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1. Introduction

In this paper we consider the local distance geometry of Riemannian
manifolds with boundaries. We view a boundary component as an obstacle
around which a geodesic can bend, or at which a geodesic can end. Our
emphasis is on the structure of fields of geodesics. In the presence of an
obstacle, the description of such fields of geodesics in terms of differential
equations is no longer feasible; as an alternative, we produce a key differential
inequality which functions as a one-sided version of the Jacobi equation. In
consequence we obtain local bipoint uniqueness and a geometric estimate on
the cut distance, that is, the distance below which bipoint uniqueness holds.
On the other hand, unique determination of geodesics by their initial tangents
(Cauchy uniqueness) clearly fails; we have developed basic techniques to
establish properties of the field of geodesics with a common tangent.

It is immediately clear that the Riemannian obstacle problem is natural
from the variational and mechanical points of view. Consider, for example, a
string in Euclidean 3-space, stretched around an obstacle, sometimes following
the obstacle, sometimes travelling through the air. Or, the problem can be
stated as that of analyzing the propagation of wavefronts (level surfaces of the
distance function) around an obstacle. If the wavefronts are due to a point
source of light or sound in a nonhomogeneous medium, then the appropriate
geometry is Riemannian rather than Euclidean. Arnol’d has considered the
obstacle problem in a series of recent papers. Arnol’d is carrying out a general
program which identifies standard singularities related to the geometry of
groups generated by reflections with normal forms for singularities occurring
in variational problems. This investigation leads him to variational problems
with one-sided constraints, and in particular to an analysis of the singularities
of wavefronts for Euclidean obstacles in general position. (For a survey, see
[5]; see also-[6], [7], [8].) Arnol’d achieves an analysis in this case even though,
as he states, “the problem of going around an obstacle has not yet been solved
even in Euclidean 3-space” [5].

Received March 11, 1985.

© 1987 by the Board of Trustees of the University of Illinois
Manufactured in the United States of America

167



168 S.B. ALEXANDER, 1.D. BERG AND R.L. BISHOP

Classical differential equations techniques cannot suffice for the obstacle
problem. No matter how smooth the obstacle, we cannot assume the geodesics
are C? they are not, in general, governed by a second order differential
equation with Lipschitz conditions. Moreover, each geodesic is the union not
only of boundary and interior segments, but also of a set of points which lie
on no nontrivial boundary or interior segment. This set can have positive
measure. Arnol’d rules out such points by assumptions of general position.
However, since such “chattering” behavior can occur as the limit of finite
switching behavior, it seems clear that a quantitative understanding of the
latter would be tantamount to an understanding of the former. Also, it is
uncertain which assumptions on the boundary guarantee finite switching
behavior (see, for example, the question at the end of this paper). For our
purposes, therefore, it is desirable to make no assumptions on the boundary
beyond smoothness.

Note that general methods in the theory of variational problems with
boundary constraints (see, for example, Almgren’s book [3]) do not yield the
regularity and uniqueness properties which we seek. As Antman remarks, on
the subject of variational inequalities: “The analysis of regularity of solutions,
still the main source of difficulty, is forced to accommodate the peculiarities of
each special class of problems” [4]. Certainly the Cauchy uniqueness guaran-
teed to solutions of second order differential equations with Lipschitz condi-
tions is violated with a vengeance here, since a geodesic might elect to hug the
boundary or to peel off in a C! manner into the interior. Much of our work is
devoted to considering just what uniqueness properties obtain.

Other authors also have considered regularity and uniqueness questions in
the Riemannian obstacle problem. Wolter [19], [20] has shown that the
distance function is C! at interior points in any neighborhood where bipoint
uniqueness holds; and furthermore that the gradient vector field of the
distance function at interior points is locally Lipschitz continuous at exactly
those interior points for which the geodesic segment which realizes the
distance exists and can be extended to be minimizing for a larger distance. He
has examined several natural but, as he shows, distinct definitions of cut locus
in a Riemannian manifold M with boundary, and related these cut loci to the
set on which the distance function fails to be C!. Wolter has introduced a
hypothesis on the boundary which is sufficient for these results, namely, that
M be locally C! diffeomorphic to a convex set.

Scolozzi [17] has given an independent proof of bipoint uniqueness. Marino
and Scolozzi [13] have shown that geodesics have Lipschitz continuous deriva-
tives, and that under suitable hypotheses on an obstacle in Euclidean space
there exist infinitely many geodesics, the supremum of whose lengths is
infinite, joining two given points. Scolozzi [18] has proved the existence of a
nonconstant closed geodesic in this setting. These papers apply a theory of
functionals, not necessarily C? or convex, on infinite-dimensional spaces which
was initiated by De Giorgi, Marino, and Tosques [12].
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Other references include [9], and for convex obstacles, [1], [14], [15].

Our methods in this paper are almost purely geometric. In Section 2 we give
what we feel is a definitive statement of regularity of geodesics, involving a
decomposition into tangential and normal parts. Specifically, the tangential
part is smoother by one degree than the geodesic itself, and the normal part
satisfies a convexity condition. In Section 3 we establish the differential
inequality and consequently estimate the cut distance in terms of an extrinsic
curvature invariant which we call the tubular radius. The differential in-
equality further proves itself as a powerful tool in Section 4, which considers
the convergence of geodesics, and in Section 5, where we show the existence
and continuity of Jacobi fields. In Section 6 we initiate an investigation of the
Cauchy uniqueness question, by studying the initial tangent map which
bipoint uniqueness provides. We show that on the intersection of the boundary
with a sufficiently small distance ball centered at a boundary point p, this is a
map of degree one which sweeps out the “horizon” visible from p along
interior geodesics. Our conjecture about Cauchy uniqueness (now proved [2A])
is that this map is one-one. In particular, the injectivity of this map implies
that if two geodesics have the same initial tangent, then one must be locally an
involute of the other.

The authors acknowledge a debt of gratitude to their friend and colleague

Professor Felix Albrecht, who has given his helpful criticism on a regular
basis.

2. Regularity of geodesics

We consider a C* Riemannian manifold M with C*® boundary B, and
define geodesics to be locally shortest paths. Another reasonable approach,
which reduces to the same thing, would be to require the expected differential
properties; namely, a geodesic can be specified as an H? (Sobolev space) curve
such that the acceleration where it exists is either 0 (at points of the interior)
or outwardly normal (at points of B) [13], [17]. Actually even more is true: a
geodesic fails to have an acceleration only at a countable number of points,
and at those there are one-sided accelerations. These exceptional points are
what we call switch points, where the geodesic switches from a boundary
segment to an interior segment or vice-versa. (To be precise, by an interior
segment we mean an open segment which has zero acceleration in M but
which may include points of B; a boundary segment [also open] must have
nonzero acceleration, necessarily normal to B, on a dense open subset.)
Besides the switch points, boundary segments, and interior segments, one
other kind of point is possible, an accumulation point of switch points, which
we call an intermittent point. Examples of single geodesics are easily con-
structed which have a Cantor set of positive measure of intermittent points,
although it seems clear that when the boundary is generic geodesics have none.
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The existence of intermittent points makes the variational theory of geodesics
difficult to analyze, but they do not cause the acceleration to fail to exist or
even be discontinuous at the intermittent points themselves, only at numerous
nearby points. Indeed, we observe below that the acceleration at an intermit-
tent point vanishes.

The detailed arguments for the asserted regularity are rather intricate and
can be approached either geometrically or analytically. There are neat geomet-
ric arguments that show geodesics are C! and have normal osculating planes
at B [2]. In particular, the acceleration at a boundary point is normal to B
when it exists. The step further, to show that velocities are absolutely continu-
ous or Lipschitz continuous seems to require more careful estimates; see, for
example, [13]. We have done this by a secant approximation argument which
accounts for the bounded extrinsic curvature of B (this is where the smooth-
ness of B enters) and a comparison of distances in M and in any Riemannian
extension of M across B. This comparison is of independent interest: it asserts
that the difference between the two distances is on the order of the cube of
either one. We do not give the details in this paper. Wolter [20] and Marino
and Scolozzi [13] use calculus of variations for all their considerations of
regularity.

To show that the acceleration at an intermittent point vanishes, we argue by
exclusion: B cannot be convex in that direction because that would allow us
to shorten the geodesic by cutting across the interior. Nor can the boundary be
concave in that direction, because then the normal projection onto the
boundary would shorten curves which were not already on the boundary.
Thus, the normal curvature of the boundary in that direction is 0. This normal
curvature is identified as the acceleration of y in the proof of Theorem 1
below.

To carry the regularity analysis a step further we split the geodesics into
tangential and normal parts. We explain this decomposition in terms of special
coordinates x; adapted to the boundary. We let x, be the distance from B.
Starting with arbitrary coordinates x;, i < n, on B, we extend them to be
constant on ordinary geodesics normal to B. Denote the Christoffel symbols of
the Levi-Civita connection of M by T} ;. Because d/dx, is the unit normal
field on B, the coordinate matrix of the second fundamental form of B with
respect to d/dx, is just —I;;,, where i, j <n. For a geodesic y we let
vy’ = ¥x/d/dx; denote the velocity. On a boundary segment of y, we denote
the normal curvature of B in the direction of y by «; then

[ Iy !
K= Zi’j<nx,-xjr,~jn.

When v is not in B the same expression occurs in the differential equations for
v, so that if we define k to be 0 off of boundary segments, then the differential
equations can be unified to cover, in an integral sense, all points of ¥y, as
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follows:
) xg¢ = —E, xxTy for k <n,
@ xy ==k =L j<nXiXTijn

Indeed, the curve on B with coordinates x,, k < n, is the normal projection
of y to B, and we call it the tangential part of y. The normal part of vy is
simply x,, the height of y above B. Equations (1) and (2) are first of all
obvious on open boundary and interior segments. Next, given the absolute
continuity of y’ and the normality of y’”” on B, they hold everywhere in an
integral sense. But then we see that the right side of (1) is continuous, so that
(1) holds everywhere as it is. At the countably many switch points (2) can be
interpreted as being valid in the limit from either side. The right side of (2) is
continuous, and hence the acceleration of y exists, except at switch points; in
particular, the acceleration exists and is 0 whenever k = 0. We state our
conclusions about this regularity as a pair of theorems.

THEOREM 1. The tangential part of a geodesic is C?, and its second deriva-
tive is locally Lipschitz.

The second theorem concerns the regularity of the normal part; once stated
it is obvious. A convexity property compensates for the lack of differentiabil-
ity. To describe it we use Theorem 1 to imbed the geodesic in a C*! smooth
surface, namely, the surface S swept out by the normal geodesics to B along
the tangential part of y (and hence along y itself). This surface has a
boundary S N B and it is sensible locally to consider convex sets in S and
convex hulls of subsets.

THEOREM 2. Sufficiently short segments of <y are boundary segments of
convex sets in S. Specifically, for y|[a, b] we take the convex hull of the set
consisting of vy(a), y(b), and the segment of S N B running between the
projections of y(a) and y(b).

3. Local bipoint uniqueness

Locally we expect geodesic segments to be determined by their ends, but it
is a delicate matter to prove such a result because it requires the boundedness
of curvature. Bipoint uniqueness fails, for example, when the boundary
consists of two spherical caps glued together along a common circle (neither
great). In any neighborhood of the sharp edge there are numerous geodesic
segments connecting a pair of points on the edge. At most two of these
segments are minimal and the others oscillate back and forth across the edge.
The edge itself is not a geodesic but it is a limit of geodesics. These features
are retained when the edge is smoothed to make the surface C! but leaving
infinite normal curvature.
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We find it convenient to formulate the curvature estimate in terms of an
isometric imbedding of M in some Euclidean space N. It would be desirable
to have a more direct link with the natural intrinsic invariants, the sectional
curvature of M, the normal curvature of B in M, and the injectivity radii of M
and B, but our method has the advantage that it gives the estimate in terms of
a single number. Specifically, we say that a positive number r is a tubular
radius for M in N if every point at distance r or less from M is the center of a
closed ball which meets M at a single point. Note that then a geodesic in M at
every point has its radius of curvature in N extending beyond the tubular
radius. The normal curvatures of M and those of B which belong to a normal
vector whose M-component is outward from the interior of M are bounded
above by 1/r. Conversely, if we take an upper bound k of such normal
curvatures and restrict our scope sufficiently to prevent global opposition, then
1/k will be a tubular radius for the restricted region of M.

The essence of any bipoint-uniqueness result is to obtain a lower bound on
the distance two geodesics have to travel before they can rejoin, once parted.

THEOREM 3. If r is a tubular radius for M, then two geodesics in M each
extend more than wr from a point where they part to where they join again. (This
is a sharp estimate: consider the case for which B is a sphere of radius r’ > r in
Euclidean 3-space.)

We prove Theorem 3 as a part of a more technical theorem, the heart of
which is a differential inequality which we find useful for related purposes,
because of both its technical and intuitive content.

THEOREM 4. Let r = 1/k be a tubular radius for M, and let v and o be
geodesics in M having speed no more than one. Let f(r) = |y(s) — o(s)]| be the
Euclidean displacement between corresponding points. Then except at the count-
ably many points where "' fails to exist, we have a differential inequality

(@) f” = —k?*f (with strict inequality where f > 0).

Consequently,

(b) if Asin(ks + b), which we denote by g(s), coincides with f(s) at s = u
ands = t, where |t — u| < @r, thenf(s) < g(s) foru <s < t(unlessf=g=20
identically on that interval);

(c) if we have g(s) = Asin(ks + b), and if for some u we have g(u) = f(u)
> 0 and g’(u) = f'(u), then f(s) > g(s) for s + u on the interval of length =r
containing u on which g(s) > 0;

(d) if y(0)=o0(0), but y(s) # o(s) for s >0 arbitrarily near 0, then
v(s) # o(s) for 0 <s < or.

Proof. Let X = y — o, the Euclidean displacement vector field from points
on y to points on o. Thus, X = fU, where U is a unit vector function of s,
defined except when X =0. We have that X, f” exist everywhere as
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one-sided derivatives, with only countably many points where they are not
two-sided. The same is true of U” on the subset where f > 0. When f(s) = 0,
the first derivative of f is one-sided unless it is 0, since we can calculate that

f'(s=)==f"(s+) = X"(s), X'(s));

but then f’ has a positive jump at s.
At points where f > 0 and X’ exists we calculate:

Xll=f/IU+ 2fIUI +fU/I’

and taking inner products with X = fU, using the facts that (U’,U) = 0 and
(U", Uy = —=(U",U"), weget (X", X)=f"f—fXU’,U"). That is,

(1) f7=(X", X)/f+ (U, U".

The Euclidean accelerations of y and ¢ can be written y” =k, N, and
6” = k,N,, where N, and N, are unit normals to M or B and the «’s are
bounded by the corresponding normal curvatures, hence < k. (The x’s may
not be normal curvatures because y and ¢ may be slower than unit speed. We
did not insist they have the same speed because we want (d) to be strong
enough to prevent geodesics from rejoining at different lengths.)

Let p = y(s) + rN,(s), so that by the definition of r, 6(s) is outside the
sphere of radius r at p. Hence (X +rN,, X +rN,) > r?, that is f*>=
(X, Xy > —2r(X, N,). Similarly, f*> 2r(X N,). Hence substituting X"
= «k,N, — k,N, into (1) gives

() fr> =(k, + 1) f2/2rf + KU, U")
> (=k2+ (U, U)f.

Even at points where f = 0 the inequality f” > 0 holds in the sense that
either f’ has a positive jump or, if f/ = 0 too, f”” exists and is nonnegative
(at a minimum!). Thus, we have proved a strong version of (a), which includes
information about the exceptional points where f’’ is one-sided.

Fic. 1
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The remaining parts, (b), (c), and (d), are standard. However, it is interest-
ing to observe that they can be read off from standard convexity theory in
conjunction with the following lemma, which has independent geometric

interest as well as an application to the regularity properties of Jacobi fields
(see Section 5).

LEMMA. The graphs of the family of sinusoids g(s) = Asin(ks + b) are
locally analytically equivalent to the family of lines in a Euclidean plane. Under
this equivalence the solutions of the differential inequality f”” > — kf are trans-
formed to locally strictly convex curves, with the origin on the convex side, with
0 = ks as the central angle, and the points where f = 0 corresponding to the
points where the curve goes to infinity.

Proof. As a first step we consider r = g(s) and 8 = ks as polar coordi-
nates, so that the sinusoids r = A sin(@ + b) become circles through the
origin. The second step is to make an inversion in the unit circle, under which
our sinusoids are transformed to lines not through the origin. Thus, there is an
analytic covering map from the upper half plane containing the graphs of the
sinusoids A4 sin(ks + b) onto the punctured Euclidean plane, for which each
sinusoidal arc is carried to a whole straight line.

At each point of a solution of f”” > —k?2f there is a sinusoid g which has
first order contact with f at that point. Since g” = —k?g, the difference f — g
has a positive second derivative at the point in question, from which we
conclude that g is locally a support curve for f on the lower side. In the plane
with polar coordinates (r, §), f becomes a curve supported on the inside by

circles through the origin, and under inversion, a convex curve as described in
the lemma.

COROLLARY. If the graph of a continuous function f satisfies either (b) or (c)
of Theorem 4, then

(a) f has left and right derivatives everywhere,

(b) there are only countably many points where f' fails to exist and at these
exceptional points f’ has a positive jump, and

(c) f” exists a.e. and satisfies f” > —k>f.

Proof. These are merely standard properties of convex curves, which f
inherits through the transformations in the proof of the lemma.

Remark. The only properties of geodesics which are used in the proof of
Theorem 4 are the differential properties; that is, the acceleration of a geodesic
exists a.e. and when it is not 0 it is outwardly normal to B. Thus, if we chain
together two geodesic segments with matching tangents at the join, then the
resulting curve is a geodesic because it satisfies the differential properties. That
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is, for pairs of points on it near the join point it must coincide with the unique
shortest geodesic between those pairs.

The most commonly used form of bipoint uniqueness incorporates the local
existence of minimal segments as well. Local existence is well known, stem-
ming from the local compactness of M [16].

THEOREM 5. Every point of M has a neighborhood U such that for every p, q
in U,

(a) there is a unique minimal geodesic segment joining p and q, and

(b) there is no other geodesic segment joining p and q and lying in U.

(We shall show elsewhere that we can make U convex; that is, that the
unique segments of (a) are contained in U.)

The proof simply requires successive shrinking of some initial neighborhood
until it satisfies the condition for local existence (compact closure), and the
existence of a tubular radius, and finally reduction to a size for which a
segment leaving the previous neighborhood and returning would be too long
to be minimal.

We call a neighborhood U which satisfies the conditions (a) and (b) of
Theorem 5 a neighborhood of bipoint uniqueness. Henceforth when we specify a
local result we assume that we are working within such a neighborhood.

4. Convergence of geodesics and their velocities

Consider a sequence of unitspeed geodesic segments y;, parametrized by
[0, 1]. In the following lemma assume that the segments are all contained in a
compact region with tubular radius r and that / < 7r.

LeMMA. If v,(0) and v,(I) converge, then y; and ! converge uniformly on
[0, 1] to a geodesic segment v and its velocity field y’.

Proof. 1t follows from Theorem 4(b) that if ¢;; is the larger of the distances
p(7:(0), v;(0)) and p(¥y,(!), v;(1)), then there is a uniform bound

P('Yi(s)’ Yj(s)) < Ae;

for which 4 depends only on / and r. (In fact, a calculation shows that
A = sec(l/2r).) By Cauchy’s criterion y; converges uniformly to a function y
on [0, /], which is continuous because each v, is continuous. The continuity of
the distance function and the local minimizing properties of the vy, in (possibly
smaller) neighborhoods of bipoint uniqueness about the limit points imply
that y is also a geodesic.
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We known that k = 1/r is a uniform bound on the Euclidean acceleration
of unitspeed geodesics: ||y”|| < k. Hence k is a Lipschitz constant for their
velocities, and velocities can be uniformly approximated by secants according
to the formula

1(v(s) = v(u))/(s —u) = v'(w)ll < |s — ulk/2.

This holds for the y, as well as y. Thus, if ||y, — yv|| <&, we can add and
subtract some secant approximations inside the expression ||v/(#) — y’(u)||
and apply the triangle inequality to obtain

v/ () — v (u)ll < |s — ulk + 2¢/|s - u|.

Here s and u are arbitrary within [0, /]. For any u, given a > 0 sufficiently
small we can take s so that |s — u|k = a/2 and take e = a’/4k. For
sufficiently large i we will have the presumed condition ||y, — y|| <& and

consequently ||y/ — ¥’|| < a. This proves the uniform convergence of veloci-
ties.

Remark. The quadratic relation between e and « in the above proof is not
an accident of the technique. If we take B to be a circle in Euclidean 2-space,
with M the outer region, then we can take as our geodesics y;, an arc of B
followed by a tangent straight line segment. Let the end v,(/) converge to
P € B along an involute of B. Then the relation between

lv:(/) —pll and |Iv/(7) = y’(DI
is indeed asymptotically quadratic.
THEOREM 6. If a sequence of geodesics vy; converges pointwise, then the limit
function is a geodesic y and the convergence of both v, and vy} to vy and Y’ is

uniform on closed bounded segments.

Proof. If we cover y by compact regions having tubular radii, then the
convergence to a geodesic and its velocity follows immediately from the

F1G. 2
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lemma. For closed bounded segments we can use finitely many regions, so that
the uniformity is obvious.

If U is a neighborhood of bipoint uniqueness, then for p in U we define the
radial vector field X from p on U — { p} by X(q) = —v,(0), where vy, is the
unique unitspeed minimizing segment from g to p. An obvious corollary of
Theorem 6 is the following,

COROLLARY. The radial field from p is continuous.

More generally, we define a function F on triples ( p, ¢, s) by
F(p,q,5) =7, ,(s),

where v, , is the unitspeed segment from p to g. Clearly, F is continuous on
an appropriate open subset of (U X U — A) X P, where A is the diagonal of
U X U and P denotes the nonnegative real numbers.

It is not difficult to show that the distance from a fixed p is a C! function
on U — { p} and that its gradient vector field is X. We have a proof based on
the triangle inequality and the cubic distance approximation. Moreover,
integral curves of X or — X are geodesics, because they realize distance. As a
consequence there is a form of Gauss’s Lemma, namely, small geodesic
spheres about a point are C' and the radial geodesics are orthogonal to the
spheres. For — X an integral curve is uniquely determined by its initial point
g, since it must be the geodesic to p. But for X the integral curves can
bifurcate, for example, at points of B where the normal curvature is nonnega-
tive. Our study of involutes, Section 6, is concerned with the bifurcation of
these integral curves.

5. Jacobi fields

Let vy, be a sequence of geodesics defined on some interval [0, /] and
converging to a geodesic y. We show that if the endpoints of the y, converge
tangentially to vectors J(0) and J(I), then some subsequence of the vy,
converges tangentially to a continuous vector field J on the interior of y. The
argument uses for the first time the full differential inequality (2) of Section 3
for the distance between two geodesics. Until now we have been applying
Theorem 4, thereby ignoring a term which reflects the extent to which the
geodesics are skew to one another. We conjecture that the original sequence
itself converges tangentially to J, but this seems to require a more advanced
theory of Jacobi fields than we have yet developed. Since the argument is local,
we suppose that M has a tubular radius r = 1/k and that / < #r/2.

Let ¢, be a parameter sequence of positive numbers converging to 0. If
X, = v,(s) — v(s) is the Euclidean displacement vector, set

J(s) = lim £ 1X,.
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THEOREM 7. If J exists for s = 0 and s = I, then, passing to a subsequence
of the v;, J exists and is continuous for 0 <s < I.

We note that J may be discontinuous at the endpoints. Indeed, consider a
geodesic ¥ which lies on the boundary and has nonvanishing normal curva-
ture. Geodesics y; may be obtained from y by lifting at the endpoints,
producing a Jacobi field J along y which vanishes on (0, /) but not at 0 or /.

Proof. Set f,= ||X||, and U, = f71X, where f; # 0. The existence of J(s) is
equivalent to that of f(s)=lim¢;f(s), and of U(s) =lLimU,(s) where
£(s) # 0.

By Theorem 4(b), f; is dominated by the sinusoid

F/(s) = A;sin(ks + b;)

which coincides with f; at s = 0 and s = /. It follows that any limiting value
of t;7f,(s) is dominated by F(s), where F is the sinusoid which takes the
values f(0) and f(/) at s = 0 and s = /. Now that infinite velocities are ruled
out, we can use a diagonal process to pass to a subsequence of the y; for which
J exists on a countable dense subset S of [0, /].

To show that f exists and is continuous on (0, /), it suffices to show, for
fixed s in (0, /), that any limiting value C < oo of ¢;1f,(s) as i > oo is equal
to any limiting value D < oo of f(s,) as s5; — s, for 5, € S. We may suppose s,
converges to s from the left. As before, the sinusoid F with values f(s;) and C
at s; and s, respectively, dominates f(s;) for all s; > s,. Therefore D < C.
Now choose ¢ > s, t € S. The sinusoid F which takes values f(s;) and f(z) at
s; and ¢, respectively, satisfies F(s) = C. Choosing s; arbitrarily close to s
gives D > C.

Now suppose that f(s) # 0; choose a subinterval [a, b] of [0, /] on which f
is never 0 and with s € (a, b). Note first that there are a slightly smaller
interval I about s and constants 4,, 4,, C and N such that

M) A = f(0)/fi(u) = 4, > 0,

@ IO/ <C
for all ¢, u in I and i > N. For (1), arguments like those in the preceding
paragraph show that C, > ¢;1f,(t) > C,> 0, for i > N and ¢ in [a, b]. (2)
follows from Theorem 4(c), according to which f; lies above the sinusoid with
the same value and derivative at ¢ as f,. If f/(¢) > 0, evaluating at b yields
rif/ (D] |sin k(b — t)| < f(b); if f/(t) <0, evaluating at a yields the same
inequality with b replaced by a. Together with (1), these inequalities give (2)
forall t, uin[a + ¢ b — &)

It remains to show that any limiting value of the unit vectors U(s) as
i — oo is equal to any limiting value of the U(s,) as s, = s, s; € S. After
passing to a subsequence of the y,, it suffices to show that the Euclidean angle
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between U,(s) and Uj(s;) converges to 0 as s; — s*. But we have
€ = £(s)/1(s)
- [#0) + [ 0at] 1)
SAOVIORY FRIZOVIO
2 =C+ A, [ 1) /(1)

2 —C+dy [ [k + U/ ()]
z—C—Aﬁﬁﬁ—ﬂ+Axa—n*UWuwmﬁr

The last step is by the Schwarz inequality and the preceding step is by the
differential inequality. Therefore the integral, which is not less than the
Euclidean angle between U,(s) and U(s;), approaches 0 as s; = s*.

In the above proof we have observed that the length f of a Jacobi field
satisfies the sinusoidal convexity property (b) of Theorem 4. Hence, by the
corollary in Section 3, f” exists a.e. and —f”/f < k2. This leads us to
intrinsic numerical curvatures of M in terms of the ratios —f”/f, which
should be regarded as — oo at a point where f’ has a positive jump. Thus, we
may consider the supremum of —f” /f for all Jacobi fields vanishing at p, on
all geodesics through p in a neighborhood N, and then take the infimum as N
shrinks to p. The resulting function agrees on the interior of M with the
maximum sectional curvature function [11, p. 178], and is everywhere bounded
above by 1/r2, where r is a tubular radius for an arbitrary Euclidean
isometric imbedding of M. If, on the other hand, we take the supremum of
infima on shrinking neighborhoods, we obtain the minimum sectional curva-
ture function on the interior of M, and — co at any boundary point at which B
has positive outward normal curvature. The infinitesimal form of the Cauchy
uniqueness result described in the next section is that this supremum is finite if
we restrict to Jacobi fields determined by variations with endpoints on B.

6. Involutes

Involutes arise in the study of families of geodesics having the same initial
conditions. Suppose N is a Riemannian extension of M with the same
dimension and without boundary, and let y, parametrized by [0, /], be a
geodesic. (By “geodesic” we always mean a geodesic of M.) A lift of y is a C?
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curve which has the same length and initial tangent vector as y, and which
consists of an initial segment of y (possibly trivial) followed by an N-geodesic
segment. By the remark in Section 3, if a lift lies in M, it is a geodesic.

The lift endpoints trace out the involute curve o of y, namely,

(1) o(u) =exp(l—u)y'(u), 0<ux<l,

where exp is the exponential map of N. Thus, o travels from the right
endpoint of the N-geodesic with the same initial tangent vector and length as
vy to the right endpoint of y. For points ¢ in B, locally the exponentiated
tangent spaces exp(7, B) form hypersurfaces of N which we call H,. The fact
that, locally, involutes descend with respect to the height over B and over H,
gives the following result.

THEOREM 8. Let p be a point of B. Then p has a neighborhood U in M such
that for any geodesic v in U, (a) the lifts of v lie in M and no lift except possibly
v itself has its endpoint on B and (b) if v is tangent to B at some q in B, then y
does not enter the inward side of H,.

Proof. Let o be the involute of a geodesic y, as in (1). Consider the
variation of N-geodesics F(u, s) = exp(s — u)y’(u) for 0 < u, s < I. By the
one-sided differentiability of y’, the N-geodesic vy,(s) = F(a, s) carries an
N-Jacobi field J'(s) = (dF/du)(a*, s). By definition,

) o’(a*) =J;(1).
The Jacobi field J' is determined by the conditions
(3) Ji(a) =0, (DJ;/ds)(a) = DyxX(a"),

where X = y’ and D is covariant differentiation in N. Both equations follow
from F(t, t) = y(¢) and the chain rule. To avoid differentiability problems, we
may clearly suppose that y’ is differentiable at a, so that F and dF/ds are
differentiable at (a, a); for the second equation, we may write J (s) =
(0F ~ /du)(a, s) where F~ is a C? variation satisfying dF ~/du = 0 and
d%F ~ /3uds = 3*F/duds at (a, a). Similarly, if J; is the N-Jacobi field
along v, determined by equations analogous to (3), then ¢’(a™) = J; (I).
Next consider a neighborhood V of p in N on which the inward-pointing
normal N-geodesics to B determine a vector field E,. Let W(8) consist of all
nonzero tangent vectors to ¥ which make an angle of less than § with —E,.
Given any @ in (0, #/2], there is a neighborhood U of p such that for all
geodesics in U, the nonvanishing tangents of their involutes lie in W(8). To see
this, let U be a convex N-ball at p of diameter ¢. Choose c so that for any
N-geodesic a with length less than ¢ and initial point in U, the N-Jacobi field
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J along a which satisfies at its left endpoint J(a) = 0 and (DJ/ds)(a) = —E,
takes its right endpoint value in W(@). (This is possible because the rate of
turning of J with respect to the parallel translate of E, is governed by
curvature.) Since the acceleration vectors D, X(a + ) of y are either zero or
positive multiples of —E,, it follows from (2) and (3) that if v lies in U, then
the nonvanishing tangents of its involute lie in W(8).

Taking 6 = w/2 gives a neighborhood U of p satisfying (a). Indeed the
signed inward distance z from B is nonincreasing on the involute of any
geodesic in U, and decreasing whenever the involute has nonzero derivative.

For (b), restrict the original neighborhood V" so that the outward pointing
normal geodesics to each H, determine a vector field which lies in W(¢), for
some ¢ in [0, #/2). Taking 8 = /2 — ¢ gives a neighborhood U of p
satisfying (b). This is because the inward distance from any H, is nonincreas-
ing on the involute of any geodesic in U.

Now let V(q, 1) denote the set of unit tangent vectors at ¢ € M of all
N-geodesics of length / from ¢ which lie entirely in M. If none of these
N-geodesics has its right endpoint on B, then the boundary d¥V(q,!) in the
unit tangent (n — 1)-sphere to N at g corresponds to the horizon visible from
q along N-geodesics of length not exceeding /. In this case, the following
corollary of Theorem 8(a) implies that for / sufficiently small, no geodesic y of
length / from ¢ has an initial tangent which points below the horizon. (The
figure represents the scene visible to an observer at ¢ who looks along
N-geodesics of length not exceeding /, and hence no geodesic of length / from
q can pass through r. This can be interpreted as saying that a sufficiently long
geodesic through 7 cannot bend enough along its boundary segments to avoid
striking the boundary transversely beyond r.)

COROLLARY. Let p be a point of B. For all q in a neighborhood of p in M
and all | less than a positive constant, V(q, 1) contains the initial tangents of all
geodesics of length I from q.

THEOREM 9. Let p be a point of B. For all q in a neighborhood U of p in B
and all | less than a positive constant C, dV(q, 1) consists of the initial tangents
of all geodesics of length 1 from q whose right endpoints lie on B.

Proof. Let S(q,!) denote the points of B at M-distance / from g. We may
choose U and C so that for ¢ in U and ! < C there is a well defined and

P
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continuous initial tangent map f: S(q,/) = V(q, !). Here, f(r) is the initial
unit tangent to the unique geodesic of length / from ¢ to r. It is clear that f
takes its values in dV(4q,!), provided we work in neighborhoods which are
foliated by the N-geodesics normal to B. It suffices to show, for some choice of
U and C, that there are homeomorphisms of d¥V(q, /) and S(q, /) with the
(n — 2)-sphere, with respect to which f has degree one.

A unit vector v in T, B determines a half plane {av + bN,: a > 0} normal
to B in T_N. Let S, denote these halfplanes carrying the structure of the
standard (n — 2)-sphere inherited from the unit sphere in 7, B. Let the M-ball
of radius C at each ¢ in U lie in a normal coordinate neighborhood on N, and
the corresponding preimage of B under exp, be the graph of a function over
T,B. Then the map h,: dV(q, ) = S, for which h,(v) is the normal halfplane
through v is easily seen to be a homeomorphism.

To define a homeomorphism &,: S, = S(g, I), consider the normal slice
curves (exp,P) N B, for P in S,. Since geodesics have Lipschitz continuous
velocities with uniform Lipschitz constant, we may assume that for any r in
S(g, 1), the geodesic and the normal slice curve from ¢ to r meet at acute
angles at both g and r. Define &, by mapping each normal halfplane in S, to
the intersection of the corresponding slice curve with S(gq, /). It may be
assumed that 4, is well defined because, locally, distance in M is monotonic
along sufficiently short slice curves. (This fact is immediate from the C?!
regularity of the distance function; for completeness we include a brief
independent proof below.) Clearly h, is one-one and bicontinuous, so it only
remains to verify that the self-map A, o f o h, of S, has degree one. Under this
map, the normal halfplane P in S, whose slice curve passes through r € S(q, /)
is mapped to the normal halfplane tangent to the geodesic from ¢ to r. By
assumption, the angle between P and its image is acute. But any continuous
self-map of the standard sphere which moves every point through a distance of
less than # is homotopic to the identity.

Lastly we verify that M-distance from ¢ in U is monotone on normal slice
curves o to points of S(q,!), I < C. In effect, we shall prove a version of
Gauss’s Lemma; that is, curves in S(g,?) must be orthogonal to radial
geodesics. The only properties we use of o are that it is C' and makes acute
angles with radial geodesics from gq. It is not hard to show that the difference
between distance in M and in N is bounded by a constant times the square of
the distance in N. Let y be the shortest geodesic from g to a point r on o.
Consider points 7’ on ¢ converging to r along o from the right; then the radial
geodesics from g to r’ converge to y. By assumption the angles r7’q between o
and those radial geodesics are acute, and, in fact, bounded away from = /2.
Hence, there will be points ¢’ on the segment from ¢ to r’ so that r'rq’ is a
right triangle in N. The discrepancy between the lengths of the hypotenuse
q'r’ and the leg ¢’r is bounded below by a positive multiple of either of them,
first in the sense of lengths in N, but then also in the sense of lengths in M
because the error is quadratic. From the triangle inequality for gg’r and this
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hypotenuse-leg discrepancy it then follow that the distance from g to r is
greater than that from ¢ to r’, which is what we wanted to show.

By Theorem 9, each vector v in d¥(q, /) is the initial tangent of at least one
geodesic of length / from ¢ to B. In a subsequent work we prove that for /
sufficient small, each v corresponds to exactly one such geodesic: to be precise,
that every boundary point p has a neighborhood in which two geodesics
coincide if they have the same initial tangent vector and length and if their
right endpoints lie on B. It follows from Theorem 9 that p has a neighbor-
hood in which every geodesic which is somewhere tangent to B is a lift of a
geodesic whose right endpoint lies on B. Therefore an equivalent formulation
of our subsequent result is the following: Cauchy uniqueness for manifolds with
boundary. Every boundary point has a neighborhood U such that for any two
geodesics in U with the same initial tangent vector and length, one of the
geodesics is a lift of the other.

We conclude by recalling our remark in the introduction that it is not yet
clear what conditions on the boundary imply the piecewise C? behavior of all
geodesics. Indeed, if we consider an analytic boundary in Euclidean 2-space, it
is clear that there can be no intermittent points; moreover, we have established
the considerably more difficult result that an analytic boundary always ex-
cludes the possibility of intermittent points.
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