note that the argument
of 4.11 was necessary to show that y is equivalent over k to such an
action—not merely equivalent after going to k.

4.13. So now we may assume <y is given by (P, Q) of the form (uX+
f(Y), vY +5s) with u, ve k™, sek[T], fek[T, Y]. It follows from (b) of 4.2

that u=v = 1. It follows from (a) of 4.2 that s is an additive polynomial in
k[T,,...,T,]. Write

f(Y)=go+ g1Y+ ce +ngd,

with go, 81, ..., g € k[T]. If s =0, we can deduce from (b) of 4.2 that each
of gy, ..., g is an additive polynomial. Hence, if s =0, the action is of the
form (46) of 4.9, as required.

4.14. Otherwise, (P, Q) is of the form

(50) (X+f(Y), Y+s)
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where fe k[T, Y], and s € k[T] is a non-zero additive polynomial. As above,
write

(51) f(Y)=got+g Y+ +gY?

where g, ..., g, €k[T], g,#0. If d =0, we again appeal to (b) of 4.2 to see
that g, is additive, and so (P, Q) has the form (47) specified in the theorem.
In the case d >0 we will show that we can conjugate (P, Q) e GA,(k[T]) by
a well chosen elementary automorphism in GA,(k) which has the effect of
leaving the form (50) of (P, Q) intact, but lowering the degree d of f. This
will prove the theorem, since conjugating (P, Q) by an element of GA,(k) is
tantamount to replacing y by an equivalent action (see 3.5).
4.15. Since (P, Q) is of the form (50), condition (b) of 4.2 says that

X+f(T+T,Y), Y+s(T+T)
(52) =(X+f(T,Y), Y+s(T)(X+f(T',Y), Y+s(T))
=(X+f(T,Y)+f(T', Y +s(T)), Y+s(T)+s(T")).

One sees, then, that

(53) f(T+T,Y)=f(T, Y)+f(T, Y +s(T)).
Now,
(54) fr, v+sy= ¥ (3 (£ a@say) v

and so (53) and (54) imply that

69 a@+T)=a@+am+ ¥ (amsm i=01...d)

t=i+1

In particular, we see that the polynomial
d

ATT)= 3 (f)amsry
t=i+1 \l

has the ©property that AT, T)=A/(T,T), since A(T,T)=
&(T+T")—g(T)—g(T.

For any polynomial A € k[T, T'] we will say that A is T, T'-symmetric if
A(T, T)=A(T',T). We will be repeatedly exploiting the fact that the
polynomials A;(T, T') are T, T'-symmetric.

4.16. Given hek[Y], we have e(h)e GA,(k) given by (X+h(Y),Y).
Direct computation shows that

(P, Q™ =(X+f(T, Y), Y +s(T))*®

(56) =(X+f(T, Y)—h(Y)+h(Y +s(T)), Y +s(T)).
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In particular, upon letting h =cY™, where c € k, (56) becomes

(P, QY™ =(X+f(T,Y), Y +s(T))*“¥™
=(X+f(T, Y)—cY™ +c(Y +s(T)", Y +s(T)).

Note that the effect of (57) on (P, Q)=(X+f(T,Y), Y+s(T)) is to replace
f(T,Y)by f(T, Y)—cY™+c(Y +s(T))™. We wish to choose ¢ and m so that
the conjugation (57) lowers the degree d (in Y) of f. This will prove the

theorem, as was explained in 4.14. We begin by proving the following
technical lemma.

(57)

4.17. LemMA. Suppose the action (P, Q) is of the form (X+f(T,Y), Y+
s(T)) with

f=gotg Yo+ +g Y9
where g, ..., 8,€k[T] and q is a power of p=char (k). (If p=0, then
q=1). Let u be an integer such that 1<u=<d' and pf u+1; and let ack.
There exists an elementary automorphism ¢ € GA,(k) such that

(P, Q) =(X+f(T, Y), Y +s(T))

where

f'=g+gtY+ - +gi, Y,
80, -+ 81a€k[T], gla= 8 for j>u, and g},= g.q—as(T)".

Proof. In (57) of 4.16, take m = (u+1)q, ¢ = —a/(u+1), and we see that
¢ =e(cY™). works.

4.18. Now we assume that d (=degy f)>0. Let q be the highest power
of p =char (k) which divides every integer j for which g;# 0, and write
(58 f=gotg Yo+ +g, Y%
where d =d'q. (If p =0, then q = 1.) Note that, with f in this form, equation
(55) becomes

’ r & t ’ —i
(59) Guy(T+T)=gq(T)+go(T)+ ¥, (l) g (T)s(T)D9,
t=i-+1
i=0,1,...,d".
This uses the fact that ()= () in k.

4.19. We first assume that p & d' and p 4 d’'+1. Equation (59) with

i=(d'—1), says that
ga-1a(T+T) = ga—13(T) + 8ar—1o(T") + '8 (T")s (T)".

Thus we see that d'g,(T')s(T)* must be T, T'-symmetric. Since d' and s(T)
are non-zero (in k[T]), this easily implies that g,(T)=cs(T)?* for some
non-zero c € k. Since p } d’'+ 1, we see by Lemma 4.17 that we can perform
a conjugation of (P, Q) by an element of GA,(k) which has the effect of
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cancelling g,(T) = cs(T)?%, and thereby lowering the degree (in Y) of f. Thus
we can lower the degree (in Y) of f by an appropriate conjugation, as long
as d',d'+1%#0 in k. This completes the proof of the theorem for the case
char (k) =0, and so we will proceed under the assumption p >0.

4.20. We will dispense with the case p|d’'+1 by showing it cannot
occur. Suppose p|d'+1. We again appeal to the equation (59), with
i=d'—1 to see that g,(T)=cs(T)* for some non-zero c € k. This can be
done just as in 4.19, since d'#0 in k.

Let us first assume d'+1%#p, i.e. d'>p—1. We write (59) withi=p—1 to
get

’ ’ < t r t—p+
(60) E-alT+T)= 81D+ 8T+ 2 (£ ) gDy

t=p

Since (,2,)=p =0 in k, we see from (60) that the polynomial

&

ATT)= % (1) ga(Tscryeos
t=p+1 \P ~ 1

is T, T'-symmetric. (Note that since d'>p—1, we also have d’'>p, and so

the above sum is non-empty.) However, this is impossible because s(T)*?

divides A (T, T"), but since g,(T") (= g4q(T")) = cs(T")?, and since (,%,)# 0 in

k (this follows from the fact that p | (d’'+1). p does not divide

d' _ ( d )
d-p+D(p-1)! \p-—-1

in Z), one sees that s(T")?? does not divide A (T, T'). This violates the
T, T'-symmetry of A(T, T'), and gives a contradiction, when d’'+1#p.

4.21. If d'+1=p we must make a special argument to get the contradic-
tion. As we have seen in 4.20, g;(T) = g¢,-1)q(T) = cs(T)%, with cek, #0.

4.22. We claim that, by conjugating (P, Q) by a well-chosen element of
GA,(k), we can arrange that, for j=1,...,p—1, there exists ¢;e k, #0
such that g, _;(T) = ¢;s(T)".

4.23. We already have this for j=1. Assuming this has been arranged
for j=1,...,m—1, with 1<m=p—1, we study the polynomial g, .,,(G)
by writing the equation (59) for i =p—m—1. We get

g(p—m—l)q(T+ T’) - g(p—m—l)q(n - g(p—m—l)q(T’)

< t ( + 1)
— r t—p m-+ q
x (p— ) 8a(TS(D)

(61) .
=3 (7" ) B Mmoo

r=1 p_m_l

= Z_ ( - )g(p—r)q(T’)s(T)(m_r+1)q_mg(p-m)q(T’)s(T)q'

r=1 \p—m—1
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Call this polynomial B(T, T'). Note that all the binomial coefficients
(pf;r_l), Isr=m,

are non-zero in k (since 0 <p—r<p). Therefore we have

(62) B(T, T')= bys(T")s(T)™ + bps(T")*4s(T)™" P4
+ o F by S(T) ™ P5(T)? ~ Mg o myg(T)s (T

with b,,...,b,_1€k, #0 (also m#0 in k). Now B(T,T") is T, T'-
symmetric, by (61) and S(T)?® divides B(T, T'). Therefore s(T')? divides
B(T, T'). Let

B(T, T
s(T)s(TH*
Then D(T, T’) is a polynomial, and is T, T'-symmetric. It follows from (62)
that s(T")? divides g ,—m)o(T"), and

(63) D(T, T') = bys(T)™ P9+ b,s(T")s(T)m 2

D(T, T)=

+.e4+b _ r(m-2)q a__ g..(l’__’")ﬂ_(ﬂ'
bm 1S(T) s(ﬂ m S(Tl)q
Since s is additive, we have s(0)=0. Since D(T, T') is T, T'-symmetric, we
have D(T, 0)= D(0, T), which implies, according to (63) that

bls(T)(m—-l)q__ m g(p—qrn)q 0)=-m g(p—qm)q (7).
s s
Hence, letting
a=8e=ma )
sq

we have
(64) =BTy 4 a5(T) = g moaD.

Since p does not divide p—m+1, Lemma 4.17 tells us that we can
conjugate (P, Q) by an appropriate element of GA,(K), and this will have
the effect of subtracting as(T)® from gg_m)(T) without altering
o—m+Das * - - » 8o—1)a = &> and without introducing power of Y in f(T, Y)
which are not divisible by q. And so, after this conjugation, we have
Eo—ma(T) = ¢,.s(T)™4, where c,, =—b,/m ek, #0 (see (63)). Thus the claim
of 4.22 is established.

4.24. We write the equation (59) with i =0, and we get (in view of the
claim)

(65) go(T+ T —go(T)— go(T") = pil ¢,s(T'y4s(T)® 4,

i=1
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Let w(T) be the non-zero homogeneous form of minimal degree in s(T).
Since s(T) is an additive polynomial, w(T) is of the form a, T} + -+ +a,T%
for some integer e=0. It follows from (65) that the non-zero form of
minimal degree in go(T+ T')— go(T)— go(T") is YF=1 cw(T'Yw(T)® "4, and
the degree of this form is p***q. In fact, if we let h(T) be the homogeneous
form of degree p°"'q in go(T), we must have

p_l : +
(66) W(T+T)—h(T)—h(T")= Y, (T'Yiw(T)® P4,

i=1
However, this equation gives a contradiction, as follows. Since w(T)# 0, we
may assume a;7 0. Note that each of the terms

67) @ TPITy O, =1, p—1

appears in the right hand side of (66). On the other hand, if we substitute
T,=+-+=T,=0=T4=---=T,into h(T+T")—h(T)—h(T'), we get zero,
since h is homogeneous and deg h is a power of p, and so a term like (67)
cannot possibly appear in (66).

4.25. Thus we have shown that the situation p |(d’+1) cannot occur.
The only situation we have left to deal with is the case p|d' (see 4.19).

4.26. Assume p|d’. Recall that f=gy+g Y - +g,, Y% where d =
d'q, and q is the highest power of p which divides each of the integers j for
which g;# 0. We want to show that we can conjugate (P, Q) by a carefully
chosen element of GA,(k) which ‘“cancels out” those terms g,Y™ in f for
which p / i. With this accomplished, f is of the form

f=8o+ g Y+ 48y Y4

where q' = pq and d" = d'/p. We can repeat this process until we have p | d",
and then go to the first case treated to lower the degree (in Y) of f.

We will cancel the unwanted g;,’s (i.e., those for which p } i) starting from
the top.

4.27. For each integer u such that 1=u=d’, let C, be the following
statement.

(68) C,: Let i be an integer such that u<i=<d'. If p / i, then g,(T)=0.
If p|i, and if s(T)* divides g,(T), then (g,/s*)(0)=0.

4.28. The statement Cj is just the statement that if s(T)? divides
84(T) = gaq(T), then (g,/s?)(0)=0. Since p | d’'+1, we see by Lemma 4.17
that this can be arranged by conjugating (P, Q) by an appropriate au-
tomorphism in GA,(k), which has the effect of adding cs(T)? to g,(T) (and
probably disturbing some of the lower g;’s) without raising the degree of f.

We will prove that if 1=u=d’, and if C,,, holds, then we can perform a
conjugation of (P, Q) as in Lemma 4.17, which disturbs only those g;,’s for
which j=u, to arrange that C, holds. This will prove the theorem, because
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C, says that g, =0 whenever p / j, and so we can replace q by pq, as was
explained in 4.26.

So assume C, ., holds. In order to make arrangements for C,, we must
consider five cases.

4.29. Case I. p|u. In this case, we need only to arrange that if s(T)?
divides g,,(T), then (g,,/s?)(0)=0. Since p 1 (u+1), this can be accom-
plished using Lemma 4.17, just as we did in 4.28 for the case u=4d'.

4.30. Case II. plu—1. Now we must arrange that g,, =0. We write
equation (59) with i =u — 1. Since g, =0if j>u and p { j (by C,.,), we get

(69) g(u—l)q(T +T")— 8(u~1)q(T) - g(u—l)q(T’)

=( ;z @ (u ! 1) ga(T)s(T)" '“”’") + U (T)s(T)"
pli

Call the above polynomial A(T, T'). Then A(T,T) is T, T'-symmetric.
Obviously s(T)* divides A(T, T'), and therefore s(T')* must divide
A(T, T"). Upon studying the right hand side of (69) we see that s(T')* must
divide g,(T’) whenever p|j and (,’;)#0 in k; and also s(T")? divides
8.q(T"). Consider the polynomials
A(T, T A(T, T

s(T)? s(T*
Obviously B(0, T) = B'(T, 0). Now, B(0, T)= ug,,(T), since s(0)=0. Since
(84/s%)(0) =0 whenever j>u and p|j we see from (69) that

B(T, T)= and B'(T,T))=

B'(T, 0) = "5 (0)s(T)".

Hence, upon letting a =(g,./s*)(0)ek, we have g, (T)=as(T)%. Since
pp 4 u+1 (unless' p =2), we can appeal to Lemma 4.17, and conjugate (P, Q)
by an appropriate element of GA,(k) which cancels g,,(T), and leaves
8i.(T), u<j=d’, intact. And so now C, holds.

4.31. Case III. p|u+1, p#u+1. Again, we write equation (59) for
i=u—1. For each j>u such that g,#0, we have p|j, and therefore

«'1)=0 in k, since p 4 u—1 (unless p =2—see the footnote in Case II).
Thus equation (59) is

g(u—l)q(T+ Th— g(u—l)q(T) - g(u——l)q(T') = UBuq (T)s(T)"

Therefore ug,,(T")s(T)? is T, T'-symmetric, and since u, s(T)*# 0 (in k[ T]),
we must have g,,(T) = as(T)? for some a € k. We claim a = 0. (Note that we

! The case p =2 requires a special argument here. If p =2, then case II is covered by cases III
and IV. The proof in case IV holds if p =2. However, in case III, we encounter a difficulty in
getting g,,(T) to be of the form as (T)? a € k. But since this much is accomplished in case II,
for p =2, we can patch cases II and III together to cover the case 2|u—1, 2#u+1.
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cannot employ Lemma 4.17 to cancel g,,(T) as we did in Cases I and II,
since p | u+1.) We write equation (59) with i =p—1. For each j>u such
that g,,# 0, we have p | j, and so (,/;) =0 in k. Also (,%;)=p =0 in k, and so
the equation is

go-1a(T+ T)- 8o-1a(T) — 8o-1a(T) = z ( ‘ ) 8iq (T")s(T)P+ba,
t=p+1 \P— 1

This is a non-empty sum, since u > p. Note that s(T)>® divides this polyno-
mial. Since the polynomial is T, T'-symmetric, s(T")** must divide it also. It
follows that s(T')** divides g, (T') whenever (,,)# 0 in k. Now, (,“;)#0 in
k, since p|u+1 (this was explained in 4.20, for d’) and so s(T”)?? divides
8.q(T") = as(T")?, which implies that a =0. Hence C, holds.

4.32. Case IV.p=u+1. In this case we can argue as in Case III (Case II
if p=2) that g,,(T) (= g,-14(T)) = as(T)? for some a € k. We claim a =0.

Assume a# 0. We will arrive at a contradiction by a similar procedure to
that of 4.21-4.24 where we proved the impossibility of p=d’'+1.

(70) We claim, as in 4.22, that, by conjugating (P, Q) by a well-chosen
element of GA,(k) which leaves g, intact for j>u we can arrange
that, for j=1,...,p—1, there exists ¢;ek, #0 such that
8o-ina(T) = s (T)".

This is already the case for j =1, letting c; = a. As in 4.23, we assume that
this has been arranged for j=1,...,m—1, where 1<m=p-1, and we
write equation (59) for i=p—m—1. Now, as long as m<p-—1, all the
binomial coefficients (,_,),_;) are zero in k whenever p |j since p f p—m—1.
Therefore, if m <p—1 this equation is equation (61) of 4.23, and we can
argue just as in 9.23 that after suitable conjugation, g, —myo(T) is of the form
Cns(T)™ with ¢, € k, #0; and the higher g;,’s remain undisturbed.

When p>2 we must make a special argument for the last step when
m =p—1. In this case the coefficients (,_,),_;) are all [, and so when we write
(59) with i =0, we get

go(T+T")— go(T) — go(T")

) (Z gl'q(T')s(’T)jq) ¥ (pi g(p—r)q(Tl)s('T)(p_r)q)
oli =

Il

i=p r=1
pli

p—2
( ) giq(T’)S(T)“‘) + ( ) crs(T’)"‘S(T)“""“) + gy (T)s(T).
Call this polynomial B(T, T'). Obviously B(T, T') is T, T'-symmetric, and
s(T)* divides B(T, T'), and therefore s(T')? divides B(T, T"). It follows that
s(T"), divides each of the polynomials g,(T') where j=p, and also s(T")*
divides g,(T"). Since the assertion C, (68) holds, we have (g,/s?)(0) =0, for

j=p. Let D(T, T') be the polynomial B(T, T")/s(T")*s(T)% Then D(T, T') is
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T, T'-symmetric, and we have g,(T)/s(T)? = D(0, T), since s(0)=0. Also
D(T, 0) = ¢,s(T)">*+2 (0)

since (g;,/s?)(0)=0 for j=p. By the T, T'-symmetry of D(T, T'), we have
D(T,0)=D(0, T), and therefore g,(T)=c;s(T)®* ?s(T)*+bs(T)* where
b =(g,/s?)(0)€ k. Since p>2, we know that p { 2, and so, by Lemma 4.17
we can conjugate (P, Q) by an element of GA,(k) to subtract bs(T)? from
g,(T). After doing so, we have g,(T)=c s(T)® ?s(T)* = c,s(T)® P9 as
required in the claim (70). This validates the claim.

And so we arrange that g,_p(T)=¢;s(T)9, ¢ek,#0, for j=
1,...,p—1. As in 4.24, we study the equation (59) with i =0, which is
(71)

&o(T+T)~ (1)~ &o(T') = (fz gjq(T'>s(qu) +(T escmys(nes).
plip .

Upon letting w(T) be the non-zero homogeneous form of minimal degree in
s(T) we se¢ from (71) that the non-zero form of minimal degree in
go(T+T")—go(T)—go(T") is

p=1
(72) z CjW(T')qu(T)(p_Dq.

i=1
(Note. The fact that g, (0) =0 shows that the first summation of (71) does
not contribute to the form of minimal degree in go(T+ T')— go(T) — go(T").)
Since w(T) is an additive form, its degree is a power of p, say p°, and
w=a,T%"+ - - - +a,T%". The degree of the form (72) is p**'q. If we let h(T)
be the form in go(T) of degree p°*'q, we must have, by (71),

BT+ T) = (D)~ h(T) = 3. w(TYw(Tos,
i=1

which is the same equation as (66) in 4.24, and leads to the same contradic-
tion.

Thus we have shown, by contradiction, that g,,(T) = g,—1)(T) =0, which
implies that C, holds.

4.26. Case V. pYu+1, pfu, pfu—1. Write equation (59) with i =
u—1. Since p | j whenever j>u and g, # 0 (by C,.,) we have (,2,)=01ink,
and so the equation is

Cu-1alT+ T = ru—1a{ T) — 8u-1)a(T") = uguq (T")s(T).

Since u#0 in k, and since ug,,(T")s(T)? is T, T'-symmetric, it follows that
8.4 (T) = bs(T)? for some b € k. Now we can employ Lemma 4.17 to perform

a conjugation of (P, Q) by an element of GA,(k) which cancels g,,(T), so
that C, holds.
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4.27. This completes the proof of Theorem 4.9. Note that the crux of
the argument comes in 4.10, where it depends on the fact that the abelian
subgroups of bounded degree in GA,(k) are all conjugate to linear and
elementary subgroups. The rest of the proof, although lengthy and notation-
ally difficult, is conceptually fairly straightforward.

In the case n =1, the theorem can be refined as follows.

4.28. CorROLLARY. Suppose k is an infinite field. Any action of G, on the
affine plane A,(k) is equivalent to an action given by a vector of the form

(X+g(T)+g(T)Y+ - +g(TNYY)
where g, . .., g are additive polynomials in k[T] (one variable).

Proof. (We present the proof assuming char (k)=p>0. Basically the
same proof works if char (k) =0, but things are simpler.) Given an action vy
of G, on A?, Theorem 4.9 tells us that vy is equivalent either to an action
given by such a vector, or else to an action given by (P, Q) of the form
(X+g(T), X+ h(T)), where g, he k[T] are additive polynomials. Suppose
g, h+#0, and let aT®", bT"" be the leading (highest degree) terms of g and h,
respectively. Suppose u =v. We conjugate (P, Q) by

e(_‘g Y-p(u—v)) — (X__s_ Yp(u—v)’ Y) e GAZ(k)‘

(This gives us an action equivalent to +y.) Conjugating (P, Q) by
e(—(b/la)Y"" ™) we get

(X+% Y, Y) (X+g(T), Y +h(T)) (x—g Y)

= (X+g(T) 7 h(TP"™, Y +h(T)
(x+sm- )

The leading term of —(a/b)h(T)*“™ is —aT®, which cancels the leading
term of g(T). Thus we have replaced g(T) by an additive polynomial of
lower degree. Of course, we can do a similar thing if v =u (conjugate by
(X, Y—(a/b)Y*“™) instead) to lower the degree of h(T). We can continue
this until we have either g=0 or h =0. If h =0, we are done, since (P, Q) is
of the form specified in the corollary, with d =0. If g=0, we conjugate
(P, Q) by (Y, X)e GA,(k) to get (X+h(T), Y), which is of the required
form. This proves the corollary.

4.29. 1If k is algebraically closed, so that G" and A? are algebraic groups
in the classical sense, we restate Theorem 4.9 and Corollary 4.28 (in reverse
order) in terms of the action of closed points.

Restatement for the case where k is algebraically closed. (1) (Rentschler,
Miyanishi). Any action of G, on the affine plane AZ is equivalent to an
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action of the form

te(x,y)=(x+go()+ g ()y+ -+ +gi(t)y%, y)

where g, ..., g are additive polynomials.
(2) Any action of the n-dimensional vector group G% on A? is equival-
ent either to an action of the form

(trs e s ta) - (% y)=(x+go(t) + g1 ()y + + - - + 2 (H)y?, ¥)

where g, . .., g; are additive polynomials in ¢, . . ., t,; or to an action of the
form

(tr, -« -5 t)(x, y) = (x +g(2), y + h(1))
where g and h are additive polynomials in t,,...,t,.

5. Actions of tori on the affine plane (Gutwirth’s theorem)

5.1. For any ring k, the k-group G}, (the n-dimensional torus) is the
affine k-scheme spec (A) where A =k[T,, T;']_,, the map G, X Gr— G,
being given by the homomorphism

A—A ®kA Ek['rv T:a Ti—la T{_l ?=1

which sends T; to T;T/, fori=1, ..., n. We will write just T for Ty,..., T,
and T' for T;%,...,T.!, so that A=k[T,T', AQ A=
k[T, T, T, T ]

5.2. An action of G% on A? is given by a vector (P, Q) e k[T, T, X, Y]
(see 3.5) satisfying the following conditions:

(@ (P(TT,X,Y), Q(TT', X, Y))

=(P(T,X, Y), AT, X, Y) - (P(T", X, Y), Q(T'", X, Y))
®) (P, X, Y), Q1 X Y)=(XY).
(The vector multiplication of (a) is performed as if we were composing
elements of GA,(K[T, T', T™*, T'"*]) (see 1.1).) Such a vector (P, Q) neces-
sarily determines an element of GA,(K[T, T™*]) (see 3.5).

5.3. For Gy, the (abstract) group of k-rational points
Hom (k[T, T™*], k) is identified with the multiplicative group (k*)". An
action (P, Q) of G%, on A? gives rise to the homomorphism (k*)" — GA,(k)
which takes

(u) = (ul’ RS ] un) € (k*)n to (P(uy X Y)’ Q(ua X’ Y))e GA2(k)'

5.4. One sees from Theorem 2.4 that if k is an infinite field extension of
F,, there exist subgroups of GA,(k) isomorphic to k* which are not
conjugate in GA, to any subgroup of Af, or E,. Thus there are faithful
(non-algebraic) actions of k* on A? which are not “linear” or “eclementary”,
up to equivalence.
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5.5. However, if k is a field and H< GA,(k) is the image of a
homomorphism (k*)" — GA, induced by an (algebraic) action of G7, on A2,
then H is of bounded degree, and so H is conjugate to a subgroup of Af, or
E, (Proposition 1.11). As with actions of vector groups on A? (§4), we will
exploit this fact to prove Theorem 5.9 which explicitly describes actions of
tori on AZ, up to conjugacy.

5.6. DernimioN. Let fe k[T, T;'1'_,, f# 0. We say that f is a multip-
licative (Laurant) polynomial if

(73) .f(Tla T&a MR TnT:l) =f(T13 L] Tn)f(T{la cee T::)-

(Note that if k is an infinite field, this is equivalent to saying that f defines an
endomorphism of the group (k*)").

5.7. ProprosITION. Suppose k is a domain and fe k[T, T;*)-,, f#0.
Then f is a multiplicative polynomial if and only if f is a Laurant monomial,
i.e., f is of the form [['-, T{+, where .y, ..., a, €Z.

Proof. The if is obvious. Conversely, suppose f is multiplicative. Write
f=({1-, T - g in such a way that ge k[T, ..., T,,] and g is not divisible in
k[T,,...,T,] by any of the variables. Then g is also multiplicative. We
claim g=1. In equation (73) with g instead of f, set T\=---=T,_,=
1, T, =0 to get

g(Tl’ AR ] Tn--l’ 0)= g(Tb cee Tn) : g(l, cee 1, 0)°

Since T,, doesn’t divide g, g(T,, ..., T,,_4,0)%¥0, and so g(1,...,1,0)%#0,€
k. It follows that ge k[T, ..., T,_,]. We continue this to get g e k. Since g
is multiplicative, g=1.

5.8. Remark. One easily verifies that if k is a domain, the units of
k[T, T;']_, are precisely the elements uf where f is multiplicative and
uek®*,

5.9. TueoreM (Gutwirth). Suppose k is an infinite field. Any action of the
n-dimensional torus G, on the affine plane A*(k) is equivalent to an action of
the form (w(T)X, v(T)Y) where u,ve k[T, T;']'-, are Laurant monomials
(i.e., multiplicative).

The proof of Theorem 5.9 is done in 5.10-5.15, and it is like the proof of
Theorem 4.9 in that we first use the fact that abelian subgroups of GA,(k)
of bounded degree are conjugate to linear or elementary type subgroups,
and then complete the proof by making observations about the polynomials.

5.10. Let y be an action of G, on A? given by (P, Q) satisfying (a) and
(b) of 5.2. Let H be the image of the induced homomorphism (k*)"—
GA,(k) (see 3.6). The field k is infinite, and so no polynomial in k[T, T™*]
vanishes on (k*)", i.e., the k-rational points of G}, form a dense set. By
Proposition 3.10 we can replace y by an equivalent action and assume that
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either (P, Q) is of the form
(74) (uX+£(Y),vY +5s)

with u, ve k[T, T"'T*, se k[T, T™], fe k[T, T™*, Y] (i.e. H=E,); or (P, Q)
if of the form

(75) (@X+bY+r,cX+dY+t)

where

a c .
(5 )eorLaar, T,
r.te k[T, T™'] (i.e. H< Af,). We will deal with both possibilities.

5.11. First assume (P, Q) is of the form (44). Since u and v are units in
k[T, T™*], and since u(1)=v(1)=1 by (b) of 5.2, we see by 5.8 that u and v
are Laurant monomials. Condition (a) of 5.2 says that

(W(TTHX+f(TT', Y), o(TT)Y +s(TT"))
= (u(Tu(THX+u(TH(T, Y)+f(T', o(T)Y +s(T)), v(T)o(T)Y

+o(T)s(T)+s(T")).
In particular,

(76) fTT', Y) = w(TH(T, Y)+f(T', o(T)Y +5s(T)).

If f#0, writt f(T,Y)=go+g Y+ - +gY? with g,...,g€
k[T, T™'], g;#0. Then equation (76) implies that

(77) 8a(TT") = u(T")ga(T) + o(T)"gu(T").

A close look at (77) tells us exactly what g, is, up to constant multiple. The
Laurant monomials form a k-basis for k[T, T~']. All the monomials appear-
ing in g;(TT’) are T, T'-symmetric. It follows from (77) that u(T) and v(T)*
are the only monomials which can appear in g;(T). For if a monomial w(T)
appears, with w# u, v%, then u(T")w(T) is not symmetric, and it appears in
u(T" g (T). However, u(T")w(T) is clearly not cancelled by any term of
v(T)%g,(T"), since w# v?, and so u(T)w(T) appears in g;(TT")—a con-
tradiction. Therefore g;(T) = au(T)+ bv(T)* for some a, b € k. The fact that
24(1) =0 (see (b) of 5.2) implies that b =—a, and so g,(T) = au(T)— av(T)*
and a#0.

5.12. Now, if we conjugate (P, Q) by an element of GA,(k), the
resulting vector gives an action equivalent to vy. (This was explained in 3.5
and used extensively in §4. Upon performing the computation, one sees that
conjugating (P, Q) by (X+aY¢, Y)e GA,(k) yields

(78) WX +f(Y)—auY?+a(Y +s5), vY +s).

Note that the leading (highest degree) term (in Y) of —auY*+a(vY +s)¢
is (—au+av?)Y. This cancels the leading term of f(Y), which is g,Y?
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Hence the vector (78) is of the form (uX+f'(Y),vY +s) with deg, f'<d.
Observe that this argument works to cancel f entirely if d =0. We can
continue to conjugate until we get f=0, i.e., vy is given by (uX, vY +5). We
conjugate this vector by (Y, X) e GA,(k) to get (vX +s, uY) and employ the
same reasoning as above (with d =0) to eliminate s. The resulting action is
given by (vX, uY), which is of the form required.

5.13. Now assume (P, Q) is of the form (75) of 5.10, so that H< Af,.
The projection T of H onto GL,(k) is the image of the algebraic group
homomorphism Gi,— GL, defined by (¢ §). Therefore T is connected, since
G?. is connected. It follows from [3, Prop. 8.4, p. 203] that the image of T is
conjugate in GL, (k) to a subgroup of D,.

5.14. It follows that we can conjugate (P, Q) =(aX+bY +r,cX+dY +1t)
by an element of GL,(k) (= GA,(k)) to get (uX+r',vY +t') where r',t'e
k[T, T™']. Now the vector is of the form (74), a situation which we have
already treated. This concludes the proof of Theorem 5.9.

5.15. If k is algebraically closed, so that G7, and A? are algebraic
groups, we restate Theorem 5.9 in terms of the action of closed points.

Restatement for the case when k is algebraically closed. Any action of the

n-dimensional torus G, on the affine plane A?(k) is equivalent to an action
of the form

(t, s ) (6 )= (870 - o, €52 - - £Ry)

where a4,..., 2, B1,...,B. €Z.
This is the assertion proved by Gutwirth in [5].
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