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Enumeration 1-Genericity in the
Local Enumeration Degrees

Liliana Badillo, Charles M. Harris, and Mariya I. Soskova

Abstract We discuss a notion of forcing that characterizes enumeration
1-genericity, and we investigate the immunity, lowness, and quasiminimality
properties of enumeration 1-generic sets and their degrees. We construct an enu-
meration operator � such that, for any A, the set �A is enumeration 1-generic
and has the same jump complexity as A. We deduce from this and other recent
results from the literature that not only does every degree a bound an enumera-
tion 1-generic degree b such that a0 D b0, but also that, if a is nonzero, then we
can find such b satisfying 0e < b < a. We conclude by proving the existence
of both a nonzero low and a properly †0

2 nonsplittable enumeration 1-generic
degree, hence proving that the class of 1-generic degrees is properly subsumed
by the class of enumeration 1-generic degrees.

1 Introduction

Enumeration 1-genericity, a form of 1-genericity appropriate for positive reducibili-
ties, was introduced by Badillo and Harris [4] and used as a tool to show that there
exists a properly …0

2 degree b such that any x � b contains only …0
2 sets. In [4] var-

ious questions about the basic properties of enumeration 1-genericity in the enumer-
ation and singleton degrees, and also its relationship with 1-genericity, were inves-
tigated. We continue this investigation in Section 3, where in particular we look at
immunity and lowness properties of enumeration 1-generic sets. We also address the
question of the distribution of the class of enumeration 1-generic degrees and show
that it resembles to some extent the distribution of the class of 1-generic degrees,
not only over the …0

2 degrees, but also globally with respect to the class of total
degrees. In Section 4 we study jump inversion of the enumeration 1-generic degrees.
In the context of the †0

2 degrees, this work can be seen as an extension of results
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by McEvoy [15] to the effect that every …0
2 degree b � 00

e is the jump of a …0
1

degree. Indeed, it follows from the results in Section 4 in conjunction with a result
from Badillo, Bianchini, Ganchev, Kent, and Sorbi [3] that every …0

2 degree b � 00
e

is also the jump of a nonzero †0
2 enumeration 1-generic (and hence quasiminimal)

degree. Furthermore, we will see that our results also throw light on the phenomenon
of †0

2 highness introduced in [15]. Section 5, which concludes the present article, is
motivated by the question of how enumeration 1-genericity and 1-genericity may be
separated within the enumeration degrees. We approach this question locally, bear-
ing in mind that every 1-generic degree is splittable, by showing the existence of both
low and properly †0

2 nonsplittable enumeration 1-generic degrees.

2 Preliminaries

We assume ¹Weºe2! to be an acceptable listing of computably enumerable (c.e.) sets
with associated c.e. approximations ¹We;sºs2! , and ¹Dnºn2! to be the computable
listing of finite sets, where Dn denotes the finite set with canonical index n. We also
assume hx; yi to be a standard computable pairing function over the integers. We
use X Œe� to denote the set ¹he; xi j he; xi 2 Xº and �Y to denote the characteristic
function of Y . We say that the set Y is characteristic if Y D X ˚ X for some set
X , and we note that X ˚ X �e �X . We use ˛, ˇ, � , and so on to denote finite
binary strings (i.e., members of 2<!). We denote by j˛j the length of ˛, so that
j˛j D �xŒx … dom ˛�. Also, ˛ � ˇ denotes that ˛ is an initial segment of ˇ

(similarly, we use ˛ � f if f 2 2!).
A set A is defined to be enumeration reducible to a set B (A �e B) if there

exists an effective procedure that, given any enumeration of B , enumerates A. More
formally (see Friedberg and Rogers [8]), A �e B if and only if there exists a c.e. set
W such that for all x 2 !,

x 2 A iff 9n
�
hx; ni 2 W & Dn � B

�
: (2.1)

We define ¹ˆeºe2! to be the effective listing of enumeration operators such that for
any set X ,

ˆX
e D

®
x

ˇ̌
9n

�
hx; ni 2 We & Dn � X

�¯
:

Also, for any e, we use the notation ˆX
e;s to define the finite approximation to ˆX

e ,
derived from We;s . For simplicity, we allow a certain amount of ambiguity in our
notation, by sometimes equating We with the operator ˆe , and in the case of finite
sets, using the letter D or similar to denote both a finite set and its index in the listing
of finite sets specified above.

We use the notation x for the equivalence classes of �e or, in other words, the
enumeration degrees, whereas dege.X/ is the notation for the �e-degree of X . Also,
0e is the degree of the c.e. sets, De denotes the structure of enumeration degrees, and
De.� x/ denotes the substructure of De over the class of degrees ¹y j y � xº (we
say that such a class is a prime ideal of De). We remind the reader that De and the
substructures of the form De.�x/ are upper semilattices.

We assume the reader to be conversant with Turing (�T) and other basic reducibil-
ities for which we use similar notation to the above. K denotes the standard halting
set for Turing machines, whereas the enumeration semihalting set relative to X is
defined to be the set KX D ¹x j x 2 ˆX

x º and the enumeration jump of X is defined
to be the set JX D KX ˚ KX . The jump of enumeration degree x is written x0,
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00
e denotes dege.J;/, and 000

e denotes dege.J
.2/
;

/. We say that x is low if x0 D 00
e,

and high if x0 D 000
e . Using the notation specified above, De.�00

e/ denotes the upper
semilattice of enumeration degrees comprising precisely the class of †0

2 enumera-
tion degrees. Note that we refer to the latter as the local structure of the enumeration
degrees, as opposed to the global structure De.

We denote by � the canonical embedding of the Turing degrees into the enumer-
ation degrees induced by the map X 7! X ˚ X . We note that � preserves join and
jump.

Definition 2.1 (Harris [10], Lachlan and Shore [14]) A uniformly computable
sequence of finite sets ¹Xsºs2! is said to be a good approximation to the set X if

(1) 8s.9t � s/ŒXt � X�,
(2) 8xŒx 2 X iff 9t .8s � t /ŒXs � X ) x 2 Xs��.

In this case, we say that X is good approximable. Moreover, if (2) is replaced by the
condition 8xŒx 2 X iff 9t .8s � t /Œx 2 Xs��, then ¹Xsºx2! is said to be a good †0

2

approximation.

Lemma 2.2 (Jockusch [11]) X is †0
2 if and only if X has a good †0

2 approxima-
tion.

In other words, the sets underlying De.�00
e / all have good †0

2 approximations.

Lemma 2.3 (see [4]) If a is a good enumeration degree, then, for every A 2 a,
KA �e KA. In other words, JA �e KA.

Lemma 2.4 (McEvoy and Cooper [16]) An enumeration degree x is low if and
only if x contains only �0

2 sets.

Definition 2.5 An enumeration degree x containing only †0
2 (…0

2) sets is prop-
erly †0

2 (…0
2) if it contains no �0

2 sets, and is downwards properly †0
2 if every

y 2 ¹z j 0e < z � xº is properly †0
2. x < 00

e is cuppable if there exists y < 00
e such

that 00
e D x [ y, and noncuppable otherwise.

Given an arithmetical predicate � (e.g., � 2 ¹�0
2; …0

2º), we sometimes use the short-
hand A 2 � if A is a � set. Moreover, we say that an enumeration degree a is � if a

contains a set A 2 � .

Lemma 2.6 (Cooper, Sorbi, and Yi [6]) If 0e < x < 00
e is �0

2, then x is cuppable.

Corollary 2.7 (see [6]) Every noncuppable 0e < x < 00
e is downwards properly

†0
2.

Notation Suppose that ¹Xsºs2! and ¹ˆsºs2! are approximations to some set X

and enumeration operator ˆ. We use the shorthand ˆX Œs� D ˆ
Xs
s . For clarity, we

also sometimes use the shorthand XŒs� instead of Xs .

3 Enumeration 1-Genericity

We now define the notion of enumeration 1-genericity. We discuss the basic proper-
ties of this notion and investigate its relationship with 1-genericity. We also delineate
restrictions to the class of enumeration 1-generic degrees by exhibiting two proper-
ties inherent to it. We begin with a reminder of the definition of 1-genericity.
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Definition 3.1 A set A is said to be 1-generic if for any c.e. set W � 2<! there
exists ˛ � �A such that either ˛ 2 W or for all ˇ such that ˛ � ˇ, ˇ … W .

Notation We use F to denote the class of finite subsets of !. We will follow the
convention that the letters D; E; F always denote members of F (although we often
also specify that the set denoted is finite). In particular, 9E is shorthand for 9E 2 F .

Definition 3.2 A set A is defined to be enumeration 1-generic if, for all c.e. sets
W � F , either there exists a finite set D � A such that D 2 W , or a finite set
E � A such that, for every D 2 W , D \ E ¤ ;.

Forcing and enumeration 1-genericity We start by inspecting a notion of forcing
which gives rise to the enumeration 1-generic sets. (We assume that the reader is
familiar with forcing in arithmetic and refer to Shore [17] for an introduction on this
topic.) Let P be a partial ordering. V � P is open if, for every p; q 2 P , if p � q

and q 2 V , then p 2 V . V is dense along A � P if, for every p 2 A, there is a
q � p, q 2 V . A meets V if A \ V ¤ ; and that A � P is a filter if A is closed
upwards with respect to the partial ordering and every two conditions in A have a
common lower bound in A. A filter A is generic if A meets every open set V , which
is dense along A.

The standard definition of a 1-generic set is derived from Cohen’s notion of forc-
ing on the partial ordering of finite binary strings 2<! ordered by inclusion, by lim-
iting the amount of genericity required. G is 1-generic if it is derived from a filter G

on 2<! , which meets every †0
1 open subset of 2<! which is dense along G . One of

the key features of 1-generic sets of natural numbers is that every †0
1 statement in the

language of arithmetic with an additional predicate for G is decided by some initial
segment of G; that is, either it or its negation is forced by some finite binary string
� 2 G .

An equivalent way to define a 1-generic set G is as follows. Let PF be
the partial ordering with elements pairs of disjoint finite sets hD; Ei ordered by
hD1; E1i � hD2; E2i if and only if E1 � E2 and D1 � D2. A filter G � PF ,
which for every n meets the set Vn D ¹hD; ;i j n 2 Dº, whenever it is dense
along G , defines a set G and its complement G; namely, G D

S
hD;Ei2G D and

G D
S

hD;Ei2G E. It is fairly easy to check that a set G is 1-generic if and only if it
is obtained from a filter G � PF which meets every †0

1 open subset of PF , which
is dense along G .

Enumeration 1-generic sets are also obtained from filters G � PF . The genericity
requirements for these filters are limited further to only positive requirements. Let
us call a set of conditions V � PF positive if and only if whenever hD; Ei 2 V ,
we also have that hD; ;i 2 V . Then G is enumeration 1-generic if and only if it is
obtained from a filter G � PF which meets every †0

1 positive open subset of PF ,
which is dense along G . Similarly, we can characterize enumeration 1-genericity
syntactically: a filter G gives rise to an enumeration 1-generic set if and only if every
positive †0

1 statement in the language of arithmetic with an additional predicate for
G is decided by some condition in G , where a positive †0

1 statement is one obtained
from †0

1 statements in arithmetic (that do not mention G ) and statements of the form
“hD; ;i 2 G ,” closed under conjunctions and existential quantification.
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In the same way that 1-genericity has a natural characterization in terms of Turing
functionals, we find that enumeration 1-genericity can be characterized in terms of
enumeration operators as follows.

Proposition 3.3 (see [4]) A is enumeration 1-generic if and only if, for every
e 2 !, either e 2 ˆA

e or, for some finite set E � A, e … ˆ!�E
e .

Remark Note that if A is enumeration 1-generic, then A is infinite. Indeed, sup-
pose that A � !�n for some n � 0. Then by enumeration 1-genericity of A, there
exists a finite set E such that D \ E ¤ ; for every D 2 ¹¹mº j m � nº, which is
an obvious contradiction. However, the notion of enumeration 1-genericity is weak
in the sense that there are clearly enumeration 1-generic sets which are c.e.—the
obvious example being ! itself.

In view of the above observations, we now consider how the definition of enumera-
tion 1-genericity might be strengthened. The next lemma shows that coinfiniteness
is an obvious candidate for this.

Lemma 3.4 If A is enumeration 1-generic and coinfinite, then A is hyperimmune.
Thus A is not …0

1.

Proof Suppose that there exists a sequence of mutually disjoint finite sets
¹Df .i/ºi2! with f computable such that, for all i , Df .i/ \ A ¤ ;. Let
W D ¹Df .i/ j i 2 !º. By enumeration 1-genericity there exists a finite set
E � A such that for all D 2 W , D \ E ¤ ;. This is an obvious contradiction since
W contains mutually disjoint finite sets. Hence A is hyperimmune.

However, in the context of the enumeration degrees, coinfiniteness does not confer
nontriviality to the notion of enumeration 1-genericity, as we now see.

Proposition 3.5 There exists a coinfinite c.e. enumeration 1-generic set A.

Proof The proof involves enumerating a set A in stages so as to satisfy, for all
e 2 !, the following requirements:

R W jAj is infinite;

Pe W .9D 2 We/ŒD � B� _ .9E � B/.8D 2 We/ŒD \ E ¤ ;�:

To do this, we use a standard finite injury construction in which at every stage s a
finite approximation As is defined such that A D

S
s2! As . Each requirement Pe

works with its own restraint witness x.e; s/ 2 ! defined at the end of stage s and its
own avoidance parameter �.e; s C 1/ D ¹x.i; s/ j i � eº defined at the beginning
of stage s C 1. The requirement Pe is said to be satisfied at stage s C 1 if there exists
D 2 WeŒs� such that D � As . Likewise, Pe is said to require attention at stage s C 1

if it is not satisfied and there exists D 2 WeŒs C 1� such that D \ �.e; s C 1/ D ;.
The construction is defined as follows.

Stage 0. Define x.e; 0/ D e for all e � 0.
Stage s C 1. If there is no e < s such that Pe requires attention, then reset

x.e; s C 1/ D x.e; s/ for all e � 0 and go to stage s C 2. Otherwise, let e

be the least such index. Enumerate into A the least set D 2 WeŒs C 1� such that
D \ �.e; s C 1/ D ;; that is, set AsC1 D As [ D. Reset x.i; s C 1/ D x.i; s/ for
all i � e and, letting Os D max¹x.e; s/; sº, set x.j; s C 1/ D Os C j for all j > e, and
go to stage s C 2.
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The verification of the construction is a straightforward induction argument over
index e. Note first that

x.i; s/ … As for all i; s � 0. (3.1)

Proceed by assuming that index e and stage se are such that x.i; s/ D x.i; se/

for all i � e and s � se—and accordingly let x.i/ D x.i; se/—and are also
such that, for all j < e, Pj does not require attention at any such stage s. Let
�.e/ D ¹x.i/ j i � eº, and note that it follows from (3.1) that �.e/ � A. Clearly,
if there exists D 2 We such that D \ �.e/ D ; and Pe has not been satisfied before
stage se , then Pe will receive attention at some stage s � se . Thus clearly Pe will
be satisfied in the limit (since D \ �.e/ ¤ ; for all D 2 We otherwise). Moreover,
as Pe only requires attention at most once after stage se there exists a corresponding
stage seC1 � se such that x.i; s/ D x.i; seC1/ for all i � e C 1 and s � seC1 and
such that, at any such stage s and any index j < e C 1, no requirement Pj requires
attention at stage s. We can therefore conclude that x.e/ is defined for all e, that
� D ¹x.e/ j e 2 !º � A, so that R is satisfied (since clearly x.i/ ¤ x.j / for all
i ¤ j by construction), and that Pe is satisfied for all e � 0.

Remark It follows from Lemma 3.4 that every coinfinite c.e. enumeration
1-generic set is hypersimple.

Another obvious way of strengthening enumeration 1-genericity is to impose sym-
metricity of this notion over a set A and its complement.

Definition 3.6 (see [4]) A set A is defined to be symmetric enumeration (s.e.)
1-generic if both A and A are enumeration 1-generic.

Now, unlike enumeration 1-genericity alone, s.e. 1-genericity does confer nontrivi-
ality in the context of the enumeration degrees.

Proposition 3.7 (see [4]) If A is s.e. 1-generic, then A … †0
1 [ …0

1.

Remark Note that the proposition above follows directly from Lemma 3.4.

Note that, by definition, the class of enumeration 1-generic degrees subsumes the
class of s.e. degrees. Similarly, we find that the class of s.e. degrees subsumes the
class of 1-generic degrees.

Proposition 3.8 (see [4]) If A is 1-generic, then A is s.e. 1-generic.

On the other hand, we find that enumeration 1-generic sets display a certain form of
lowness.

Lemma 3.9 For every enumeration 1-generic set A, JA �e A ˚ A ˚ J;.

Proof We know that KA �e A. Moreover, for every finite set E, the set ˆ!�E
e is

enumeration reducible to J; uniformly in e and E, via (say) the operator ˆg.e;E/.
By enumeration 1-genericity of A, KA D ¹e j 9EŒe 2 ˆ

J;

g.e;E/
& E � A�º and

hence KA �e A ˚ J;.
We conclude that JA D KA ˚ KA �e A ˚ A ˚ J;.

Corollary 3.10 If G is s.e. 1-generic, then JG �e JG . If G is 1-generic, then
JG �e JG �e JG˚G .
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Proof If G is s.e. 1-generic, then both G and G are enumeration 1-generic. By
Lemma 3.9, JG �e G ˚ G ˚ J; �e JG .

If G is 1-generic, then we know that its jump in the Turing degrees also behaves
this way: G0 �T G ˚;0. Thus, as � preserves join and jump, JG˚G �e G ˚G ˚J;.

Corollary 3.11 If A 2 …0
2 is enumeration 1-generic, then JA �e A ˚ J;. In

particular, if A is �0
2, then dege.A/ is low.

Remark A straightforward argument shows that any �0
2 approximation to A is in

fact both low—in the sense of [16]—and good as defined in Definition 2.1.

Corollary 3.11 suggests a way of delineating the distribution of enumeration
1-generic degrees within the �0

2 degrees. However, we will see below in Proposi-
tion 4.12 that there exists a †0

2 enumeration 1-generic degree in which not every
set is enumeration 1-generic. Accordingly, Corollary 3.11 could be applied directly
to the �0

2 degrees themselves (and not just to individual sets) only if the latter
phenomenon can be ruled out in the case of the �0

2 degrees. Indeed, its presence in
this context would suggest the existence of �0

2 enumeration 1-generic degrees that
are nonlow.

The above discussion leads us to the question of what overall restrictions there are
to the distribution of the enumeration 1-generic degrees.

Lemma 3.12 (see [4]) If B 2 …0
2 is enumeration 1-generic, then the class

B D ¹X j X �e Bº is …0
2 in a uniform manner.

Note that this lemma is a simple corollary of Corollary 3.11 if every such B is in fact
�0

2. We now see that this is not the case.

Proposition 3.13 (see [4]) There exists a properly …0
2 enumeration degree b such

that the principal ideal De.�b/ only contains …0
2 sets.

Proof Let A be a set such that dege.A/ is properly †0
2 and A is enumeration

1-generic. For example, take A to be the 1-generic set with noncuppable enumeration
degree constructed in the proof of [4, Theorem 3.2]. Let B D A and b D dege.B/.
Then B is enumeration 1-generic and hence De.� b/ only contains …0

2 sets by
Lemma 3.12. Moreover, no set X in b is �0

2 since this would imply that B is �0
2 in

contradiction with the definition of A D B .

The above is a first illustration of a natural restriction of the class of enumeration
1-generic degrees within De. However, these results tell us nothing further (to
Corollary 3.11) about the local structure of †0

2 degrees. For example, is 00
e enu-

meration 1-generic? The final result of this section not only settles this question but
also shows that the distribution of the enumeration 1-generic degrees bears a certain
resemblance to the distribution of the 1-generic degrees, both globally and locally
within De.

Proposition 3.14 Every enumeration 1-generic degree 0e < a is quasiminimal.

Proof Suppose that A is an enumeration 1-generic set and that C is a characteristic
set such that C �e A. Accordingly, let ˆ witness this reduction (i.e., C D ˆA), and
consider the c.e. set

S D
®
D

ˇ̌
9F 9F 0

�
h2x; F i 2 ˆ & h2x C 1; F 0

i 2 ˆ & D D F [ F 0
�¯

:
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Since C is characteristic, it follows that D ª A for all D 2 S . Hence, by
enumeration 1-genericity of A, there exists a finite set E � A such that for all D 2 S ,
D \ E ¤ ;. However, this implies that C D ˆ!�E .

Indeed, clearly C � ˆ!�E (as A � ! � E). Suppose that there exists
y 2 ˆ!�E nC . Then y D 2xCi for some i 2 ¹0; 1º. Without loss of generality, sup-
pose that i D 0. Accordingly, there is a finite set F � ! � E such that h2x; F i 2 ˆ.
Since C is characteristic and 2x … C , it follows that 2x C 1 2 C D ˆA. Hence
there exists a finite set F 0 such that h2x C 1; F 0i 2 ˆ and F 0 � A � ! � E. Set
D D F [ F 0. Clearly D 2 S whereas, by the above, D \ E D ;. This contradicts
the definition of E. Thus ˆ!�E � C and so C D ˆ!�E ; that is, C is c.e.

4 Enumeration 1-Genericity and Jump Inversion

In this section we show that there is a uniform method for constructing, below any
enumeration degree a, an enumeration 1-generic degree b having the same jump
complexity as a. We also show that below any nonzero �0

2 degree there exists
a nonzero �0

2 enumeration 1-generic degree of lowest possible jump complexity.
These results allow us to conclude that every nonzero good enumeration degree
strictly bounds a nonzero enumeration 1-generic degree of the same jump complex-
ity. We also consider the relationship between enumeration 1-genericity and †0

2

highness (defined below) which is brought to light by these results. We begin with
some further background material.

Notation Given a †0
2 approximation ¹Asºs2! to a set A, we use the shorthand1

cA to denote the computation function relative to ¹Asºs2! defined by setting, for all
x 2 !, cA.x/ D .�s > x/ŒAs�x � A�.

Definition 4.1 A †0
2 approximation ¹Asºs2! is said to be high if its associated

computation function cA is total and dominates every computable function f (i.e.,
cA.x/ > f .x/ for almost every x). A set A is said to be †0

2 high if it has a †0
2

approximation (and so, using standard terminology, an enumeration degree is †0
2

high if it contains such a set).

Lemma 4.2 (Shore and Sorbi [18]) A degree a � 00
e is high if and only if it is †0

2

high.

We now proceed with the main result of this section.

Proposition 4.3 There exists an enumeration operator �, such that, for every A,
�A is enumeration 1-generic and J�A �e JA.

Proof We construct a c.e. operator � so that for every e the following requirement
is met:

Pe W 8A
�
.9D 2 We/ŒD � �A� _ .9E � �A/.8D 2 We/ŒD \ E ¤ ;�

�
:

The construction is a finite injury construction in stages. At every stage s we
construct a c.e. set �s . The intent is that � D

S
s2! �s is the required operator.

For every e we will have a coding location de . The coding locations are our tool
to code, for every A, the bits of KA. Fe D ¹dj j j � eº is the set of all coding
locations for higher priority requirements. Note that Fe is restrained in the sense
that, if we are acting to satisfy the .e C 1/th genericity requirement PeC1, then we
are not allowed to enumerate into � axioms for the elements in Fe . Depending on
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the oracle A, each nonempty set E � Fe may or may not also be a subset of �A. In
fact, it may be the case that E D ; is the only subset of both Fe and �A. So we will
make sure that all possibilities are covered in the way that we meet the requirement
Pe . In particular, at any moment in the construction we will know the status of a
requirement—satisfied or not—and, if the requirement is not yet satisfied, then we
will know how far we have gone towards satisfying it. Every finite subset of S � Fe

will be announced as either covered or not yet covered. The intuition behind this
notion is that if the finite subset S turns out to be a subset of the oracle A and there is
a finite set D in We such that D \.Fe nS/ D ;, then we will ensure that D � �A by
enumerating axioms for all the elements in D n S . In other words, we have satisfied
the requirement Pe , provided that S is a subset of the oracle. As there are finitely
many subsets of Fe , these actions will be performed finitely many times. Once every
such finite subset is covered, we will announce that Pe is satisfied (for now). Later in
the construction, however, we might announce that Pe is not yet satisfied if a higher
priority requirement acts.

The Construction. At stage 0, �0 D ; and, for all e, de is undefined, Pe is
announced as not yet satisfied, and every subset of Fe is announced as not yet cov-
ered.

Remark During the construction, we only take care to define Fe (as specified
above) when de is defined. If de is not defined, then the value of Fe is unimportant.

We will say that Pe requires attention at stage s C 1 if Pe is (announced as) not yet
satisfied and one of the following is true.

(1) The coding location de is undefined.
(2) There is a finite set D 2 WeŒs� such that D \ Fe D S is not yet covered.
At stage s C 1, we let e be the least number for which the requirement Pe requires

attention at stage s C 1.
(1) If the required attention is because the coding location is undefined, then we

define the value of de to be the least number for which there is no axiom in
�s . Then we set �sC1 D �s [ ¹hde; Di j he; Di 2 ˆeº. Next we injure
all lower priority requirements by announcing all of them as not yet satisfied,
making dj for j > e undefined and announcing all finite subsets of Fj not
yet covered for j > e. (Note that even though �sC1 is not necessarily finite,
it is c.e. and contains axioms for finitely many elements. Thus this step is
computable.)

(2) Otherwise, pick the least finite set D 2 WeŒs� such that D\Fe D S is not yet
covered. Announce that all sets X , such that S � X � Fe , are covered. If all
subsets of Fe are covered, then announce the requirement Pe satisfied. Then
set �sC1 D �s [ ¹hn; ;i j n 2 D n Sº. Again we injure all lower priority
requirements by announcing all of them as not yet satisfied, making dj for
j > e undefined and announcing all finite subsets of Fj not yet covered for
j > e.

If no requirement requires attention at stage s C 1, then set �sC1 D �s .
End of construction.

Lemma 4.4 For every e, there is a least stage se such that Pe does not get injured
by higher priority requirements at stages t > se . Furthermore, the function e 7! se

is computable by K (the Turing halting set).
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Proof The proof is by induction. P0 does not get injured at all, so s0 D 0. Suppose
that Pe does not get injured after stage se and se is least with this property. This
means that Pe is injured for the last time at stage se . Then at stage se C 1, Pe

requires attention with undefined coding location de . By definition of se , Ge is the
least requirement that requires attention at this stage and hence receives attention. At
stage se C 1, the final value of de and the final value of the set Fe are defined. K can
answer recursively every question of the following: “Does there exist a finite set D

in the c.e. set We which covers the finite set S?” Here D covers S if D \ Fe � S .
So K can compute which of the finite subsets of Fe get covered by asking 2jFe j

such questions. Note that if S can be covered, then it will be covered, because after
stage se , whenever Pe requires attention, it receives attention. Now K can run the
construction for the number of stages necessary until it reaches a stage at which the
last finite set which can be covered, gets covered. This stage is seC1, the last stage at
which PeC1 is injured.

Lemma 4.5 For every A, the set �A is enumeration 1-generic.

Proof Fix A and We . Let Fe be the final value of this parameter obtained at stage
se C 1. Suppose that there is a finite set D 2 We such that D \ Fe � �A. Then
S D D \Fe can be covered. By the properties of the construction, it will be covered
at some stage t (> se C 1). At stage t , we have found a (possibly different) finite set
D� such that D� \ Fe � S � �A, and for every element n 2 D� n Fe , we have
enumerated the axiom hn; ;i 2 �t ; hence D� � �A.

Otherwise, for every D 2 We , we have that D \ Fe \ �A ¤ ;; that is, the finite
set E D Fe \ �A intersects every member of We .

Lemma 4.6 For every A, JA �e J�A .

Proof J�A �e JA by monotonicity of the enumeration jump. So we only need to
show that JA �e J�A .

We will show that KA �T �A ˚ K . Now again, using the fact that � preserves
join and jump and maps degT.KA/ to dege.KA ˚ KA/ as also degT.�A ˚ K/ to
dege.�

A ˚�A ˚J;/, it will follow that JA D KA ˚KA �e �A ˚�A ˚J;. As �A

is enumeration 1-generic, we know from Lemma 3.9 that �A ˚ �A ˚ J; �e J�A

and hence that JA � J�A .
To compute KA.e/ we use K to compute the stage se , the last stage at which Pe

is injured, and then run stage se C 1 at which de is defined. Now de 2 �A if and
only if e 2 ˆA

e . This is because at stage se C 1 we enumerate the only axioms for
de that ever get enumerated in � and they mirror exactly the axioms for e in ˆe . We
use �A to determine this last membership question.

This concludes the proof of Proposition 4.3.

Corollary 4.7 For every enumeration degree a 2 De, there exists an enumeration
1-generic b � a such that b0 D a0.

Note that, in the case in which a is low, Corollary 4.7 does not guarantee that b > 0e.
However, we can deduce from the following result in [3] that such a degree does
indeed exist.

Theorem 4.8 (see [3]) For every �0
2 enumeration degree a > 0e, there exists

0e < b � a such that b is 1-generic.
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Moreover, the next result by Ganchez and Sorbi will allow us to show that the degree
b stipulated in Corollary 4.7 can be chosen to be strictly below a.

Theorem 4.9 (Ganchev and Sorbi [9]) Every enumeration degree a > 0e bounds
a nontrivial initial segment of enumeration degrees whose nonzero elements all have
the same jump as a.

Accordingly, we obtain a stronger version of Corollary 4.7.

Proposition 4.10 For every enumeration degree c > 0e, there exists enumeration
1-generic 0e < b < c such that b0 D c0.

Proof By Theorem 4.9, we can choose 0e < a < c such that a0 D c0. If c is
not low, then we apply Corollary 4.7 to a. If c is low, then we apply Theorem 4.8
in conjunction with Proposition 3.8 to a. In both cases, we obtain an enumeration
1-generic 0e < b � a < c such that b0 D c0.

Given Lemma 4.2 and Corollary 4.7 applied to the special case when a D 00
e, we

might expect there to exist a set A that is both †0
2 high and enumeration 1-generic.

We now investigate whether this is the case.

Lemma 4.11 If A is †0
2 high, then A is not enumeration 1-generic (and hence

neither s.e. 1-generic nor 1-generic).

Proof Let ¹Asºs2! be a high †0
2 approximation to A with associated computation

function cA. Let sA 2 ! be such that cA.s/ > s C 1 (i.e., the successor function) for
all s > sA. Define the c.e. set

W D ¹AsC1�s j s > sAº;

and observe that, by definition of sA, for all D 2 W , D ª A. Suppose that A is
enumeration 1-generic. Then there exists a finite set E � A such that D \ E ¤ ;

for all D 2 W . Let
m D max

�
E [ ¹sAº

�
C 1;

and let sm be such that sm C 1 D cA.m/ (and so sm � m). By definition of cA,
AsmC1�m � A (whereas E � A�m). Thus, letting D D AsmC1�sm, we see that
D 2 W and D \ E D ;, which is a contradiction. Thus A is not enumeration
1-generic.

Proposition 4.12 There exists a high enumeration 1-generic degree b � 00
e and

sets B; C 2 b such that B ¤ C , and
(i) B is not †0

2 high,
(ii) C is not enumeration 1-generic.

Proof Choose A D J; in Proposition 4.3, and set B D �A. Then b D dege.B/

is high. By Lemma 4.2, b contains a †0
2 high set C . By Lemma 4.11, it follows that

B ¤ C and that B is a witness for (i), whereas C is a witness for (ii).

5 Enumeration 1-Genericity and Nonsplitting

We saw in Proposition 3.8 that every 1-generic set A is s.e. 1-generic and hence
enumeration 1-generic. We also saw that the class of nonzero enumeration 1-generic
degrees shares at least two nontrivial structural properties with the 1-generic degrees,
namely, quasiminimality (see Proposition 3.14) and …0

2 downward closure (see



472 Badillo, Harris, and Soskova

Lemma 3.12). So are these two classes identical or is there some other property that
separates them? Consider the following property.
Definition 5.1 A degree a is said to be splittable if there exist incomparable
degrees a0 and a1 such that a D a0 [ a1. Otherwise a is said to be nonsplittable.
In this section we show that splittability is just one such property, and that this sepa-
ration occurs within the †0

2 degrees.
Proposition 5.2 (Folklore) Every 1-generic enumeration degree a is splittable.
Note. The proof below is a straightforward adaptation of the proof of this property in
the context of function 1-genericity given in Copestake [7].

Proof Suppose that A 2 a is 1-generic. Define the sets A0 and A1 such that, for
i 2 ¹0; 1º, Ai D ¹x j 2x C i 2 Aº. Note that by immunity of A, both A0 and
A1 are infinite. Clearly A �e A0 ˚ A1. Suppose that A0 �e A1, and let ˆ be
the enumeration operator witnessing this reduction. Consider the c.e. set S � 2<!

defined by setting
S D

®
�

ˇ̌
9x 9D

�
�.2x/ D 0 & x 2 ˆD & D �

®
z

ˇ̌
�.2z C 1/ D 1

¯�¯
:

Note that, by definition of ˆ, � … S for any � � �A. Thus (by 1-genericity of A)
there exists � � �A such that, for all � � � , � … S . Now, as A0 is infinite we can
pick x and D � A1 such that 2x � j� j and x 2 ˆD . Let 
 � � be any string defined
so that 
.2x/ D 0 and 
.2z C 1/ D 1 for all z 2 D.2 Then clearly 
 2 S , which
is a contradiction. In other words, A0 —e A1. By a similar argument, A1 —e A0.
Therefore, letting a0 D dege.A0/ and a1 D dege.A1/, we see that the pair a0, a1
witnesses the splittability of a.

In contrast to this, we will show that there exist both a low and a properly †0
2 nonsplit-

table enumeration 1-generic degree. In order to do this, we transpose the method-
ology of the low nonsplittability proof of Ahmad and Lachlan [1] onto a tree of
strategies construction using techniques formulated by Kent [12] and Kent and Sorbi
[13]. We note that Theorem 5.3 can in fact be proved by a straightforward modifica-
tion of Ahmad and Lachlan’s proof (see [1]). However, the reader will notice that the
manner in which the tree of strategies construction is applied here not only clarifies
the mechanics of the proof (in that the streams of free numbers used by the splitting
strategies are precisely reflected in the structure of the tree of strategies itself), but
also that it allows the low nonsplittability version to be easily adapted to show prop-
erly †0

2 nonsplittability. We also note that the present construction is an adaptation
of Kent’s nonsplittability proofs in [12] with the difference that a close interpretation
of the elegant e-states method used in [1] is implicitly adhered to in the definition of
the tree of strategies.
Theorem 5.3 There exists a low enumeration 1-generic nonsplittable degree
a > 0e.
Proof We will define a set A with �0

2 approximation ¹Asºs2! satisfying the fol-
lowing requirements.

R‰;�0;�1
W A D ‰�A

0
˚�A

1 ) A �e �A
i for some i 2 ¹0; 1º or A c.e.;

NW W A ¤ W;

PW W .9D 2 W /ŒD � A� _ .9E � A/.8D 2 W /ŒD \ E ¤ ;�:
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Note our use of shorthand notation in the above (introduced to simplify the pre-
sentation), whereby we understand .‰; �0; �1/ 2 ¹.‰e; �e;0; �e;1/ºe2! and where
the latter is an acceptable listing of all triples of enumeration operators. Likewise,
W ranges over an acceptable listing of c.e. sets ¹Weºe2! . In each case, we assume
that the listing is associated with uniform c.e. approximations of the sets/operators
involved.

(1) The tree of strategies
We define the overall set of outcomes to be † D ¹0; 1; 2º [ ¹voidº and the set of

tree outcomes to be ¹0; 1; 2º. We fix an arbitrary effective priority ordering ¹Leºe2!

of all R, N , and P requirements. We also define T � ¹0; 1; 2º<! and we refer
to it as the tree of strategies. Each node ˛ 2 T will be associated, and so iden-
tified, with the strategy for the satisfaction of Lj˛j. We use the notation R‰;�0;�1

for the set of R‰;�0;�1
strategies and R for the set of all R strategies. Likewise,

for .Q; Q/ 2 ¹.N ; N /; .P ; P /º we use the notation QW for the set of strategies
associated with QW , and we let Q denote the set of all such strategies.

We assign requirements to nodes on T by induction as follows. Define ; 2 T .
Given ˛ 2 T we distinguish three cases depending on the requirement L associated
with ˛.

Case 1. ˛ 2 R: define ˛bhni 2 T for n 2 ¹0; 1; 2º.
Case 2. ˛ 2 N : define ˛bhni 2 T for all n 2 ¹0; 1º.
Case 3. ˛ 2 P : define ˛bhni 2 T for all n 2 ¹0; 1º.

(2) Notation and terminology for strings
We use standard notation and terminology for strings as found, for example, in

Soare [19]. Accordingly, we use � and < (� and �) to denote, respectively, nonstrict
and strict lexicographical ordering (inclusion) on T .3 We have that � <L � denotes
� < � , but � ª � .

(3) Environment parameters
Local parameters for ˛ 2 R‰;�0;�1

. R.˛; s/ 2 ¹0; 1; 2; voidº is the outcome
parameter, and �˛;0Œs� and �˛;1Œs� are finite approximations to enumeration opera-
tors constructed so as to (possibly) witness A �e �A

0 or A �e �A
1 . (Note that, for

i 2 ¹0; 1º, we use �i as shorthand for �˛;i when there is no danger of ambiguity.)
Outcome R.˛; s/ D j for j � 1 corresponds to ˛’s belief that if A D ‰�A

0
˚�A

1 ,
then A �e �A

j (as witnessed by �j in the limit). Likewise, under the same assump-
tion, R.˛; s/ D 2 corresponds to ˛’s belief that A is c.e. (contradicting the definition
of a). For ease of description in the construction, ˛ also has a dummy witness
parameter x.˛; s/ D �1.

Local parameters for ˛ 2 NW . N.˛; s/ 2 ¹0; 1; voidº is the outcome parame-
ter and x.˛; s/ 2 ¹�1º [ ! is the witness parameter associated with ˛. Out-
come R.˛; s/ D 0 corresponds to ˛’s knowledge that x.˛; s/ 2 W and belief that
x.˛; s/ … A (which will be vindicated if ˛ is not initialized at any stage t > s).
N.˛; s/ D 1, on the other hand, means that ˛ believes that x.˛; s/ 2 A n W .

Local parameters for ˛ 2 PW . P.˛; s/ 2 ¹0; 1; voidº is the outcome parameter
and x.˛; s/ D �1 is a dummy witness parameter for ˛. P.˛; s/ D 0 corresponds to
˛’s belief that there is some D 2 W such that D � A (which will be vindicated if
˛ is on the true path and is not initialized at any stage t > s). P.˛; s/ D 1, on the
other hand, corresponds to ˛’s belief that there is no such D in W .
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The stream for any ˛ 2 T . S.˛; s/ D ¹x.ˇ; s/ j x.ˇ; s/ � 0 & ˛ � ˇº is the
(finite) stream associated with ˛ at stage s and corresponds to the set of num-
bers already processed by the construction at stage s and which are (roughly
speaking) available for processing by ˛ at stage s C 1. Note that, by definition,
x.˛; s/ … S.˛bhni; s/ for any n 2 ¹0; 1; 2º. (This observation is significant for the
construction in the case ˛ 2 N and trivial otherwise.)

Global parameters for stage s C 1. Each stage sC1 has the following parameters.
(i) z.s C 1; t/ 2 ! [ ¹breakº is a floating witness which is passed down the s C 1

stage approximation to the true path. When t D 0, z.s C 1; t/ starts life by denoting
the number s. For t � 0, the witness z.s C 1; t/ is passed to the strategy ˛ of length
t eligible to act at substage t C 1 provided that z.s C 1; t/ ¤ break. The strategy
˛ decides whether (a) to set z.s C 1; t C 1/ D break, thus causing stage s C 1 to
terminate,4 (b) to reallocate z.s C 1; t C 1/ to some number belonging to its s stage
stream, or (c) to reset z.s C 1; t C 1/ D z.s C 1; t/. In case (a), the strategy ˛ either
sets x.˛; s C 1/ D z.s C 1; t/ or dumps z.s C 1; t/ into A,5 whereas in case (b), ˛

always dumps z.s C 1; t/ into A. Note that case (a) corresponds to ˛ 2 N [ P and
case (b) to ˛ 2 R, whereas case (c) may apply to any strategy ˛. Also note that in
cases (b) and (c), the new value of the floating witness z.s C 1; t C 1/ is passed to
the strategy ˛bhii of length t C 1 eligible to act at stage t C 2.

(ii) D.s C 1; t/ 2 F is a record, established at substage t , that defines a set of
numbers that will be dumped at the end of stage s C 1. When t D 0, D.s C 1; t/

starts life as ;. D.s C 1; t C 1/ is defined provided that z.s C 1; t/ ¤ break (i.e., the
stage has not yet terminated), and in this case, D.s C 1; t/ � D.s C 1; t C 1/.

(iii) D.s C 1/ is the overall set of numbers dumped into A at the end of stage
s C 1. Thus, by definition, D.s C 1/ D D.s C 1; jˇsj C 1/, where ˇs is the s stage
approximation to the true path.

Initialization. For .Q; Q/ 2 ¹.R; R/; .N; N /; .P; P /º and any ˛ 2 Q, we say
that “void” is the initial value of Q.˛; s/ and that �1 is the initial value of x.˛; s/.
For ˛ 2 R, we say that ; is the initial value of �˛;i for i 2 ¹0; 1º. The initialization
of a node ˛ 2 T is the process of resetting its associated parameters to their initial
values.

The Construction. The construction proceeds in stages s 2 !. At each stage s

the construction defines the following finite sets. DAŒs� is the set of numbers already
Dumped into A, while FAŒs� is the set of numbers already used by the construction
(i.e., having visited A during at least one stage) but still Free, that is, nondumped.
IAŒs� is the set of (free) numbers Inside A and OAŒs� is the set of (free) numbers
Outside A. The intention here is that IAŒs� \ OAŒs� D ;, FAŒs� D IAŒs� [ OAŒs�,
FAŒs� \ DAŒs� D ;, and FAŒs� [ DAŒs� D !�s. The s stage approximation to A will
be defined to be AŒs� D IAŒs� [ DAŒs�.

We say that a number x 2 ! is new if it is greater than any number used in the
construction so far.

To facilitate understanding of the construction, we suggest that the reader also
consult the informal observations relative to stage s C 1 made on page 477.

Stage s D 0.
Set AŒs� D IAŒs� D OAŒs� D FAŒs� D DAŒs� D ;, and initialize all ˛ 2 T .
Stage s C 1.
This stage consists of substages t � 0 such that some strategy ˛ 2 T acts (i.e., is

processed) at substage t C 1 provided that z.s C 1; t/ ¤ break. If so, ˛ decides the
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value of z.s C 1; t C 1/ and D.s C 1; t C 1/, the value of its local parameters, and
(accordingly), if z.s C 1; t C 1/ 2 !, which strategy ˛bhni is eligible to act next.

Substage 0.
Set z.s C 1; 0/ D s and D.s C 1; 0/ D ;.
Substage t C 1. (Under the assumption that z.s C 1; t/ 2 !.)
We suppose that ˛ is the strategy of length t which is eligible to act at this sub-

stage. We distinguish cases depending on the requirement R assigned to ˛.
Case 1. ˛ 2 R‰;�0;�1

. Process the first of the following cases applicable.
Reminder. We are using the notation ‰ and �i as shorthand for ‰e and �e;i for

some index e, and �i as shorthand for �˛;i .
Case 1.1. There is a number z 2 S.˛bh1i; s/ such that z … AŒs�, but z 2 �

�A
1

1 Œs�.
Then set z.s C 1; t C 1/ D z for the least such z, and define

D.sC1; t C1/ D D.sC1; t/[
®
z.sC1; t/

¯
[

� [
1�i�2

S
�
˛bhii; s

�
n

®
z.sC1; t C1/

¯�
and �1Œs C 1� D ;. Also reset �0Œs C 1� D �0Œs�. Set R.˛; s C 1/ D 0.

Remark R.˛; s C 1/ D 0 indicates that ˛bh0i will be eligible to act at sub-
stage t C 2. (See procedure Ending substage t C 1.) Note that the floating witness
z.s C 1; t C 1/ will be passed to ˛bh0i.

Case 1.2. There is a number z 2 S.˛bh2i; s/ such that z 2 AŒs� \ ‰�A
0

˚�A
1 Œs�.

Then set z.s C 1; t C 1/ D z for the least such z, define

D.s C 1; t C 1/ D D.s C 1; t/ [
®
z.s C 1; t/

¯
[

�
S

�
˛bh2i; s

�
n

®
z.s C 1; t C 1/

¯�
;

and, for 0 � i � 1, define �i Œs C 1� D �i Œs� [ ¹hz.s C 1; t C 1/; �A
i Œs�iº.

Set R.˛; s C 1/ D 1.
Case 1.3. Otherwise.
Then reset z.s C 1; t C 1/ D z.s C 1; t/, D.s C 1; t C 1/ D D.s C 1; t/,

�i Œs C 1� D �i Œs� for 0 � i � 1, and set R.˛; s C 1/ D 2.
Case 2. ˛ 2 NW . Process the first of the following cases applicable.
Case 2.1. N.˛; s/ D 0.
(Note that this means that x.˛; s/ 2 OAŒs� � !nAŒs�.) Set z.sC1; tC1/ D z.sC

1; t/ and D.s C 1; t C 1/ D D.s C 1; t/, and reset x.˛; s C 1/ D x.˛; s/ and
N.˛; s C 1/ D 0.

Case 2.2. N.˛; s/ D 1 and x.˛; s/ 2 W Œs�.
Set z.s C 1; t C 1/ D break and

D.s C 1; t C 1/ D D.s C 1; t/ [
®
z.s C 1; t/

¯
[ S

�
˛bh1i; s

�
:

(Note that S.˛bh1i; s/ D S.˛; s/ n ¹x.˛; s/º in this case.) Reset x.˛; s C 1/ D x.˛;

s/, and set N.˛; s C 1/ D 0.
Case 2.3. N.˛; s/ D 1 and x.˛; s/ … W Œs�.
Reset z.s C 1; t C 1/ D z.s C 1; t/ and D.s C 1; t C 1/ D D.s C 1; t/. Also reset

x.˛; s C 1/ D x.˛; s/ and N.˛; s C 1/ D 1.
Case 2.4. N.˛; s/ D void and z.s C 1; t/ � j˛j.
Set z.s C 1; t C 1/ D break and D.s C 1; t C 1/ D D.s C 1; t/. Also set

x.˛; s C 1/ D z.s C 1; t/ and N.˛; s C 1/ D 1.
Case 2.5. Otherwise (i.e., N.˛; s/ D void and z.s C 1; t/ < j˛j).
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Set z.s C 1; t C 1/ D break and D.s C 1; t C 1/ D D.s C 1; t/ [ ¹z.s C 1; t/º.
Also reset x.˛; s C 1/ D �1 and N.˛; s C 1/ D void.

Case 3. ˛ 2 PW . Process the first of the following cases applicable.

Notation For the sake of Cases 3.2 and 3.3, we use the notation

�˛;sC1 D
®
x.ˇ; s/

ˇ̌
x.ˇ; s/ � 0 & N.ˇ; s/ D 1 & ˇ <L ˛

¯
[

®
x.ˇ; s C 1/

ˇ̌
x.ˇ; s C 1/ � 0 & N.ˇ; s C 1/ D 1 & ˇ � ˛

¯
:

(Note that N.ˇ; s C 1/ D 1 and ˇ � ˛ implies that ˇbh1i � ˛.)

Case 3.1. P.˛; s/ D 0.
(Note that the implication here is that there is some D 2 W Œs� such that

D � AŒs�.) Reset z.s C 1; t C 1/ D z.s C 1; t/, D.s C 1; t C 1/ D D.s C 1; t/ and
reset P.˛; s C 1/ D 0.

Case 3.2. P.˛; s/ D 1 and for some D 2 W Œs�,

D � �˛;sC1 [ DAŒs� [ D.s C 1; t/ [
®
z.s C 1; t/

¯
[ S.˛; s/: (5.1)

(Note that S.˛; s/ D S.˛bh1i; s/ in this case.) Set z.s C 1; t C 1/ D break,

D.s C 1; t C 1/ D D.s C 1; t/ [
®
z.s C 1; t/

¯
[ S.˛; s/;

and set P.˛; s C 1/ D 0.
Case 3.3. Otherwise (i.e., P.˛; s/ D void or P.˛; s/ D 1 and (5.1) holds for no

D 2 W Œs�.) Reset z.s C 1; t C 1/ D z.s C 1; t/, D.s C 1; t C 1/ D D.s C 1; t/, and
set P.˛; s C 1/ D 1.

Ending substage t C 1. Supposing that ˛ 2 Q with Q 2 ¹R; N ; P º, if
z.s C 1; t C 1/ 2 !, then define ˛bhQ.˛; s C 1/i to be eligible to act next
and go to substage t C 2. Otherwise (i.e., if z.s C 1; t C 1/ D break) go to End of
Stage s C 1.

Remark The last node eligible to act, and hence processed, at stage s C1 is either
an N node via Case 2.2, 2.4, or 2.5 or otherwise a P node via Case 3.2.

End of stage s C 1. Supposing that ˛ of length t is the last strategy to be processed,
define ˇsC1 D ˛. Set D.s C 1/ D D.s C 1; t C 1/, and initialize all nodes in the set
G D ¹ˇ j ˛ < ˇº (i.e., all nodes ˇ such that ˛ <L ˇ or ˛ � ˇ). For every ˇ 2 T

such that ˇ <L ˛, reset ˇ’s parameters for stage sC1 to their value at stage s. Before
proceeding note that, by initialization, for any ˇ 2 N such that N.ˇ; s C 1/ 2 ¹0; 1º,
ˇ � ˛. Define

IAŒs C 1� D
®
x.ˇ; s C 1/

ˇ̌
x.ˇ; s C 1/ � 0 & N.ˇ; s C 1/ D 1

¯
;

OAŒs C 1� D
®
x.ˇ; s C 1/

ˇ̌
x.ˇ; s C 1/ � 0 & N.ˇ; s C 1/ D 0

¯
;

FAŒs C 1� D IAŒs C 1� [ OAŒs C 1�;

DAŒs C 1� D DAŒs� [ D.s C 1/;

and

AŒs C 1� D IAŒs C 1� [ DAŒs C 1�:

(And note that FAŒs C 1� D ¹x.ˇ; s C 1/ j x.ˇ; s C 1/ � 0º.) For every 
 2 T ,
redefine the stream for 
 as follows: SA.
; s C 1/ D ¹x.ˇ; s C 1/ j x.ˇ; s C 1/ 2

FAŒs C 1� & 
 � ˇº.
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Note that by resetting, if 
 <L ˛, then S.
; s C 1/ D S.
; s/ whereas, by initial-
ization, if ˛ < 
 , then S.
; s C 1/ D ;.

Go to stage s C 2.

Verification
The following informal observations clarify the mechanics of the construction and

underline its inherent simplicity.
Some properties of stage s C 1.
(i) FAŒs C 1� comprises precisely the set of witnesses x.
; s C 1/ � 0 such that


 � ˇsC1.
(ii) At most one number is removed from A at stage s C 1. Indeed, this can

only happen if Case 2.2 applies at substage jˇsC1j C 1 and the witness
x D x.ˇsC1; s/ is extracted from A.6

(iii) FAŒs C 1� n FAŒs� � ¹sº. And if indeed s 2 FAŒs C 1�, then Case 2.4 applies
at substage jˇsC1j C 1 and s D x.ˇsC1; s C 1/. This also means that the
floating witness z.s C 1; t/ never changes value (i.e., z.s C 1; t/ D s for all
0 � t � jˇsC1j).

(iv) If z.s C 1; jˇsC1j/ ¤ s (i.e., if the floating witness changes value at least
once), then z.s C 1; jˇsC1j/ D x.
; s/ for some ˇsC1 <L 
 . Likewise, each
intermediate value of the floating witness z.s C 1; t/ is a witness x.
 0; s/

for some ˇsC1 <L 
 0. Moreover, the only one of the values of the floating
witness that (possibly) remains in FAŒs C1� is x.
; s/. Note that this happens
if Case 2.4 applies at substage jˇsC1j C 1 forcing x.ˇsC1; s C 1/ D x.
; s/.
All other values (including s) of z.s C 1; t/ are dumped into A.

(v) Nontrivial cases of (ii), (iii), and (iv) are mutually exclusive. In other words,
extraction of a number from A (see (ii)) forces s and all x.
; s/ � 0 such
that ˇsC1 < 
 to be dumped into A. On the other hand, s 2 FAŒs C 1� (see
(iii)) precludes any extraction from A and forces all x.
; s/ � 0 such that
ˇsC1 < 
 to be dumped into A. Likewise, x.
; s/ 2 FAŒs C 1� for some
ˇsC1 <L 
 (see (iv)) precludes any extraction from A and forces s (as well
as all other x. O
; s/ � 0 such that ˇsC1 < O
 ) to be dumped into A.

(vi) ˇsC1 is either in N and Case 2.2, 2.4, or 2.5 applies at substage jˇsC1j C 1;
otherwise ˇsC1 is in P and Case 3.2 applies at substage jˇsC1j C 1.

We now verify the construction via the lemmas below. Note first that Lem-
mas 5.4–5.6 are proved by inspection (only for some of the statements involved)
and straightforward induction arguments over the stages of the construction using
the observations above. (Detailed proofs are given in Badillo [2].)

Lemma 5.4 For all stages s > 0 and x 2 FAŒs�, both (1) and (2) are true.
(1) One of the three following (mutually exclusive) cases applies for x:

(a) x D s � 1, ˇs 2 N , and x D x.ˇs; s/;
(b) there exists 
 2 N such that 
 � ˇs�1, ˇs <L 
 , x D x.
; s � 1/,

x.
; s/ D void, and x.ˇs; s/ D x;
(c) there exists 
 2 N such that 
 � ˇs�1, 
 � ˇs , and x D x.
; s � 1/ D

x.
; s/.
(2) For all 
1; 
2 2 N such that x D x.
1; s/ D x.
2; s/, 
1 D 
2.

Remark By Lemma 5.4 and the definition of FAŒs�, we can now assume that
x 2 FAŒs� if and only if there exists a unique (N strategy) 
 � ˇs such that
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x D x.
; s/. Clearly also in this case for .L; i/ 2 ¹.I; 1/; .O; 0/º, we have that
x 2 LAŒs� if and only if N.
; s/ D i .

Lemma 5.5 For all s � 0, the following statements are true:
(1) D.s/ � DAŒs� � DAŒs C 1�,
(2) FAŒs� D IAŒs� [ OAŒs� and IAŒs� \ OAŒs� D ;,
(3) DAŒs� \ FAŒs� D ;,
(4) ¹n j 0 � n < sº D FAŒs� [ DAŒs�,
(5) for any ˛ 2 T such that ˛ � ˇs ,

FAŒs� D S.˛; s/ [
®
x.
; s/ j x.
; s/ � 0 & 
 < ˛

¯
:

Lemma 5.6 Suppose that ˇ 2 T is such that x.ˇ; s/ � 0. Then for all 
 � ˇ

such that 
 2 N , N.
; s/ 2 ¹0; 1º and x.
; s/ � 0.

Lemma 5.7 For any ˛ 2 T and stage s � 0, jS.˛; s C 1/ n S.˛; s/j � 1.

Proof This follows by inspection of the construction at stage s C 1. Indeed, if
z 2 S.˛; s C 1/ n S.˛; s/, then for some substage t of stage s C 1, z.s C 1; t/ D z.
However, at most one such z survives without being dumped into D.s C 1/. (And in
this case z D x.ˇsC1; s C 1/.)

Lemma 5.8 For all stages s � 0 and any strategies ˛; ˇ 2 T such that
S.˛; s/ ¤ ; and S.ˇ; s/ ¤ ;, if ˛ <L ˇ, then max S.˛; s/ < minS.ˇ; s/.

Proof This follows by induction over stages s � 0. The case s D 0 is triv-
ially true. So consider case s C 1. For the hypotheses of the lemma to be true at
stage s C 1, it must be the case that ˇ � ˇsC1 (otherwise, S.ˇ; s C 1/ D ;). If
ˇ <L ˇsC1, then S.˛; s C 1/ D S.˛; s/ and S.ˇ; s C 1/ D S.ˇ; s/ and the result
follows by the induction hypothesis. Otherwise ˇ � ˇsC1. As seen in Lemma 5.7,
if D D S.ˇ; s C 1/ n S.ˇ; s/, then jDj � 1. If jDj D 0, then the result follows as
above. Otherwise, suppose that z is the number contained in D. Then either z D s

and so z > maxS.˛; s/ � ¹n j n < sº or z 2 S.
; s/ for some ˇ <L 
 (via Case
1.1 or 1.2 applied at some substage 1 � t � jˇj of stage s C 1), in which case
z > max S.ˇ; s/ > max S.˛; s/ by application of the induction hypothesis.

From an inspection of Lemma 5.8 and its proof, we have the following corollary.

Corollary 5.9 For any stage s � 0, strategy ˛ 2 T , and number z, if
z 2 S.˛; s C 1/ n S.˛; s/, then z > max S.˛; s/.

Lemma 5.10 For all x; y 2 !, stages 0 � s < t , and nodes ˛ 2 T , if
x 2 S.˛; s/ \ IAŒs�, y 2 S.˛; s C 1/ n S.˛; s/, and ¹x; yº � S.˛; t/, then x 2 IAŒt �.

Remark 1 Less formally, Lemma 5.10 says that if y enters a stream to which x

already belongs as well as already belonging to A (at this point in the construction),7
then for as long as both x and y remain in the stream, x remains in A.

Remark 2 Note that x < y by Corollary 5.9.

Proof We reason by induction over stages t � s C 1.
Case t D sC1. By inspection of the construction, we see that y D x.ˇsC1; sC1/.

Let ˇ 2 N be such that x D x.ˇ; s C 1/. From Lemma 5.6 and the definition of
Case 2.4 of the construction, we can deduce that it is not the case that ˇsC1 � ˇ.
Moreover, ˇsC1 –L ˇ, since then ˇ would be initialized at stage s C 1 forcing
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x 2 D.sC1/ � DAŒsC1� and hence x … S.˛; sC1/ � FAŒsC1� by Lemma 5.5(3).
Thus there are two subcases as follows.

Subcase ˇ <L ˇsC1. Then x D x.ˇ; s C 1/ by Lemma 5.4(1)(c) and
N.ˇ; s C 1/ D N.ˇ; s/ by resetting. Hence x 2 IAŒs C 1� by definition.

Subcase ˇ � ˇsC1. Then, as above, x D x.ˇ; s C 1/. Moreover, note that if
x 2 OAŒs C 1�, then Case 2.2 applies at substage jˇj C 1 forcing ˇsC1 D ˇ, which
is a contradiction. Hence x 2 IAŒs C 1�.

Case t > s C 1. We assume by the extended induction hypothesis that not only
does the lemma hold for stage t � 1, but also that the nodes ˇ; 
 2 N such that
x.ˇ; t � 1/ D x and x.
; t � 1/ D y satisfy ˇ < 
 . (Note that we have already seen
that the extended induction hypothesis is true when t �1 D s C1.) Again, we reason
by subcases.

Subcase ˇt < ˇ. Note that ˇt � ˇ can only happen via Case 3.2 of the con-
struction, in which case ˇ is initialized forcing x 2 D.t/. So we can suppose that
ˇt <L ˇ. However, in this case, there is at most one strategy ˇt <L � such that
x.�; t � 1/ is not forced into D.t/ by initialization.8 However, ˇt <L ˇ < 
 , and
we have ¹x; yº \ D.t/ D ; by hypothesis, which is a contradiction. Thus ˇt < ˇ

does not happen.

Remark We can now assume that ˇ � ˇt and, by Lemma 5.4, that x.ˇ; t/ D x.ˇ;

t � 1/.

Subcase ˇt < 
 . As above, we can suppose that ˇt <L 
 . As y D x.
; t � 1/,
for y to survive in S.˛; t/ � FAŒt � it must be the case that y D x.ˇt ; t / (since
otherwise y 2 D.t/) via Case 2.4 applied to z.t; jˇt j/ D y at substage jˇt j C 1.
Thus Case 2.2 does not occur at any substage of stage t .9 In particular (under the
inductive assumption that x 2 IAŒt � 1�), this means that x 2 IAŒt �. Also ˇt ¤ ˇ

(as x.ˇt ; t � 1/ D void by definition of Case 2.4). Hence ˇ < ˇt .
Subcase ˇt � 
 . In this subcase, Case 2.2 of the construction does not

apply to node ˇ during stage t since this would force ˇt D ˇ < 
 . Moreover,
x.ˇ; t/ D x.ˇ; t � 1/ D x and x.
; t/ D x.
; t � 1/ D y (by Lemma 5.4(1)(c)).
Combining these two observations, we see that x 2 IAŒt � and that the extended
induction hypothesis is again satisfied.

Notation, assumptions, and definitions. For n � 0, we define

True1;n D
®
˛

ˇ̌
j˛j D n & 8t .9s � t /Œ˛ � ˇs�

¯
:

If True1;n ¤ ;, and letting ˇ D min<L
True1;n (i.e., the least strategy of length

n under <L), we define ın D ˇ if there exists sˇ such that, for all s � sˇ , ˇ is not
initialized at stage s.10 Otherwise, ın is undefined.

For any 
 2 T and parameter p.
; s/, if lims!1 p.
; s/ exists, then we define
p.
/ to be this value (otherwise we say that p.
/ is undefined). We define

DA D

[
s2!

DAŒs�;

FA D
®
n

ˇ̌
9s.8t � s/

�
n 2 FAŒt �

�¯
;

and we define IA and OA likewise (so that FA D IA [ OA). Define

A D
®
n

ˇ̌
9s.8t � s/

�
n 2 AŒt�

�¯
:



480 Badillo, Harris, and Soskova

Also, for all ˛ 2 T , define

S.˛/ D
®
n

ˇ̌
9s.8t � s/

�
n 2 S.˛; t/

�¯
:

Lemma 5.11 For all n � 0, ın is defined.

Proof This is by induction on n. The case n D 0 is obvious. So suppose that
˛ D ın is defined, and let sn be a stage such that ˇs � ˛ for all s � sn. There are
three cases to consider.

Case ˛ 2 R. By construction, at each ˛-true stage s, jˇsj > ˛. Hence, by
the induction hypothesis, ˇbhii 2 True1;nC1 for some i 2 ¹0; 1; 2º. Thus ınC1 is
defined.

Case ˛ 2 N . Inspection of the construction shows that, for any ˛-true stage
s > 0, if m D z.s; j˛j/, then either m D s � 1 or m D x.
; s � 1/ for some
˛ <L 
 , whereas for all t � s, either m 2 DAŒt � or m D x.ˇ; t/ for some ˛ � ˇ.11

It follows that for all ˛-true stages sn < p < r , z.p; j˛j/ ¤ z.r; j˛j/ (and in fact
z.p; j˛j/ < z.r; j˛j/). Hence at one such ˛-true stage s (if N.˛; s �1/ D void), Case
2.4 of the construction will apply, so that x.˛; s/ D z.s; j˛j/. Moreover, clearly for
all t � s, x.˛; t/ D x.˛; s/. Note also that Case 2.2 can apply at most once after
stage s. In other words, there is a stage s0 such that at every ˛-true stage t � s0,
jˇt j > j˛j. Thus (as in the first case) ınC1 is defined to be ˛bhii for some i 2 ¹0; 1º.

Case ˛ 2 P . Clearly Case 3.2 applies at most once after stage sn. Thus, as above,
ınC1 is defined to be ˛bhii for some i 2 ¹0; 1º.

Note that to each case there corresponds a stage snC1 as in the induction hypoth-
esis. Thus the latter is validated. This concludes the proof of the lemma.

Corollary 5.12 For all n � 0, S.ın/ is infinite.

Proof It follows from Lemma 5.11 that, for all n such that ın 2 N , x.ın/ is
defined (with value in !). Moreover, a straightforward argument by induction using
Lemma 5.4(2) implies that, for all such p ¤ m, x.ıp/ ¤ x.ım/. It now suffices to
note that ¹x.ım/ j ım 2 N & m > nº � S.ın/.

Lemma 5.13 The following statements are true:
(1) A D DA [ IA,
(2) FA D IA [ OA and IA \ OA D ;,
(3) DA \ FA D ;,
(4) ! D FA [ DA,
(5) for any ˛ 2 T such that ˛ � ı,

FA D S.˛/ [
®
x.
/

ˇ̌
x.
/ � 0 & 
 < ˛

¯
:

Proof Statements (1) and (2) are obvious by definition, whereas (3), (4), and (5)
follow by application of Lemma 5.5 using induction over the stages of the construc-
tion.

Notation For G 2 ¹F; I; Oº and ˛ 2 T , we use the notation G<˛
A Œs� to denote

the set GAŒs� \ ¹x.
; s/ j ˇ < ˛º.

Lemma 5.14 For G 2 ¹F; I; Oº, any ˛ � ı and stage s˛ such that ˛ � ˇs for all
s � s˛ , G<˛

A Œs� D G<˛
A Œs˛�.

Proof The proof is by a straightforward induction over s � s˛ .
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By definition of T and ı, for any requirement Q there is precisely one strategy ˛

associated with Q such that ˛ � ı. Accordingly, we consider each such ˛ by cases.

Lemma 5.15 ˛ 2 R‰;�0;�1
. If A D ‰�A

0
˚�A

1 and A is not c.e., then A �e �A
i

for some i 2 ¹0; 1º.

Proof Define ƒ D ¹hz; ;i j z 2 DAº. There are three cases to consider.
Case ˛bh2i � ı. Consider x 2 S.˛bh2i/. Clearly x … A. Indeed, it cannot

be the case that x 2 A \ ‰�A
0

˚�A
1 , since then x would have been removed from

˛bh2i’s stream via Case 1.2 of the construction. Moreover, if x 2 A n ‰�A
0

˚�A
1 ,

then A ¤ ‰�A
0

˚�A
1 , which is a contradiction. We see therefore that ˛bh2i � ı

implies that A D� DA, that is, that A is c.e. Hence ˛bh2i � ı cannot apply (under
the assumptions of the lemma).

Case ˛bh1i � ı. Consider x 2 S.˛bh1i/. By construction, there exists a unique
stage sx and, for i 2 ¹0; 1º, a unique axiom hx; Fi;xi such that Fi;x D �A

i Œsx �

was enumerated into �i at stage sx C 1 via Case 1.2 of the construction. Now, it
follows from Lemma 5.8, Corollary 5.9, and the dumping activity at stage sx C 1

that ¹z j z > x & z 2 AŒsx �º � DA � A. On the other hand, we can also
deduce from Lemma 5.14, Lemma 5.10, and the dumping activity at stage sx C 1

that ¹z j z < x & z 2 AŒsx �º � A. Notice now that these observations imply that,
for each i 2 ¹0; 1º,

Fi;x � �
A[¹xº

i ; (5.2)

whereas the definition of Case 1.2 implies that

x 2 ‰F0;x˚F1;x : (5.3)

� Suppose that x 2 A. Then by (5.2), F1;x � �A
1 , and so x 2 �

�A
1

1 .

� Now suppose that x … A. Then x … �
�A

1

1 . Indeed x 2 �
�A

1

1 would imply the
transfer of x from ˛bh1i’s stream to ˛bh0i’s stream at some stage s > sx (via Case
1.1).

We see therefore that ˛bh1i � ı implies (by Lemma 5.13) that A D� ˆ
�A

1

1 ,
where ˆ1 D �1 [ ƒ.

Case ˛bh0i � ı. Consider x 2 S.˛bh0i/, and (for i 2 ¹0; 1º) let sx and Fi;x be
defined as above. Also let tx C 1 be the stage at which the application of Case 1.1
caused x to be transferred from ˛bh1i’s stream to ˛bh0i’s stream. Note that, by an
argument similar to the one used in the last case, it follows from Lemmas 5.8, 5.10,
and 5.14, Corollary 5.9, and the dumping activity at stage tx C 1 that

F1;x � �A
1 (5.4)

(i.e., whether or not x 2 A).
� Suppose that x 2 A. Then by (5.2), F0;x � �A

0 , and so x 2 �
�A

0

0 .

� Now suppose that x … A. Then x … �
�A

0

0 . Indeed, if x 2 �
�A

0

0 , then F0;x � �A
0 .

However, by (5.4), F1;x � �A
1 and by (5.3) x 2 ‰F0;x˚F1;x . Thus x 2 ‰�A

0
˚�A

1 nA,
which is a contradiction.

We see therefore that ˛bh0i � ı implies (by Lemma 5.13) that A D� ˆ
�A

0

0 ,
where ˆ0 D �0 [ ƒ.
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Lemma 5.16 ˛ 2 NW . Then x.˛/ 2 A if and only if x.˛/ … W .

Proof Inspection of the construction shows that if ˛bh1i � ı, then x.˛/ 2 AnW ,
whereas if ˛bh0i � ı, then x.˛/ 2 W n A.

Notation For G 2 ¹F; I; Oº and ˛ � ı, we define (on the strength of
Lemma 5.14) G<˛

A D lims!1 G<˛
A Œs�.

Note that, for any ˛ � ı, O<˛
A � A.

Lemma 5.17 ˛ 2 PW . Let E D O<˛
A . If there is no D 2 W such that D � A,

then for all D 2 W , D \ E ¤ ;.

Proof Let s˛ be the least stage such that ˇs � ˛ for all s � s˛ .
Case ˛bh0i � ı. Then Case 3.2 is applied relative to ˛ at some stage s � s˛ , and

it follows by Lemma 5.14 and the dumping activity at stage s that there is a finite set
D 2 W such that D � A.

Case ˛bh1i � ı. Then Case 3.2 applies at no stage s � s˛ , and we can deduce
from Lemmas 5.5 and 5.13 in conjunction with Lemma 5.14 that D \ E ¤ ; for all
D 2 W .

Lemma 5.18 All the requirements are satisfied.

Proof For the N and P requirements, this is immediate by Lemmas 5.16 and 5.17.
Satisfaction of each R requirement follows from the conjunction of Lemma 5.15 with
the fact that all the N requirements are satisfied (and hence A is not c.e.).

Lemma 5.19 A is low.

Proof Consider n 2 !. Note that, by construction, n can only be extracted from A

by N strategies of length at most n and, moreover, that each such strategy extracts n

at most once. It follows that n can be extracted from A at most 2n C 1 times. Since
this is true for all n 2 !, the construction defines a �0

2 approximation to A. Since A

is also enumeration 1-generic, A is low (by Corollary 3.11).

We can now conclude the proof of Theorem 5.3 by setting a D dege.A/.

Theorem 5.20 There exists a properly †0
2 enumeration 1-generic nonsplittable

degree.

Proof We proceed as in the proof of Theorem 5.3, except that we replace require-
ments NW by requirements of the form

NB;ˆ;‰ W B D ˆA & A D ‰B
) .9x 2 B/

�
lims!1 Bs.x/"

�
;

where .B; ˆ; ‰/ 2 ¹.Be; ˆe; ‰e/ºe2! and where the latter is a standard listing of
triples of †0

2 sets and enumeration operators with associated uniform approximations
(†0

2 for the sets Be and c.e. for the ˆ and ‰ operators) under the standard proviso
that for every �0

2 set C , there is an index i such that ¹Bi;sºs2! is a �0
2 approximation

to C .
Strategy for node ˛ 2 NB;ˆ;‰ (Cooper and Copestake [5])
In the following outline, we use z for the momentary value of the floating witness

passed to ˛ (so that the value of z in (1) below is different from its value in (2)),
S.˛/ for the momentary value of ˛’s stream, and so on. Each strategy ˛ will have
two parameters whose roles are as a witness x.˛/ and an oracle witness F.˛/.
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(1) Set x.˛/ D z, and put x.˛/ in A.
(2) Wait for a minimal finite set F such that˝

x.˛/; F
˛
2 ‰ and F � B \ ˆA[S.˛/[¹zº:

(3) Set F.˛/ D F , and dump .S.˛/ n ¹x.˛/º/ [ ¹zº into A.12

(4) Remove x.˛/ from A.
(5) Wait for x.˛/ … ‰B .
(6) Put x.˛/ into A.
(7) Wait for F.˛/ � B .
(8) Go back to Step (4).

Finitary outcomes. There are three finitary outcomes to the strategy, each corre-
sponding to either A ¤ ‰B or B ¤ ˆA.

(i) The strategy gets stuck at Step 2. In this case x.˛/ 2 A and either x.˛/ … ‰B

(so that x.˛/ 2 A n ‰B ) or otherwise x.˛/ 2 ‰B , but for every finite set F such
that hx.˛/; F i 2 ‰ and F � B , F ª ˆA (so that, for some d , d 2 B n ˆA).

(ii) The strategy gets stuck at Step 5. In this case x.˛/ 2 ‰B n A.
(iii) The strategy gets stuck at Step 7. In this case F.˛/ � ˆA, so there is some

d 2 F.˛/ such that d 2 ˆA n B .
Infinitary outcome. There is one infinitary outcome as follows.
(iv) The strategy loops through Step 4 via Step 8 infinitely often. In this case,

during each loop the passage from Step 5 to 6 corresponds to some x 2 F.˛/ having
left B , and the passage from Step 7 to 8 corresponds to x having reentered B . Thus
there is some x 2 D.˛/ such that lims!1 Bs.x/".

In the tree of strategies (see page 473), for ˛ 2 N , we define ˛bhni 2 T for all
n 2 ¹0; 1; 2º.

The strategy ˛ 2 NB;‰;ˆ has several local parameters as follows. N.˛; s/ 2 ¹0; 1;

2; voidº is the outcome parameter, x.˛; s/ 2 ¹�1º [ ! is the witness parameter, and
F.˛; s/ 2 ¹�1º [ F the oracle witness parameter associated with ˛. Strategy ˛

also has a pause switch parameter p.˛; s/ 2 ¹continue; pauseº. When ˛ is in its
initialized state, N.˛; s/ D void, x.˛; s/ D F.˛; s/ D �1, and p.˛; s/ D continue.
The temporary parameter l.˛; s C 1/ is defined if s C 1 is ˛-true and denotes the last
˛-true stage t � s, provided that ˛ has not been initialized at any stage t < r � s. If
there is no such stage, then l.˛; s C1/ D 0. Strategy ˛ works with its own relativized
approximation ¹BŒ˛; s�ºs2! defined in a similar way to approximations used in [13],
as follows. For all s 2 !, set

BŒ˛; s� D

8̂<̂
:

; if s D 0;

BŒ˛; s � 1� if s > 0 and s is not ˛-true;T
l.˛;s/�t<s Bt if s > 0 and s is ˛-true,

(5.5)

and (for s > 0), define

‰B Œ˛; s� D
®
x

ˇ̌
9D

�
hx; Di 2 ‰Œs � 1� & D � BŒ˛; s�

�¯
:

At substage t C 1 of stage s C 1 of the construction, Case 2 of the construction on
page 475 is replaced by the following.

Case 2. ˛ 2 NB;ˆ;‰ . Process the first of the following cases applicable.

Remark For clarity, notes have been added below following each case. In
these notes we use the shorthand x.˛/ to denote x.˛; s C 1/ provided that
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x.˛; s C1/ D x.˛; s/, and z to denote z.s C1; t C1/ provided that z.s C1; t C1/ D

z.s C 1; t/. Moreover for 0 � n � 8, “Step n” refers to the strategy for ˛ described
above.

Case 2.1. N.˛; s/ D 0, p.˛; s/ D continue, and x.˛; s/ 2 ‰B Œ˛; s C 1�.
Set z.s C 1; t C 1/ D z.s C 1; t/, D.s C 1; t C 1/ D D.s C 1; t/. For

q 2 ¹N; p; x; F º, reset q.˛; s C 1/ D q.˛; s/.
Note. The strategy ˛bh0i is eligible to act at substage t C 2 and floating witness

z is passed to ˛bh0i. Then N.˛; s C 1/ D N.˛; s/ D 0 means that x.˛/ remains
outside A. This case corresponds to waiting at Step 5.

Case 2.2. N.˛; s/ D 0, p.˛; s/ D continue, and x.˛; s/ … ‰B Œ˛; s C 1�.
Set z.sC1; tC1/ D z.sC1; t/, D.sC1; tC1/ D D.sC1; t/. Set N.˛; sC1/ D 1,

and for q 2 ¹p; x; F º, reset q.˛; s C 1/ D q.˛; s/.
Note. The strategy ˛bh1i is eligible to act at substage t C 2 and floating witness

z is passed to ˛bh1i. Then N.˛; s/ D 0 and N.˛; s C 1/ D 1 means that x.˛/ is
put back into A. This case corresponds to moving from Step 5 to Step 7.

Case 2.3. N.˛; s/ D 0 and p.˛; s/ D pause.
Set z.s C 1; t C 1/ D z.s C 1; t/, D.s C 1; t C 1/ D D.s C 1; t/. Set

p.˛; s C 1/ D continue, and for q 2 ¹N; x; F º, reset q.˛; s C 1/ D q.˛; s/.
Note. The strategy ˛bh0i is eligible to act at substage t C 2 and floating witness

z is passed to ˛bh0i. Then N.˛; s C 1/ D N.˛; s/ D 0 means that x.˛/ remains
outside A. In this case, ˛’s strategy was paused at Step 4 at the previous ˛-true
stage, but now resumes and moves to Step 5.

Case 2.4. N.˛; s/ D 1 and F.˛; s/ � BŒ˛; s C 1�.
Set z.s C 1; t C 1/ D break and

D.s C 1; t C 1/ D D.s C 1; t/ [ S
�
˛bh1i; s

�
[

®
z.s C 1; t/

¯
:

(Note that S.˛bh2i; s/ D ; in this case.) Set N.˛; s C 1/ D 0, p.˛; s C 1/ D pause,
and for q 2 ¹x; F º, reset q.˛; s C 1/ D q.˛; s/.

Note. The strategy ˛ D ˇsC1 and S.˛bh1i; s/ [ ¹z.s C 1; t/º is dumped into A.
Then N.˛; s/ D 1 and N.˛; s C 1/ D 0 means that x.˛/ is removed from A. In
this case, ˛’s strategy moved from Step 7 via Step 8 to Step 4 and its processing is
paused.

Case 2.5. N.˛; s/ D 1 and F.˛; s/ ª BŒ˛; s C 1�.
Set z.s C 1; t C 1/ D z.s C 1; t/, D.s C 1; t C 1/ D D.s C 1; t/. For

q 2 ¹N; p; x; F º, reset q.˛; s C 1/ D q.˛; s/.
Note. The strategy ˛bh1i is eligible to act at substage t C 2 and floating witness

z is passed to ˛bh1i. Then N.˛; s C 1/ D N.˛; s/ D 1 means that x.˛/ remains
inside A. This case corresponds to waiting at Step 7.

Notation For the sake of Cases 2.6 and 2.7, we use the notation

�˛;sC1 D
®
x.ˇ; s/

ˇ̌
x.ˇ; s/ � 0 & N.ˇ; s/ � 1 & ˇ <L ˛

¯
[

®
x.ˇ; s C 1/

ˇ̌
x.ˇ; s C 1/ � 0 & N.ˇ; s C 1/ � 1 & ˇ � ˛

¯
:

(Note that N.ˇ; s C 1/ D i and that ˇ � ˛ implies that ˇbhii � ˛.)
Case 2.6. N.˛; s/ D 2 and for some finite set F , hx.˛; s/; F i 2 ‰Œs� and

F � BŒ˛; s C 1� \
�
ˆŒs�

��˛;sC1[DAŒs�[D.sC1;t/[¹z.sC1;t/º[S.˛bh2i;s/
: (5.6)
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Set z.s C 1; t C 1/ D break and

D.s C 1; t C 1/ D D.s C 1; t/ [
®
z.s C 1; t/

¯
[ S

�
˛bh2i; s

�
:

Set N.˛; s C 1/ D 0 and F.˛; s C 1/ D F for the least F satisfying (5.6). For
q 2 ¹p; xº, reset q.˛; s C 1/ D q.˛; s/.

Note. The strategy ˛ D ˇsC1 and ¹z.s C 1; t/º [ S.˛bh2i; s/ is dumped into A.
Then N.˛; s/ D 2 and N.˛; s C 1/ D 0 means that x.˛/ is removed from A. This
case corresponds to moving from Step 2 to Step 5.

Case 2.7. N.˛; s/ D 2, but there is no such finite set F .
Set z.s C 1; t C 1/ D z.s C 1; t/, D.s C 1; t C 1/ D D.s C 1; t/. For

q 2 ¹N; p; x; F º, reset q.˛; s C 1/ D q.˛; s/. (Note that F.˛; s/ D �1 in this
case.)

Note. The strategy ˛bh2i is eligible to act at substage t C 2 and floating witness
z is passed to ˛bh2i. Then N.˛; s C 1/ D N.˛; s/ D 2 means that x.˛/ remains
inside A. This case corresponds to waiting at Step 2.

Case 2.8. N.˛; s/ D void.
Set z.s C 1; t C 1/ D break, D.s C 1; t C 1/ D D.s C 1; t/. Set N.˛; s/ D 2,

x.˛; s C 1/ D z.s C 1; t/, and for q 2 ¹p; F º, reset q.˛; s C 1/ D q.˛; s/.
Note. The strategy ˛ D ˇsC1 and ˛ appropriates the floating witness z.s C 1; t/

as its local witness x.˛; s C 1/. Then N.˛; s C 1/ D 2 means that this new witness
x.˛; s C 1/ is put into A. This case corresponds to application of Step 1 and moving
to Step 2.

End of stage s C 1 is the same as in the proof of Theorem 5.3 with two small
adjustments.

The first involves modifying the set of strategies initialized. Indeed, in the present
context, letting ˛ D ˇsC1 it is the set bG D ¹ˇ j ˛bh0i <L ˇº that is initialized.
Note that when ˛ is a P node, then the initialization defined here has the same effect
as initializing the set G D ¹ˇ j ˛ < ˇº (since any ˛bh0i � ˇ is in its initial state
anyway in this case). Likewise, the same can be said if ˛ is an N node and Case
2.6 or 2.8 is applied (at the last substage j˛j C 1). However, in Case 2.4, the effect
of restricting initialization to the set G0 means that the subtree ¹
 j ˛bh0i � 
º is
protected against initialization. This is important as the proof may need to construct
an infinite path through this subtree in order to define its true path ı.

The second adjustment relates to the fact that in the present construction, for
any N node ˛ and stage s such that x.˛; s/ � 0, x.˛; s/ 2 AŒs� if and only if
N.˛; s/ 2 ¹1; 2º (and not just N.˛; s/ D 1). Hence the construction defines

IAŒs� D
®
x.ˇ; s C 1/

ˇ̌
x.ˇ; s C 1/ � 0 & N.ˇ; s C 1/ � 1

¯
:

Verification. Checking that NB;ˆ;‰ is satisfied is carried out by making the assump-
tion that there exists ˛ � ı such that ˛ 2 NB;ˆ;‰ and considering the outcomes of
the strategy for ˛. This involves a straightforward argument which can be derived
from the description of the steps of the strategy for ˛ in conjunction with the spec-
ification of how strategy ˛ is processed (i.e., via Cases 2.1–2.8 above), by taking
into account the notes added to each case. Note, however, that the assumption that
˛ � ı exists requires us to also prove that, for some i 2 ¹0; 1; 2º, ˛bhii � ı, that
is, implicitly that ı is infinite (which we do directly via Lemma 5.11 in the proof of
Theorem 5.3).
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This is the reason for the introduction of a pause mechanism, that is, the use of the
pause parameter p.˛; s/, since it forces ı to be infinite. To see this, we first consider
the role of Case 2.4 by supposing that it is applied to ˛ at stage s C 1. We also
assume that ˛ is on the true path and that our work is subsequent to a stage s˛ after
which ˛ is never in its initial state so that, in particular, x.˛; s/ has already stabilized
at its final value. We denote (as usual) this value as x.˛/. Note first that, for any
R strategy ˇ and outcome i 2 ¹0; 1; 2º such that ˇbhii � ˛, x.˛/ 2 S.ˇbhii; s/,
and that every z 2 S.˛bh1i; s/ except at most one number (via Case 2.2) entered
stream ˇbhii’s stream (and ˛bh1i’s stream) at some stage t < s when x.˛/ was
already in ˇbhii’s stream as well as already being in A. Thus the removal of x.˛/

from A by Case 2.4 would invalidate Lemma 5.10 applied to ˇbhii thus violating
ˇ’s strategy, unless all such z are dumped into A. Likewise, the floating witness
z D z.s C 1; t/ (with t D j˛j) was processed (perhaps trivially) by ˇ earlier in the
stage under the assumption that x.˛/ 2 A, and so it also cannot enter ˇbhii’s stream
at this stage without invalidating Lemma 5.10 applied to ˇbhii thus violating ˇ’s
strategy. Thus we see that the dumping of all of S.˛bh1i; s/ [ ¹z.s C 1; t/º by Case
2.4 is fundamental to the preservation of ˇ’s strategy. Moreover, since there is now
no floating witness left to pass to the strategy ˛bh0i, the inherent role attributed to
the floating witness by the construction dictates that the stage must be broken at this
point. (There is also a principle of simplicity underlying this approach.)

Suppose now that the pause mechanism is absent, so that in effect p.˛; s/ D

continue for all s. This means that Case 2.3 will never apply. Notice also that out-
come (iv) of ˛’s strategy entails that Case 2.2 and Case 2.4 each apply to ˛ at infin-
itely many ˛-true stages. Moreover, this outcome does not exclude the situation in
which there is some stage s� such that every instance of Case 2.4 being applied to ˛

is followed, at the next ˛-true stage, by an instance of Case 2.2 being applied to ˛.
Observe that, under these conditions, the true path ı D ˛ (i.e., is finite). However, if
we now reintroduce the pause mechanism, we see that Case 2.3 applies subsequent
to each instance of Case 2.4 (over the set of ˛-true stages), meaning that not only is
˛bh0i � ˇs for infinitely many s (assuming that Case 2.4 applies infinitely often),
but also that at each such stage a different floating witness is passed to ˛bh0i (and
so into its stream/the subtree below it). Moreover, when Case 2.3 applies, x.˛/ … A

and so the floating witness z that Case 2.3 passes to ˛bh0i can safely enter ˛bh0i’s
stream without violating the strategy of any N node ˇ such that ˇbhii � ˛, since
any such ˇ processed z under the assumption that x.˛/ … A. (Remember here that
˛bh0i’s stream is a subset of ˇbhii’s stream.)

We conclude from this discussion that the pause mechanism enables us to apply
Lemma 5.11 in the present context and so deduce that ı is infinite. We are then able
to prove that all the requirements are satisfied in a similar manner to that undertaken
in Lemmas 5.15–5.18. Note that, in particular, for any ˛ 2 NB;ˆ;‰ such that ˛ � ı,
the pause mechanism does not affect the outcome of ˛’s strategy. Indeed, we find
that ˛bh2i � ı corresponds to outcome (i) of ˛’s strategy and that ˛bh1i � ı

corresponds to outcome (iii), whereas ˛bh0i � ı corresponds to (finitary) outcome
(i) or (infinitary) outcome (iv).

Corollary 5.21 There exist both a low and a properly †0
2 enumeration 1-generic

degree 0e < a < 00
e that is not 1-generic.
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Proof Apply Theorem 5.3 and Theorem 5.20 with the fact that every 1-generic
enumeration degree is splittable.

Notes

1. The function cA clearly depends on the approximation ¹Asºs2! and not just on A.

2. For example, if m D max D, let 
 be the string of length max¹2x; 2m C 1º C 1 defined
such that 
.n/ D �.n/ for all n < j� j and such that for all j� j � m < j
 j, 
.m/ D 0 if
m is even, and 
.m/ D 1 if m is odd.

3. For inclusion, � is only used when strictness is important.

4. Note that termination of a stage is determined by the value of z.s C 1; t/ only, not by the
length of the strategies eligible to act.

5. This first case (i.e., x.˛; s C 1/ D z.s C 1; t/) happens only if ˛ 2 N .

6. In this case x D x.ˇsC1; s/ D x.ˇsC1; s C 1/.

7. By Lemma 5.7, y is the unique such number.

8. We have that x.�; t � 1/ … D.t/ if and only if (i) Case 1.1 or 1.2 applies at some stage
r � jˇt j, (ii) z.t; p/ D x.�; t � 1/ for all r � p � jˇt j, and (iii) x.ˇt ; t / D x.�; t � 1/

via Case 2.4 at substage jˇt j C 1.

9. Case 2.2 can only happen at substage jˇt j C 1 since it induces z.t; jˇt j C 1/ D break.

10. That is, such that for all s � sˇ , ˇs –L ˇ and, if jˇs j < jˇj, then ˇ <L ˇs . Note that
this observation does not apply to the tree construction of Theorem 5.20 where it may
be the case that ˇs � ın for infinitely many s. (In this case, in the tree construction of
Theorem 5.20 any such ˇs is an N node, and it is in fact the case that ˇsbh0i � ın.)

11. Note that ˛ � ˇ implies that x.˛; t �1/ � 0, that is, is already defined (see Lemma 5.6).

12. Note that in the construction S.˛bh2i/ D S.˛/ n ¹x.˛/º.
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