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SIMPLE NORMAL CROSSING FANO VARIETIES AND
LOG FANO MANIFOLDS

KENTO FUJITA

Abstract. A projective log variety (X,D) is called a log Fano manifold if
X is smooth and if D is a reduced simple normal crossing divisor on X with
−(KX +D) ample. The n-dimensional log Fano manifolds (X,D) with nonzero
D are classified in this article when the log Fano index r of (X,D) satisfies either
r ≥ n/2 with ρ(X) ≥ 2 or r ≥ n− 2. This result is a partial generalization of
the classification of logarithmic Fano 3-folds by Maeda.

§1. Introduction

As is well known, Fano manifolds play an essential role in various situa-

tions. Fano manifolds have been classified up to dimension 3. It is also known

that the anticanonical degree of n-dimensional Fano manifolds is bounded

for an arbitrary n. For a Fano manifold X , the Fano index is, by definition,

the largest positive integer r = r(X) such that −KX is r times a Cartier

divisor, and the Fano pseudoindex is the minimum ι= ι(X) of the intersec-

tion number ι of −KX with a rational curve. We note that n-dimensional

Fano manifolds X with r(X)≥ n− 2 have been classified (see [KO], [Ft2],

[I], [MMu], [Mu2], [W1], [W2], and [W4]).

The Mukai conjecture [Mu1, Conjecture 4] asserts that ρ(X)(r(X)−1)≤
n, and the generalized Mukai conjecture asserts that ρ(X)(ι(X) − 1) ≤ n

for any Fano manifold X , where ρ(X) is the Picard number of X . The

generalized Mukai conjecture is important in the classification theory of

Fano manifolds and is still open even now except for the case n ≤ 5 or

ρ(X) ≤ 3 (see [NO] and references therein). One of the most significant

results related to the Mukai conjecture is due to Wísniewski ([W2], [W4]); he

has classified n-dimensional Fano manifolds with r(X)> n/2 and ρ(X)≥ 2.

Received June 11, 2012. Revised March 19, 2013. Accepted May 14, 2013.
First published online February 24, 2014.
2010 Mathematics Subject Classification. Primary 14J45; Secondary 14E30.
The author’s work was partially supported by a Japan Society for the Promotion of

Science Fellowship for Young Scientists.

© 2014 by The Editorial Board of the Nagoya Mathematical Journal

http://dx.doi.org/10.1215/00277630-2430136
http://dx.doi.org/10.1215/00277630-2430136
http://www.ams.org/msc/
http://www.ams.org/msc/


96 K. FUJITA

In this article, we consider simple normal crossing (SNC) Fano vari-

eties—that is, projective simple normal crossing varieties whose dualizing

sheaves are dual of ample invertible sheaves. In order to investigate SNC

Fano varieties, it is natural to consider all of their irreducible components

with the conductor divisors. The component with the conductor was consid-

ered by Maeda [M] in his study of logarithmic Fano varieties, that is, what

we call a log Fano manifold in this article, which is a pair (X,D) consisting

of a smooth projective variety X and a reduced SNC divisor D on X with

−(KX +D) ample. Maeda classified such pairs with dimX ≤ 3 and pointed

out that the degree (−(KX +D)·n) is unbounded for log Fano manifolds

(X,D) of fixed dimension n≥ 3.

We introduce the SNC Fano indices (resp., log Fano indices) and SNC

Fano pseudoindices (resp., log Fano pseudoindices) for SNC Fano varieties

(resp., for log Fano manifolds) similarly to the case of Fano manifolds (see

Definition 2.8). It is expected that SNC Fano varieties with large SNC Fano

indices have analogous applications (see, e.g., [Kol3]).

The following is the main idea to investigate n-dimensional log Fano

manifolds (X,D) withD �= 0. Consider the contraction morphism associated

to an extremal ray intersecting D positively. Moreover, D is an (n − 1)-

dimensional SNC Fano variety with r(X,D) | r(D) (i.e., r(X,D) divides

r(D)) and ι(D)≥ ι(X,D). Hence, we can use inductive arguments.

This article has the following organization. Section 2 is a preliminary

section. We define SNC Fano varieties and log Fano manifolds in Sections 2.1

and 2.2 and we give some properties in Section 2.3. We show results on

bundle structures (Section 2.4), extremal contractions (Section 2.5), and

the special projective bundles, the so-called rational scrolls (Section 2.6).

In Section 3, we give various examples of log Fano manifolds with large

log Fano indices, which occur in the theorems in Section 4. In Section 4,

we state the main results of this article. In Section 4.1, we treat an n-

dimensional log Fano manifold (X,D) with D �= 0 such that r(X,D) = n−1

(Proposition 4.2). The main purpose of this article, which we discuss in

Section 4.2, is to classify n-dimensional log Fano manifolds (X,D) with

D �= 0, r(X,D) ≥ n/2, and ρ(X) ≥ 2 (Theorems 4.3 and 4.5), which is a

log version of the treatment of the Mukai conjecture by Wísniewski ([W2],

[W4]). We prove Theorem 4.5 in Section 5. Wísniewski argued the case

r(X)> n/2, and we treat the case r(X,D)≥ n/2 with D �= 0. We remark

that we do not treat Maeda’s case n = 3 and r(X,D) = 1; some of the
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techniques of the proof are similar to Maeda’s, but the objects of our study

are completely different.

Theorem 1.1 (see Theorem 4.3). If (X,D) is an n-dimensional log Fano

manifold with ι := ι(X,D) > n/2, D �= 0, and ρ(X) ≥ 2, then n = 2ι − 1

and (X,D)� (P[Pι−1; 0ι,m], Pι−1 ×Pι−1) with m≥ 0, where the embedding

D ⊂ X is the canonical embedding P[Pι−1; 0ι] ⊂can P[Pι−1; 0ι,m]. (This is

exactly the case in Example O in Section 3.)

Theorem 1.2 (see Main Theorem 4.5). Let (X,D) be a 2r-dimensional

log Fano manifold with r(X,D) = r ≥ 2, D �= 0, and ρ(X)≥ 2. Then (X,D)

is in exactly one of Examples I–XI.

As a consequence of Theorems 4.3 and 4.5, together with Maeda’s result,

we have classified n-dimensional log Fano manifolds (X,D) with r(X,D)≥
n− 2 and D �= 0, which we discuss in Section 4.3 (see Corollary 4.6).

Notation and terminology

We always work in the category of algebraic (separated and finite type)

schemes over a fixed algebraically closed field k of characteristic 0. A vari-

ety means a connected and reduced algebraic scheme. (For the theory of

extremal contraction, we refer readers to [KolM].) For a complete variety

X , the Picard number of X is denoted by ρ(X). For a smooth projec-

tive variety X , we define Eff(X) (resp., Nef(X)) to be the effective (resp.,

nef) cone, which is defined as the cone in N1(X) spanned by the classes of

effective (resp., nef) divisors on X . For a smooth projective variety X , let

NE(X) be the cone in N1(X) spanned by effective 1-cycles on X , and let

NE(X) be the closure of NE(X) in N1(X). For a smooth projective variety

X and a KX -negative extremal ray R⊂NE(X), let l(R) := min{(−KX ·C) |
C is a rational curve with [C] ∈ R}. This is called the length l(R) of R.

A rational curve C ⊂ X with [C] ∈ R and (−KX · C) = l(R) is called a

minimal rational curve of R.

For a morphism of algebraic schemes f : X → Y , we define the exceptional

locus Exc(f) of f by Exc(f) := {x ∈X | f is not an isomorphism around x}.
For a complete variety X , an invertible sheaf L on X , and i ∈ Z≥0,

dimkH
i(X,L) is denoted by hi(X,L) (or simply by hi(X,L) if L=OX(L)),

where Z≥0 := {r ∈ Z | r ≥ 0}.
For algebraic schemes (or coherent sheaves on a fixed algebraic scheme)

X1, . . . ,Xm, the projection is denoted by pi1,...,ik :
∏m

i=1Xi →
∏k

j=1Xij for

any 1≤ i1 < · · ·< ik ≤m.
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For an algebraic scheme X and a locally free sheaf of finite rank E on X ,

let PX(E) be the projectivization of E in the sense of Grothendieck, and let

OP(1) be the tautological invertible sheaf. We usually denote the projection

by p : PX(E)→ X . For locally free sheaves E1, . . . ,Em of finite rank on X

and 1≤ i1 < · · ·< ik ≤m, we sometimes denote the embedding obtained by

the natural projection pi1,...,ik :
⊕m

i=1 Ei →
⊕k

j=1 Eij by

PX

( k⊕
j=1

Eij
)
⊂can PX

( m⊕
i=1

Ei
)
,

and we call this embedding the canonical embedding.

The symbol Qn (resp., Qn) means a smooth (resp., possibly nonsmooth or

reducible) hyperquadric in Pn+1 for n≥ 2. We write OQn(1) (resp., OQn(1))

for the invertible sheaf which is the restriction of OPn+1(1) under the natural

embedding. We sometimes write O(m) instead of OQn(m) (or OQn(m),

OPn(m)) for simplicity.

For an irreducible projective variety V with Pic(V ) = Z, the ample gen-

erator OV (1) of Pic(V ), a nonnegative integer t, and integers a0, . . . , at, we

denote the projective space bundle

PV

(
OV (a0)⊕ · · · ⊕OV (at)

)
by P[V ;a0, . . . , at] for simplicity. (We often denote

P[V ; b0, . . . , b0︸ ︷︷ ︸
n0 times

, . . . , bu, . . . , bu︸ ︷︷ ︸
nu times

]

by P[V ; bn0
0 , . . . , bnu

u ] for any integers b0, . . . , bu and positive integers n0,

. . . , nu.) We also denote by O(m;n) the invertible sheaf

p∗OV (m)⊗OP(n) on P[V ;a0, . . . , at]

for any integers m and n, where p : P[V ;a0, . . . , at] → V is the projection

and OP(1) is the tautological invertible sheaf with respect to p. For any

0≤ i1 < · · ·< ik ≤ t, we denote the canonical embedding

PV

(
OV (ai1)⊕ · · · ⊕OV (aik)

)
⊂can PV

(
OV (a0)⊕ · · · ⊕OV (at)

)
by P[V ;ai1 , . . . , aik ] ⊂can P[V ;a0, . . . , at], and we call this the canonical

embedding.
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§2. Preliminaries

2.1. SNC varieties and log manifolds

First, we define SNC varieties and log manifolds.

Definition 2.1. Let X be a variety, and let x ∈X be a closed point. We say

that X has normal crossing singularity at x if the completion of the local

ringOX,x is isomorphic to k[[x1, . . . , xn+1]]/(x1 · · ·xk) for some 1≤ k ≤ n+1.

Definition 2.2.

(1) An SNC variety is a variety X having normal crossing singularities at

any closed points x ∈ X , and each irreducible component of X is a

smooth variety.

(2) A log manifold is a pair (X,D) such that X is a smooth variety and D

is an SNC divisor on X ; that is, D is a reduced divisor in X which is

an SNC variety.

Definition 2.3. Let X be an SNC variety with the irreducible decomposi-

tion X =
⋃

1≤i≤mXi. For any distinct 1≤ i, j ≤m, the intersection Xi ∩Xj

can be seen as a smooth divisor Dij in Xi. We define Di :=
∑

j �=iDij and

call it the conductor divisor in Xi (with respect to X ). We often write that

(Xi,Di)⊂X is an irreducible component for the sake of simplicity. We also

write X =
⋃

1≤i≤m(Xi,Di).

Remark 2.4. If X is an SNC variety, then X has an invertible dualiz-

ing sheaf ωX since X has only Gorenstein singularities (see [Mat, Theo-

rems 21.2(iii) and 21.3, Exercise 18.2]). Furthermore, if (X,D) ⊂ X is an

irreducible component with its conductor divisor, then (X,D) is a log man-

ifold and ωX |X �OX(KX +D) by the adjunction formula.

Definition 2.5 ([F, Definition 2.10]). Let X be an SNC variety with the

irreducible decomposition X =
⋃

1≤i≤mXi. A stratum of X is an irreducible

component of
⋂

i∈I Xi with the reduced scheme structure for a subset I ⊂
{1, . . . ,m}. A minimal stratum of X is a stratum of X which is a minimal

in the set of strata of X under the partial order of the inclusion.

Now, we consider the descent of invertible sheaves.

Proposition 2.6. Let X be an n-dimensional SNC variety with irre-

ducible decomposition X =
⋃m

i=1Xi, which has a unique minimal stratum.

We also let Xij :=Xi ∩Xj (scheme theoretic intersection) for any 1≤ i <



100 K. FUJITA

j ≤m. Then we have an exact sequence

0→ Pic(X )
η−→

m⊕
i=1

Pic(Xi)
μ−→

⊕
1≤i<j≤m

Pic(Xij),

where η is the restriction homomorphism and where μ((Hi)i) := (Hi|Xij ⊗
H∨

j |Xij )i<j .

Proof. Let Xi :=
⋃i

j=1Xj ⊂X . Then both Xi and Xi∩Xi+1 are SNC vari-

eties and have a unique minimal stratum. Since units of structure sheaves

form an exact sequence

1→O∗
Xi+1

→O∗
Xi+1

×O∗
Xi

→O∗
Xi∩Xi+1

→ 1

of sheaves of abelian groups, there is a long exact sequence

k∗ × k∗
υ−→ k∗ → Pic(Xi+1)

λ−→ Pic(Xi+1)⊕Pic(Xi)→ Pic(Xi ∩Xi+1).

The map λ above is injective since υ is surjective. In particular, η is injective.

It is obvious that μ ◦ η = 0. Assume that (Hi)i ∈
⊕m

i=1Pic(Xi) satisfies

μ((Hi)i) = 0. We will show that there exist invertible sheaves Li ∈ Pic(Xi)

for all 1≤ i≤m, which satisfy Li|Xi �Hi and Li|Xi−1 � Li−1 (if i≥ 2). If

i= 1, then L1 must be (isomorphic to)H1. Assume that we have constructed

L1, . . . ,Li. Since

Pic(Xi+1)→ Pic(Xi+1)⊕Pic(Xi)→ Pic(Xi ∩Xi+1)

is exact, it is enough to show that Li|Xi∩Xi+1 �Hi+1|Xi∩Xi+1 to construct

Li+1. We know that the map κ : Pic(Xi∩Xi+1)→
⊕i

j=1Pic(Xj,i+1) is injec-

tive since Xi ∩Xi+1 has a unique minimal stratum. Both Li|Xi∩Xi+1 and

Hi+1|Xi∩Xi+1 map κ to (Hj |Xj,i+1)j ; thus, we can construct Li+1. Hence, we

construct Li ∈ Pic(Xi) for all 1 ≤ i ≤m by induction. For any 1 ≤ i ≤m,

Lm|Xi �Hi holds by construction. Thus, η(Lm) = (Hi)i.

2.2. SNC Fano varieties and log Fano manifolds

Definition 2.7. We have the following.

(1) A projective SNC variety X is said to be an SNC Fano variety if the

dual of the dualizing sheaf ω∨
X is ample.

(2) A projective log manifold (X,D) is said to be a log Fano manifold if

−(KX +D) is ample.
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We define the index and pseudoindex of an SNC Fano variety and also

of a log Fano manifold, whose notion is essential to our article.

Definition 2.8. Let X be an SNC Fano variety. We define the SNC Fano

index r(X ) (resp., the SNC Fano pseudoindex ι(X )) of X as max{r ∈ Z>0 |
ω∨
X � L⊗r for some L ∈ Pic(X )} (resp., min{degC(ω∨

X |C) | C ⊂ X rational

curve}). For a log Fano manifold (X,D), the log Fano index r(X,D) and

the log Fano pseudoindex ι(X,D) are similarly defined by replacing ωX by

OX(KX +D).

Remark 2.9. For an SNC Fano variety X , we have r(X ) | ι(X ). For a log

Fano manifold (X,D), we have r(X,D) | ι(X,D).

Remark 2.10. Let X be an n-dimensional SNC Fano variety, and let

(X,D)⊂X be an irreducible component with its conductor. Then (X,D) is

an n-dimensional log Fano manifold such that r(X ) | r(X,D) and ι(X,D)≥
ι(X ) by Remark 2.4.

2.3. First properties of log Fano manifolds

Theorem 2.11 ([KolM, Theorem 3.35]). Let (X,D) be a log Fano man-

ifold. Then NE(X) is spanned by a finite number of extremal rays. Fur-

thermore, for any extremal ray R ⊂ NE(X), the ray R is spanned by a

class of rational curve C on X, and there exists a contraction morphism

contR :X → Y associated to R. Moreover, if L ∈ Pic(X) satisfies (L·C) = 0,

then there exists M∈ Pic(Y ) such that cont∗RM�L.

Lemma 2.12 ([M, Corollary 2.2, Lemma 2.3]). Let (X,D) be a log Fano

manifold. Then Pic(X) is torsion-free and is isomorphic to H2(Xan;Z) if

k=C.

Proposition 2.13. Let (X,D) be a log Fano manifold with ρ(X) = 1

and D �= 0. Then X is a Fano manifold such that r(X) > r(X,D) and

ι(X)> ι(X,D).

Theorem 2.14 ([M, Lemma 2.4]).

(1) Let (X,D) be a log Fano manifold. Then D is a (connected) SNC Fano

variety such that r(X,D) | r(D) and ι(D)≥ ι(X,D) hold.

(2) Let X be an SNC Fano variety. Then there is a unique minimal stratum

of X . In particular, any two irreducible components of X intersect each

other.
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Proof. (1) We know thatD is connected by [M, Lemma 2.4(a)]. In modern

terms, the connectedness of D is obtained by Shokurov’s connectedness

theorem [Kol1, Theorem 17.4]. The other assertions follow from adjunction.

(2) We can prove Theorem 2.14 by using the same idea in [M, Lemma

2.4(a′)]. We remark that this is directly shown by [A, Theorem 6.6(ii)] and

[F, Theorem 3.47(ii)].

Now, we give the theorem that combines log Fano manifolds into an

SNC Fano variety. By Theorem 2.14(2), for an SNC Fano variety X =⋃m
i=1(Xi,Di), any two components Xi, Xj intersect each other. Thus, there

exist isomorphisms φij : Dij →Dji for all distinct i, j such that φji = φ−1
ij

and φjk|Dji∩Djk
◦ φij |Dij∩Dik

= φik|Dij∩Dik
hold. Conversely, we have the

following result. The proof follows from Kollár’s gluing theory [Kol2, The-

orem 23, Section 3] and from Proposition 2.6, Lemma 2.12, and Theo-

rem 2.14(2).

Theorem 2.15. Fix n, r, m ∈ Z>0. Let (Xi,Di) be an n-dimensional

log Fano manifold such that r | r(Xi,Di) for any 1 ≤ i ≤m. Assume that

the irreducible decomposition is written as Di =
∑

j �=i,1≤j≤mDij for any

1≤ i≤m and that there exist isomorphisms φij : Dij →Dji for all distinct

1≤ i, j ≤m which satisfy

(1) φji = φ−1
ij for distinct i, j,

(2) φij(Dij∩Dik) =Dji∩Djk and φjk ◦φij |Dij∩Dik
= φik|Dij∩Dik

for distinct

i, j, k.

Then there exists an n-dimensional SNC Fano variety X such that r |
r(X ) whose irreducible decomposition can be written as X =

⋃m
i=1(Xi,Di).

2.4. Bundles and subbundles

In this section, we recall some bundle structures. The following lemma is

well known.

Lemma 2.16. Let X be an irreducible variety, let D ⊂X be an effective

Cartier divisor, and let c be a nonnegative integer. Let π : X → Y be a Pc-

bundle such that π|D : D→ Y is a Pc−1-subbundle. That is, π is a proper and

smooth morphism such that π−1(y) � Pc and such that (π|D)−1(y) is iso-

morphic to a hyperplane section under this isomorphism for any closed point

y ∈ Y . Then X is isomorphic to PY (π∗OX(D)) over Y . Moreover, under

the isomorphism, D is isomorphic to PY ((π|D)∗ND/X) and the embedding is

induced by the natural surjection π∗OX(D)→ (π|D)∗ND/X , where ND/X is
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the normal sheaf OD(D). Furthermore, we have D ∈ |OP(1)| under the iso-

morphism, where OP(1) is the tautological invertible sheaf on PY (π∗OX(D)).

Next, we consider Qc+1-bundles and Qc-subbundles.

Definition 2.17. Let π : X → Y be a morphism between irreducible vari-

eties, and let c be a positive integer. We say that π : X → Y is a Qc+1-bundle

if π is a proper, flat morphism and if π−1(y) is (scheme theoretically) iso-

morphic to a hyperquadric in Pc+2. For a Qc+1-bundle π : X → Y and an

effective Cartier divisor D on X , we say that π|D : D→ Y is a Qc-subbundle

of π if (π|D)−1(y) is isomorphic to a hyperplane section under the isomor-

phism π−1(y) � Qc+1 for any closed point y ∈ Y . We note that the mor-

phisms π and π|D need not be smooth. (That is why we use the symbol Q,

not Q.)

The following lemma is proved similarly to Lemma 2.16 and is well known.

Lemma 2.18. Let X be an irreducible variety, let D ⊂X be an effective

Cartier divisor, let Y be a smooth variety, and let c be a positive integer.

Suppose that π : X → Y is a Qc+1-bundle and that π|D : D → Y is a Qc-

subbundle. Then we have the following.

(i) The natural sequence 0→OY → π∗OX(D)→ (π|D)∗ND/X → 0 is exact.

(ii) Both π∗OX(D) and (π|D)∗ND/X are locally free, of rank c + 3 and

c+ 2, respectively. In particular, P := PY (π∗OX(D)) is a Pc+2-bundle

over Y , and H := PY ((π|D)∗ND/X) is a Pc+1-subbundle.

(iii) The natural homomorphism π∗π∗OX(D)→OX(D) is surjective, and

it induces a relative quadric embedding X ↪→ P over Y .

(iv) The divisor D is isomorphic to the complete intersection X ∩H in P

under these embeddings.

Lemma 2.19. Let X be an irreducible variety such that h1(X,OX) = 0.

(1) Let c ∈ Z≥0 and p1 : X × Pc →X, p2 : X × Pc → Pc be the projections.

Then (p1)∗(p∗2OPc(1))�O⊕c+1
X .

(2) Let c ≥ 2 and p1 : X × Qc → X, p2 : X × Qc → Qc be the projections.

Then (p1)∗(p∗2OQc(1))�O⊕c+2
X .

Proof. We prove both assertions by induction on c.

(1) The case c= 0 is trivial. We assume that the assertion holds for the

case c− 1. There is the canonical exact sequence

0→OX×Pc → p∗2OPc(1)→ (p2|X×Pc−1)∗OPc−1(1)→ 0.
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After taking (p1)∗, the sequence

0→OX → (p1)∗
(
p∗2OPc(1)

)
→ (p1|X×Pc−1)∗

(
(p2|X×Pc−1)∗OPc−1(1)

)
→ 0

is exact. We note that (p1|X×Pc−1)∗((p2|X×Pc−1)∗OPc−1(1)) � O⊕c
X by the

induction step. The sequence always splits since h1(X,OX) = 0. Thus, we

have proved (1).

(2) The case c= 2 is a direct consequence of (1) since Q2 is isomorphic

to P1 × P1. We assume that the assertion holds for the case c− 1. There is

the exact sequence

0→OX×Qc → p∗2OQc(1)→ (p2|X×Qc−1)∗OQc−1(1)→ 0.

After taking (p1)∗, we have the splitting exact sequence

0→OX → (p1)∗
(
p∗2OQc(1)

)
→O⊕c+1

X → 0

by repeating the argument in the proof of (1). Hence, we have proved (2).

2.5. Facts on extremal contractions and its applications

In this section, we describe the structure of the contraction morphism

associated to a special ray.

We recall Wísniewski’s inequality, which plays an essential role in this

section.

Theorem 2.20 ([W3, p. 143]). Let X be a smooth projective variety, and

let R⊂NE(X) be a KX -negative extremal ray with the associated contrac-

tion morphism π : X → Y . Then dimExc(π)+dimF ≥ dimX+ l(R)−1 for

any nontrivial fiber F of π.

We give a criterion for a variety X to have ρ(X) = 1 using Theorem 2.20.

Lemma 2.21. Let X be a smooth projective variety, let D ⊂X be a prime

divisor, and let R⊂NE(X) be a KX -negative extremal ray with associated

contraction morphism π : X → Y such that (D ·R)> 0.

(1) If the restriction morphism π|D :D→ π(D) is not birational, then π is

of fiber type; that is, dimY < dimX holds.

(2) If l(R)≥ 3, then π|D :D→ Y is not a finite morphism. Furthermore, if

ρ(D) = 1 holds in addition, then X is a Fano manifold with ρ(X) = 1.
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Proof. (1) If π is birational, then it is a divisorial contraction, and the

exceptional divisor is exactly D, since π|D : D → π(D) is not birational.

However, we get a contradiction since (D ·R)> 0. Hence, π is of fiber type.

(2) Let us choose an arbitrary nontrivial fiber F of π. We have D∩F �= ∅
since (D · R) > 0. Then dim(F ∩D) ≥ dimF − 1 ≥ l(R)− 2 ≥ 1 by Theo-

rem 2.20. Hence, F ∩D contains a curve. Now, we assume that ρ(D) = 1.

Then π(D) must be a point since all curves in D are numerically propor-

tional. Therefore, π is of fiber type by (1), and Y must be a point since

(D ·R)> 0. In particular, ρ(X) = 1. Thus, X is a Fano manifold.

We show that there exists a special KX -negative extremal ray for a log

Fano manifold with nonzero boundary, which is essential for classifying some

special log Fano manifolds.

Lemma 2.22. Let (X,D) be a log Fano manifold with r := r(X,D), let

ι := ι(X,D), L be a divisor on X such that −(KX +D) ∼ rL holds, and

assume that D �= 0. Then there exists an extremal ray R⊂NE(X) such that

(D ·R)> 0. Let R be an extremal ray satisfying (D ·R)> 0, and let π : X →
Y be the contraction morphism associated to R. Then R is always KX -

negative and l(R)≥ ι+ 1. Moreover, the restriction morphism π|D1 : D1 →
π(D1) to its image is an algebraic fiber space, that is, (π|D1)∗OD1 =Oπ(D1),

for any irreducible component D1 ⊂D. Furthermore, for a minimal rational

curve C ⊂X of R, we have the following properties.

(1) If l(R) = ι+ 1, then (D ·C) = 1.

(2) If l(R) = r+ 2 and r ≥ 2, then (L ·C) = 1 and (D ·C) = 2.

Proof. Such an extremal ray exists, since D is a nonzero effective divisor

and NE(X) is spanned by a finite number of extremal rays. Let R⊂NE(X)

be an extremal ray such that (D · R) > 0. Then R is KX -negative since

(−KX ·R) = (−(KX +D) ·R) + (D ·R)> 0. To see that π|D1 : D1 → π(D1)

is an algebraic fiber space, it is enough to show that the homomorphism

π∗OX → (π|D1)∗OD1 is surjective. We know that R1π∗OX(−D1) = 0 by a

vanishing theorem (see, e.g., [F, Theorem 2.42]). Hence, π|D1 : D1 → π(D1)

is an algebraic fiber space. Let C ⊂X be a minimal rational curve of R. Then

we have l(R) = (−KX ·C) = (−(KX+D) ·C)+(D ·C)≥ ι+1. If l(R) = ι+1,

then the above inequality is in fact an equality. Hence, (D · C) = 1 holds.

If l(R) = r + 2 and if r ≥ 2, then r + 2 = l(R) = r(L ·C) + (D ·C)≥ r + 1.

Therefore, (L ·C) = 1 and (D ·C) = 2 holds.
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Using Lemma 2.22, we show some delicate structure properties of certain

log Fano manifolds.

Proposition 2.23. Let (X,D) be a log Fano manifold with r := r(X,D),

ι := ι(X,D), and D �= 0. Pick an arbitrary extremal ray R ⊂ NE(X) such

that (D ·R)> 0, and let π : X → Y be the contraction morphism associated

to R. Let F be an arbitrary nontrivial fiber of π. Then dim(D ∩ F )≥ ι− 1

holds. Furthermore, we have the following results.

(i) If dim(D ∩ F ) = ι− 1 for any nontrivial fiber F , then π : X → Y is a

Pι-bundle and π|D : D→ Y is a Pι−1-subbundle.

(ii) If r ≥ 2 and there exists an irreducible component D1 of D such that

dim(D1 ∩ F ) = r for any F , then one of the following holds:

(a) Y is a smooth projective variety, and π is the blowup along a smooth

projective subvariety W ⊂ Y of codimension r+ 2;

(b) Y is smooth, π : X → Y is a Qr+1-bundle, and π|D1 : D1 → Y is a

Qr-subbundle;

(c) π : X → Y is a Pr+1-bundle, and π|D1 : D1 → Y is a Pr-subbundle;

(d) π∗OX(L) is locally free of rank r + 2, where L is any divisor on

X such that −(KX + D) ∼ rL. Furthermore, π : X → Y is iso-

morphic to the projection p : PY (π∗L) → Y , and (π|D1)
−1(y) is a

hyperquadric section under the isomorphism π−1(y)� Pr+1 for any

closed point y ∈ Y . Moreover, π∗OX(L)� (p|D1)∗(OP(1)|D1) under

the isomorphism.

Proof. Let L be a divisor on X with −(KX +D) ∼ rL, and let C be a

minimal rational curve of R. We note that D and F intersect each other

since (D ·R)> 0. Hence,

dim(D ∩F )≥ dimF − 1≥ dimX − dimExc(π) + l(R)− 2

≥ l(R)− 2≥ ι− 1≥ r− 1
(1)

by Theorem 2.20 and by Lemma 2.22.

First, we consider the case (i). Then dimExc(π) = dimX and l(R) = ι+1.

Hence, π is of fiber type, all fibers of π are of dimension ι, and the equalities

(D ·C) = 1 and (−KX ·C) = ι+1 hold by Lemma 2.22. Therefore, π : X → Y

is a Pι-bundle and π|D : D→ Y is a Pι−1-subbundle by [Ft1, Lemma 2.12].

Next, we consider case (ii). We first show that (D1 ·R)> 0. If not, any

nontrivial fiber F is included in D1. (In particular, π is of birational type.)

Then Theorem 2.20 and Lemma 2.22 show that dimExc(π) + r ≥ dimX +
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l(R)−1≥ dimX+ ι. Hence, π is of fiber type. This leads to a contradiction.

Consequently, we have (D1 ·R)> 0.

We first assume that dimExc(π)< dimX . Then dimExc(π) = dimX − 1

and l(R) = r+1 by substituting D1 for (1). Hence, π is a divisorial contrac-

tion such that dimF = r+1 for any F , and the equality (D ·C) = 1 holds by

Lemma 2.22(1). Thus, Y is a smooth projective variety and π is the blowup

whose center W ⊂ Y is a smooth projective subvariety of codimension r+2

by [AW, Theorem 4.1(iii)]. Therefore, condition (ii)(a) is satisfied in the case

dimExc(π)< dimX .

Second, we assume that dimExc(π) = dimX , that is, that π is of fiber

type. We note that l(R) = r+ 1 or r+ 2 by (1).

Assume that π is of fiber type and that l(R) = r+1. Then dimF = r+1

for any fiber, and the equalities (D1 ·C) = 1 and (−KX ·C) = r+1 hold by

(1) and Lemma 2.22(1). Thus, π∗OX(D1) is locally free of rank r+ 3, and

X is embedded over Y into PY (π∗OX(D1)) as a divisor of relative degree 2

by [ABW, Theorem B]. Therefore, condition (ii)(b) is satisfied in the case

dimExc(π) = dimX and l(R) = r+ 1.

Assume that π is of fiber type and that l(R) = r+2. Then (L ·C) = 1 and

either (D1 ·C) = 1 or 2 holds by Lemma 2.22. Thus, π : X → Y is isomorphic

to the Pr+1-bundle PY (π∗OX(L)) by [Ft1, Lemma 2.12]. If (D1 ·C) = 1, then

π|D1 : D1 → Y is a Pr-subbundle. Therefore, condition (ii)(c) satisfied in the

case dimExc(π) = dimX , l(R) = r+ 2, and (D1 ·C) = 1.

Assume that π is of fiber type, that l(R) = r+ 2, and that (D1 ·C) = 2.

Under the isomorphismX � PY (π∗OX(L)), we have a natural exact sequence

0→OP(1)(−D1)→OP(1)→OP(1)|D1 → 0,

where OP(1) is the tautological invertible sheaf on PY (π∗OX(L)). After

taking p∗, we also obtain an exact sequence

0→ 0→ π∗OX(L)→ (p|D1)∗
(
OP(1)|D1

)
→ 0

by cohomology and base change theorem, since hi(Pr+1,O(−1)) = 0 (i= 0,

1). Hence, condition (ii)(d) holds in the case dimExc(π) = dimX , l(R) =

r+ 2, and (D1 ·C) = 2.

2.6. Properties on scrolls

In this section, we consider special toric varieties of rational scrolls. First,

we fix notation.
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Notation 2.24. Let s, t be positive integers, and let a0, . . . , at be inte-

gers with 0 = a0 ≤ a1 ≤ · · · ≤ at. Let X := P[Ps;a0, . . . , at]; that is, X =

PPs(O(a0)⊕ · · · ⊕ O(at)). Also let Di := P[Ps;a0, . . . , ai−1, ai+1, . . . , at]⊂can

X = P[Ps;a0, . . . , at], that is, the canonical embedding, for any 0 ≤ i ≤ t.

(See Notation and terminology in Section 1.)

The following lemma is well known.

Lemma 2.25. We have the following properties:

(1) Pic(X) = Z[O(1; 0)]⊕Z[O(0; 1)];

(2) OX(−KX)�O(s+ 1−
∑t

i=1 ai; t+ 1);

(3) Di ∈ |O(−ai; 1)| for any 0≤ i≤ t;

(4) degCf
(O(u;v)|Cf

) = v, and degCh
(O(u;v)|Ch

) = u, where Cf is a line in

a fiber of X → Ps and Ch is a line in P[Ps;a0]⊂can X = P[Ps;a0, . . . , at];

(5) Nef(X) = R≥0[O(1; 0)] + R≥0[O(0; 1)], and Eff(X) = R≥0[O(1; 0)] +

R≥0[O(−at; 1)];

(6) for a divisor D =
∑t

i=1 ciDi+dH with ci, d ∈ Z, where H is the pullback

of a hyperplane in Ps, h0(X,OX(D)) is equal to

#
{
(P1, . . . , Ps,Q1, . . . ,Qt) ∈ Z⊕s+t

∣∣∣Qj ≥−cj (1≤ j ≤ t),∑
1≤j≤t

Qj ≤ 0, Pi ≥ 0 (1≤ i≤ s),
∑

1≤i≤s

Pi −
∑

1≤j≤t

ajQj ≤ d
}
;

(7) if there exists D ∈ |O(k; 1)| such that k <−at−1, then SuppD ⊃Dt;

(8) if a member D ∈ |O(k; 2)| is reduced, then k ≥−at − at−1;

(9) assume that at−2 < at; then any effective and reduced divisor D on X

with D ∈ |O(−at−at−1; 2)| decomposes into two irreducible components

Dt and Dt−1 such that Dt ∼ Dt and Dt−1 ∼ Dt−1: here Dt = Dt if

at−1 < at. Furthermore, there exists σ ∈Aut(X/Ps) such that σ(Dt) =

Dt and σ(Dt−1) =Dt−1 hold.

Corollary 2.26. Let D be a member of D ∈ |O(c;d)| for some d > 0.

Assume that (X,D) is a log Fano manifold. Set r := r(X,D), and set ι :=

ι(X,D).

(1) If ι≥ t, then d= 1, t= ι, and s≥ ι− 1. Furthermore, if s= ι− 1, then

a1 = · · ·= aι−1 = 0 and c=−aι.

(2) If r ≥ t (hence, ι ≥ t holds), s= r, and r ≥ 2, then we have r = ι and

either (a1, . . . , ar−2, ar−1, c) = (0, . . . ,0,0,1− ar) or (0, . . . ,0,1,−ar).
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Proof. By Lemma 2.25(2), OX(−(KX +D))�O(s+1−
∑t

i=1 ai − c; t+

1 − d). Hence, t + 1 − d ≥ ι by Lemma 2.25(4). Thus, d = 1 and t = ι if

ι ≥ t holds (resp., d = 1 and t = ι = r if r ≥ t holds). We also note that

s+ 1−
∑ι

i=1 ai − c is at least ι and is a positive multiple of r and c≥−aι.

Hence, s≥ ι− 1 +
∑ι−1

i=1 ai ≥ ι− 1.

(1) If s= ι− 1, then ι−
∑ι

i=1 ai ≥ ι+ c≥ ι− aι. Therefore,
∑ι−1

i=1 ai = 0

and c=−aι.

(2) If s = r and r ≥ 2, then r + 1 −
∑r

i=1 ai − c is divisible by r and∑r
i=1 ai+c≥

∑r−1
i=1 ai ≥ 0. Hence,

∑r
i=1 ai+c= 1. Therefore, either (a1, . . . ,

ar−2, ar−1, c) = (0, . . . ,0,0,1− ar) or (0, . . . ,0,1,−ar).

Corollary 2.27. Let r := t−1 with r ≥ 2, and let D ∈ |O(c;d)| for some

d > 0. Assume that (X,D) is a log Fano manifold with r | r(X,D). Then

d= 2 and s≥ r− 1. Furthermore, if s= r− 1, then a1 = · · ·= ar−1 = 0 and

c=−ar − ar+1.

Proof. We repeat the argument for Corollary 2.26. By Lemma 2.25(2),

OX(−(KX +D))�O(s+ 1−
∑r+1

i=1 ai − c; r + 2− d). Thus, we have d= 2

since r+ 2− d is a positive multiple of r and r ≥ 2. We also know that s≥
r−1+

∑r+1
i=1 ai+c≥ r−1+

∑r−1
i=1 ai ≥ r−1 by Lemma 2.25(8). Furthermore,

if s= r− 1, then r−
∑r+1

i=1 ai ≥ r+ c≥ r− ar − ar+1.

§3. Examples

In this section, we give some examples of log Fano manifolds with large

log Fano indices.

3.1. Example of dimension 2ι− 1 and log Fano (pseudo)index ι

First, we consider case (1) in Corollary 2.26, which is the important

example of (2ι − 1)-dimensional log Fano manifolds with the log Fano

(pseudo)index ι (see Theorem 4.3).

Example O. Let ι ≥ 2, let m ≥ 0, let X = P[Pι−1; 0ι,m], and let D ∈
|O(−m; 1)|. We know that O(1; 1) is ample and that OX(−(KX +D)) �
O(1; 1)⊗ι. Ifm> 0, thenD is unique andD = P[Pι−1; 0ι]⊂can X = P[Pι−1; 0ι,

m] by Lemma 2.25(7). Ifm= 0, thenX = Pι−1×Pι andD ∈ |OPι−1×Pι(0,1)|.
Hence, any member D ∈ |OPι−1×Pι(0,1)| is always an irreducible smooth

divisor, and we may assume that D = P[Pι−1; 0ι] ⊂can P[Pι−1; 0ι,m]. (We

note that dim |D|= ι if m= 0.) Thus, (X,D) is a (2ι− 1)-dimensional log

Fano manifold with r(X,D) = ι(X,D) = ι for any D ∈ |O(−m; 1)|.
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3.2. Examples of dimension 2r and log Fano index r

Next, we give examples of 2r-dimensional log Fano manifolds with the

log Fano indices r (see Theorem 4.5).

Example I. Let X := BlPr−2 P2r Bl−→ P2r, that is, the blowup of P2r along an

(r− 2)-dimensional linear subspace Pr−2, and let E ⊂X be the exceptional

divisor. Take anyD ∈ |Bl∗OP2r(1)⊗OX(−E)|. We have dim |D|= r+1, and

any D is the strict transform of a hyperplane in P2r containing the center

of the blowup. The invertible sheaf H := Bl∗OP2r(2)⊗OX(−E) is ample.

We know that OX(−(KX +D)) �H⊗r. Thus, (X,D) is a 2r-dimensional

log Fano manifold with r(X,D) = r for any D ∈ |Bl∗OP2r(1)⊗OX(−E)|.
Example II. Let X := Pr−1 × Pr+1, and let D be an effective divisor on

X such that D ∈ |OPr−1×Pr+1(0,2)|. Then dim |D| = (r + 2)(r + 3)/2 − 1,

and D is an SNC divisor if and only if D is the pullback of a smooth or

reducible hyperquadric in Pr+1. In particular, a general element in the linear

system is an SNC divisor. Let H :=OPr−1×Pr+1(1,1). Then H is ample and

OX(−(KX+D))�H⊗r. Thus, (X,D) is a 2r-dimensional log Fano manifold

with r(X,D) = r for any SNC D ∈ |OPr−1×Pr+1(0,2)|.
Example III. Let X := P[Pr−1; 0r,m1,m2], with 0≤m1 ≤m2 and 1≤m2,

and let D ∈ |O(−m1 −m2; 2)|. All reduced elements in |D| can be seen in

the sum of P[Pr−1; 0r,m1] and P[Pr−1; 0r,m2] ⊂can X = P[Pr−1; 0r,m1,m2]

by Lemma 2.25(9). We note that

dim |D|=

⎧⎪⎨⎪⎩
2 (m1 =m2),(
m2+r−1

r−1

)
+ r− 1 (m1 = 0),(

m2−m1+r−1
r−1

)
(0<m1 <m2),

by Lemma 2.25(6). Let H := O(1; 1). Then H is ample and OX(−(KX +

D)) � H⊗r. Thus, (X,D) is a 2r-dimensional log Fano manifold with

r(X,D) = r for any reduced D ∈ |O(−m1 −m2; 2)|.
Example IV (see also Remark 3.1). Let E := P[Pr−1; 0r+1] ⊂can X ′ :=
P[Pr−1; 0r+1,m], with m ≥ 0. We note that E � Pr−1 × Pr. Consider a

smooth divisor B in X ′ with B ∈ |O(0; 2)| such that the intersection B ∩E

is also smooth. We note that H0(X ′,O(0; 2))→H0(E,O(0; 2)|E) is surjec-
tive since H1(X ′,O(0; 2)(−E)) = 0 by Kodaira’s vanishing theorem. Hence,

general B ∈ |O(0; 2)| satisfies this property. We note that

dim
∣∣O(0; 2)

∣∣=(
2m+ r− 1

r− 1

)
+ (r+ 1)

(
m+ r− 1

r− 1

)
+

(r+ 1)(r+ 2)

2
− 1
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by Lemma 2.25(6). Let τ : X → X ′ be the double cover of X ′ with the

branch divisor B, and let D be the strict transform of E on X . Then X

is smooth and D � Pr−1 ×Qr by construction. We know that OX(−KX)�
τ∗(OX′(−KX′)⊗O(0;−1))� τ∗O(r−m; r+2) and thatOX(D)� τ∗O(−m;

1). Let H := τ∗O(1; 1), an ample invertible sheaf on X . Then OX(−(KX +

D)) �H⊗r. We note that H cannot be divisible anymore by Remark 3.1.

Thus, (X,D) is a 2r-dimensional log Fano manifold with r(X,D) = r.

Example V (see also Remark 3.2). In this example, we consider the case

r ≥ 3. Let D := P[Qr; 0r]⊂can X := P[Qr; 0r,m], with m≥ 0. We note that

D � Pr−1 × Qr. We also note that dim |D| = 0 if m > 0. If m = 0, then

X = Pr ×Qr and D ∈ |OPr×Qr(1,0)|; hence, dim |D|= r and D is smooth.

Let H := O(1; 1). Then H is ample and OX(−(KX + D)) � H⊗r. Thus,

(X,D) is a 2r-dimensional log Fano manifold with r(X,D) = r.

Example VI. In this example, we consider only the case r = 2. Let D :=

PP1×P1(O⊕2) ⊂can X := PP1×P1(O⊕2 ⊕ O(m1,m2)), with 0 ≤ m1 ≤ m2. If

m2 > 0, then dim |D| = 0. If m1 = m2 = 0, then X = P1 × P1 × P2 and

D ∈ |OP1×P1×P2(0,0,1)|, and hence dim |D|= 2; any element in |D| defines
a smooth divisor. Let H := p∗OP1×P1(1,1)⊗OP(1), where p : X → P1 × P1

is the projection and OP(1) is the tautological invertible sheaf with respect

to the projection p. Then H is ample and OX(−(KX +D))�H⊗2. Thus,

(X,D) is a 4-dimensional log Fano manifold with r(X,D) = 2.

Example VII (see also Remark 3.3). Let D := PPr(TPr) ⊂can X :=

PPr(TPr ⊕O(m)), with m ≥ 1. If m ≥ 2, then dim |D| = 0. If m = 1, then

dim |D|= r+ 1. This follows from the exact sequence

0→OX →OX(D)→ND/X → 0

and the fact that ND/X � OPr×Pr(1 − m,1)|D under an embedding D ⊂
Pr × Pr of bidegree (1,1). We note that there exists an embedding X ⊂
X1 := P[Pr; 1r+1,m] obtained by the surjection α in the exact sequence

0→OPr →O(1)⊕r+1 α−→ TPr → 0.

Let H :=O(0; 1) on X1. Then H is ample and (H|X)⊗r �OX(−(KX +D)).

Thus, (X,D) is a 2r-dimensional log Fano manifold with r(X,D) = r.

Example VIII. Let X := Pr × Pr, and let D ∈ |OPr×Pr(1,1)|. Then

dim |D|= r(r+ 2), any smooth D is isomorphic to PPr(TPr), and any non-

smooth D is the union of the first and second pullbacks of hyperplanes. Let
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H := OPr×Pr(1,1). Then H is ample and OX(−(KX + D)) � H⊗r. Thus,

(X,D) is a 2r-dimensional log Fano manifold with r(X,D) = r for any

D ∈ |OPr×Pr(1,1)|.

Example IX. Let X := P[Pr; 0r,1]. We can view X as the blowup of

P := P2r along an (r− 1)-dimensional linear subspace H ⊂ P . Let E be the

exceptional divisor of the blowup. Then E = P[Pr; 0r]⊂can X = P[Pr; 0r,1].

Let D ∈ |O(0; 1)|. Any smooth D is the strict transform of a hyperplane

in P which does not contain H . Any nonsmooth D can be written as

E +D0, where D0 is the strict transform of a hyperplane in P which con-

tains H . Note that dim |D| = 2r. Let H := O(1; 1). Then H is ample and

OX(−(KX +D))�H⊗r. Thus, (X,D) is a 2r-dimensional log Fano mani-

fold with r(X,D) = r for any D ∈ |O(0; 1)|.

Example X. Let X := P[Pr; 0r−1,1,m], with m ≥ 1 and D ∈ |O(−m; 1)|.
If m ≥ 2, then D is unique in |O(−m; 1)| and D = P[Pr; 0r−1,1] ⊂can X =

P[Pr; 0r−1,1,m]. If m= 1, then dim |D|= 1 by Lemma 2.25(6), and we may

assume that D = P[Pr; 0r−1,1]⊂can X = P[Pr; 0r−1,1,m]. In particular, any

D ∈ |O(−m; 1)| is a smooth divisor. Let H := O(1; 1). Then H is ample

and OX(−(KX + D)) � H⊗r. Thus, (X,D) is a 2r-dimensional log Fano

manifold with r(X,D) = r for any D ∈ |O(−m; 1)|.

Example XI. Let X := P[Pr; 0r,m], with m ≥ 2, and let D ∈ |O(−m +

1;1)|. We note that SuppD always contains D0 := P[Pr; 0r]⊂can X = P[Pr;

0r,m] by Lemma 2.25(7). Furthermore, D−D0 is the pullback of a hyper-

plane in Pr under the projection p : X → Pr. We also note that dim |O(−m+

1;1)| = r by Lemma 2.25(6). Let H := O(1; 1). Then H is ample and

OX(−(KX +D))�H⊗r. Thus, (X,D) is a 2r-dimensional log Fano mani-

fold with r(X,D) = r for any D ∈ |O(−m+ 1;1)|.

Now, we state some remarks about these examples.

Remark 3.1. In Example IV, the homomorphism τ∗ : Pic(X ′)→ Pic(X)

is an isomorphism. In particular, ρ(X) = 2.

Proof. We can assume that k= C. If m= 0, then X ′ � Pr−1 × Pr+1 and

X � Pr−1×Qr+1. Thus, the homomorphism τ∗ is an isomorphism. We con-

sider the case m> 0. Let R⊂X be the ramification divisor of τ . We know

that the linear system |O(0; 1)| on X ′ gives a divisorial contraction mor-

phism f : X ′ →Q contracting E � Pr−1 ×Pr to Pr. We note that B ⊂X ′ is
the pullback of some ample divisor A⊂Q. Thus, Hi((X

′ \B)an;Z) = 0 for
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all i > 2r + r − 2 by [GM, p. 25, (2.3) Theorem] for the proper morphism

f |X′\B : X ′ \ B → Q \ A to an affine variety. Thus, H i
c((X

′ \ B)an;Z) = 0

for all i < r + 2 by Poincaré’s duality. We know that there exists an exact

sequence

H2
c

(
(X ′ \B)an;Z

)
→H2

(
(X ′)an;Z

) α−→H2(Ban;Z)→H3
c

(
(X ′ \B)an;Z

)
.

Thus, α is an isomorphism. Applying the same argument to the composi-

tion f ◦ τ : X →Q, we obtain the isomorphism H2(Xan;Z)
∼−→H2(Ran;Z)�

H2(Ban;Z). Therefore, H2((X ′)an;Z) �H2(Xan;Z). Therefore, Pic(X ′) �
Pic(X) by Lemma 2.12.

Remark 3.2. If m < 0, then (X,D) in Example V is never a log Fano

manifold.

Proof. Let S := P[Qr;m] ⊂can X = P[Qr; 0r,m], the section of the pro-

jection p : X → Qr. Then OX(−(KX +D))|S � OQr(r(m+ 1)). Therefore,

−(KX +D) is never ample.

Remark 3.3. If m< 1, then (X,D) in Example VII is never a log Fano

manifold.

Proof. Let S := PPr(O(m))⊂canX =PPr(TPr⊕O(m)). ThenOX(−(KX+

D))|S �OPr(mr). Therefore, −(KX +D) is never ample.

Remark 3.4. In Examples I–XI, if (X1,D1) and (X2,D2) are from different

examples, or are from the same example but their discrete parameters are

not equal, then X1 ��X2. In particular, distinct Xs are nonisomorphic to

each other except for those in Example IV.

§4. Theorems

In this section, we state the main classification results.

4.1. Log Fano manifolds of del Pezzo type

We classify n-dimensional log Fano manifolds (X,D) with r(X,D)≥ n−
1. The case D = 0 is the well-known case of del Pezzo manifolds (see, e.g.,

[Ft2, I, Section 8]), hyperquadrics, and projective spaces (see [KO]). Hence,

we consider the case D �= 0. We note that the case (n, r(X,D)) = (2, 1) has

been treated by Maeda [M, Section 3]. We treat ι(X,D) instead of r(X,D).

Proposition 4.1. Let (X,D) be an n-dimensional log Fano manifold

with D �= 0. Then ι(X,D)≤ n. If ι(X,D) = n, then X � Pn and D ∈ |O(1)|
under this isomorphism.
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Proof. Assume that ι := ι(X,D) ≥ n. Choose an extremal ray R such

that (D · R) > 0. Let π : X → Y be the contraction morphism associated

to R. Then dimExc(π) + dimF ≥ n + (ι + 1) − 1 ≥ 2n for any nontrivial

fiber F of π by Theorem 2.20 and Lemma 2.22. Hence, ρ(X) = 1, ι= n, and

−KX ∼ (n+ 1)D. Then one can apply [KO, p. 32, Corollary].

Proposition 4.2. Let (X,D) be an n-dimensional log Fano manifold

with n≥ 3, D �= 0, and ι(X,D) = n− 1. Then X is isomorphic to Pn or Qn

unless n= 3, and (X,D) is isomorphic to the case ι= 2 in Example O (see

Section 3.1). Moreover, we have the following.

(1) If X = Pn, then D ∈ |O(2)|; that is, D is a smooth or reducible hyper-

quadric.

(2) If X =Qn, then D ∈ |O(1)|; that is, D is a smooth hyperplane section.

Proof. Let R be an extremal ray with a minimal rational curve [C] ∈R

such that (D ·R)> 0. Let π : X → Y be the contraction morphism associated

to R. By Theorem 2.20, dimExc(π) + dimF ≥ n+ l(R)− 1≥ 2n− 1 holds

for any nontrivial fiber F of π. Hence, π is of fiber type; that is, X =Exc(π)

holds.

If ρ(X) = 1, then X itself is a Fano manifold and ι(X)> n− 1 by Propo-

sition 2.13. If ρ(X) = 1 and ι(X) ≥ n + 1, then X � Pn by [CMS] and

D ∈ |O(2)|. If ρ(X) = 1 and ι(X) = n, then (D · C) = 1 by Lemma 2.22.

Thus, X �Qn and D ∈ |O(1)| by [KO, p. 37, Corollary].

We consider the remaining case ρ(X) ≥ 2. Then dimF = n− 1 for any

fiber F of π, and l(R) = n. Hence, (D ·C) = 1 by Lemma 2.22. Therefore,

π is a Pn−1-bundle over a smooth projective curve Y by [Ft1, Theorem 2].

Then Y � P1 since any extremal ray of X is spanned by the class of a

rational curve. We can assume that X = P[P1;a0, . . . , an−1], where 0 = a0 ≤
a1 ≤ · · · ≤ an−1. Thus, 1 ≥ n − 2 by Corollary 2.26. Since n ≥ 3, we have

n= 3, a1 = 0, and D ∈ |O(−a2; 1)| by Corollary 2.26(1). That is exactly the

case which we have considered in Example O for the case ι= 2.

4.2. Log Fano manifolds related to the Mukai conjecture

We consider the log version of Wísniewski’s results ([W2], [W4]) related

to the Mukai conjecture [Mu1, Conjecture 4]. These are the main results in

this article.

Theorem 4.3. Let (X,D) be an n-dimensional log Fano manifold with

ι := ι(X,D)> n/2, D �= 0, and ρ(X)≥ 2. Then n= 2ι− 1, and (X,D) is in

Example O in Section 3.
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Proof. We use induction on n. We may assume that n ≥ 5 by Proposi-

tion 4.2. Choose an extremal ray R with a minimal rational curve [C] ∈R

as in Lemma 2.22, and let π : X → Y be the associated contraction. Then

l(R)≥ ι+1≥ 4. We also choose an irreducible component with the conduc-

tor divisor (D1,E1) ⊂D such that (D1 ·R) > 0. We know that ρ(D1) ≥ 2

by Lemma 2.21(2), and (D1,E1) is an (n− 1)-dimensional log Fano mani-

fold with ι(D1,E1)≥ ι, ρ(D1)≥ 2, and ι > n/2> (n− 1)/2. Hence, E1 = 0

(hence, D = D1) by induction step. Applying [NO, Theorem 3] to D, we

have n− 1 = 2(ι− 1) and D � Pι−1 × Pι−1. We know by Lemma 2.21 that

π|D contracts a curve. Since D � Pι−1 × Pι−1, π|D : D → π(D) is not bira-

tional. Thus, π : X → Y is of fiber type by Lemma 2.21, and π|D : D → Y

is surjective since (D ·R) > 0. We know that π|D : D → Y is an algebraic

fiber space by Lemma 2.22. Hence, π|D is isomorphic to the first projection

p1 : P
ι−1×Pι−1 → Pι−1. In particular, dim(π−1(y)∩D) = ι−1 for any closed

point y ∈ Y � Pι−1. Therefore, π : X → Y is a Pι-bundle and π|D : D→ Y is

a Pι−1-subbundle by Proposition 2.23(i). Since D � Pι−1×Pι−1, there exists

an integerm ∈ Z such that (π|D)∗ND/X �OPι−1(−m)⊕ι by Lemma 2.16. We

also know by Lemma 2.16 that X � PPι−1(π∗OX(D)) and that the embed-

ding D ⊂X is induced by the surjection α in the natural exact sequence

0→OPι−1 → π∗OX(D)
α−→ (π|D)∗ND/X → 0.

Since ι−1 = (n+1)/2−1≥ 2, this sequence always splits. Hence, π∗OX(D)�
OPι−1 ⊕OPι−1(−m)⊕ι, and D ⊂X is the canonical embedding obtained by

the projection OPι−1 ⊕ OPι−1(−m)⊕ι → OPι−1(−m)⊕ι. This case has been

already considered in Corollary 2.26(1); m ≥ 0 holds. This is exactly the

case which we have considered in Example O.

We recall Wísniewski’s classification result.

Theorem 4.4 ([W4, p. 145, Theorem]). If X is an (2r− 1)-dimensional

Fano manifold with r(X) = r and ρ(X)≥ 2, then X � Pr−1×Qr, PPr(TPr),

or P[Pr; 0r−1,1].

Using Theorems 4.3 and 4.4, we classify log Fano manifolds (X,D) with

r(X,D) = r ≥ 2, dimX = 2r, and D �= 0. Note that the case r = 1 has been

treated by Maeda [M, Section 3].

Theorem 4.5 (Main Theorem). Let (X,D) be a 2r-dimensional log Fano

manifold with r(X,D) = r ≥ 2, D �= 0 and ρ(X) ≥ 2. Then (X,D) is in

exactly one of Examples I–XI.

We prove Theorem 4.5 in Section 5.
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4.3. Classification of Mukai-type log Fano manifolds

As an immediate consequence, we can classify n-dimensional log Fano

manifolds (X,D) with r(X,D)≥ n− 2. Those with D = 0 are well known

and are called Mukai manifolds (see [I], [MMu], [Mu2], [W1], [W2], [W4]).

Corollary 4.6. Let (X,D) be an n-dimensional log Fano manifold with

D �= 0 and r := r(X,D)≥ n− 2.

(1) If n≤ 3, then (X,D) belongs to one in the list of [M, Sections 6–9].

(2) If n= 4 and ρ(X)≥ 2, then r = 2 and (X,D) belongs to one in the list

of Theorem 4.5.

(3) If n≥ 5 and ρ(X)≥ 2, then n= 5, r = 2, and (X,D) belongs to the case

in Example O.

(4) If n≥ 4, ρ(X) = 1, and r ≥ n− 1, then (X,D) belongs to one in the list

of Propositions 4.1 and 4.2.

(5) If n≥ 4, ρ(X) = 1, and r = n− 2, then (X,D) is one of the following:

(i) X � Pn and D ∈ |O(3)|; (ii) X � Qn and D ∈ |O(2)|; (iii) X � Vd

and D ∈ |O(1)|, with 1 ≤ d ≤ 5, where Vd is a del Pezzo manifold of

degree d in the sense of Takao Fujita [Ft2, Theorem 8.11(1)–(5)], and

O(1) is the ample generator of Pic(Vd). (Conversely, general D ∈ |O(1)|
in (5)(i)–(iii) are smooth. Hence, the cases (5)(i)–(iii) actually occur.)

§5. Proof of Main Theorem 4.5

Let L be an ample divisor on X such that −(KX +D) ∼ rL. Pick an

extremal ray R with a minimal rational curve [C] ∈R such that (D ·R)> 0,

and let π : X → Y be the associated contraction morphism. Let (D1,E1)⊂
D be an irreducible component of D with its conductor divisor such that

(D1 · R) > 0. By the assumption that ρ(X) ≥ 2 and Lemma 2.21(2), the

morphism π|D1 : D1 → π(D1) is not a finite morphism and ρ(D1)≥ 2 holds.

Since (D1,E1) is a (2r−1)-dimensional log Fano manifold with r | r(D1,E1),

the possibility of π|D1 : D1 → π(D1) (which is an algebraic fiber space by

Lemma 2.22) is isomorphic to exactly one of the following list by Theorems

4.3 and 4.4:

(1) Pr−1 ×Qr p1−→ Pr−1, where E1 = 0;

(2) P[Pr−1; 0r,m]
p−→ Pr−1, where E1 ∈ |O(−m; 1)| with m≥ 0;

(3) Pr−1 ×Qr p2−→Qr, where E1 = 0;

(4) PPr(TPr)
p−→ Pr, where E1 = 0;

(5) P[Pr; 0r−1,1]
p−→ Pr, where E1 = 0;
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(6) Pr×Pr−1 p1−→ Pr, where E1 ∈ |OPr×Pr−1(1,0)| (Theorem 4.3 with m= 0);

(7) P[Pr−1; 0r,m]
φ−→ Z, the divisorial contraction morphism contracting

E1 � Pr−1 × Pr−1 to Pr−1, where m> 0;

(8) BlPr−2 P2r−1 Bl−→ P2r−1, the blowup of P2r−1 along a linear subspace

Pr−2, where E1 = 0.

Remark 5.1. For cases (1), (2), and (8), dim(F ∩D1) = r for any nontrivial

fiber F of π. For cases (3)–(7), dim(F ∩D1) = r− 1 for any nontrivial fiber

F of π.

5.1. Fiber type case

Here, we consider the case where π is of fiber type. Since dimF ≥ l(R)−
1 ≥ r ≥ 2 for any fiber F of π, we have dimD1 > dimY . Hence, π|D1 is

surjective and belongs to one of the cases (1)–(6). (We note that π|D1 is an

algebraic fiber space by Lemma 2.22.)

Cases (1) and (2). Since dim(π|D1)
−1(y) = r for any y ∈ Y � Pr−1, one

of (ii)(b), (ii)(c), or (ii)(d) in Proposition 2.23 holds.

Case (1) Since π|D is a Qr-bundle, only cases (ii)(b) and (ii)(d) can occur.

First, we consider the case (ii)(b). Since D � Pr−1×Qr, π|D is isomorphic

to the first projection, and we can write ND/X �OPr−1×Qr(−m,1) for some

integer m ∈ Z. Then (π|D)∗ND/X � OPr−1(−m)⊕r+2 by Lemma 2.19, and

the sequence

0→OPr−1 → π∗OX(D)
α−→OPr−1(−m)⊕r+2 → 0

is exact. Furthermore, X is obtained as a smooth divisor belonging to

|p∗OPr−1(s)⊗OP(2)| in P := PPr−1(π∗OX(D)) for some s ∈ Z, where p : P→
Pr−1 is the projection and D is the complete intersection of X with H :=

P[Pr−1; (−m)r+2] in P. Here H ⊂ P is the subbundle of p obtained by the

surjection α in the above exact sequence, by Lemma 2.18. Under the isomor-

phismH � Pr−1×Pr+1, the divisorD � Pr−1×Qr belongs to |OPr−1×Pr+1(s−
2m,2)|. Thus, s ≥ 2m since h0(Pr−1 × Pr+1,OPr−1×Pr+1(t,2)) = 0 for any

t < 0. If s > 2m, then the restriction homomorphism Pic(Pr−1 × Pr+1) →
Pic(D) is an isomorphism by the Lefschetz theorem, and OD(−KD) �
OPr−1×Pr+1(r − (s − 2m), r)|D by adjunction, but −KD is divisible by r,

which leads to a contradiction. Thus, s= 2m.

Claim 5.2. We have that m≥ 0 holds.

Proof. We first consider the case r = 2. Since ρ(X) = 2, we can write

NE(X) = R + R′ and let the contraction morphism associated to R′ be
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π′ : X → Y ′. We note that any nontrivial fiber F ′ of π′ satisfies dimF ′ = 1

since no curve in F ′ can be contracted by π. If (D · R′) > 0, then any

nontrivial fiber F ′ of π′ satisfies dimF ′ ≥ 2 by the same argument used in

Proposition 2.23, which is a contradiction. If (D ·R′)< 0, then Exc(π′)⊂D.

Hence, m> 0. If (D ·R′) = 0, then R′ is a KX -negative extremal ray and

l(R′) ≥ 2 by the same argument in Proposition 2.23. Hence, π′ is of fiber

type by Theorem 2.20. Thus, π′|D is not a finite morphism since (D ·R′) = 0.

Therefore, m≥ 0.

Now we consider the case r ≥ 3. The above exact sequence always splits;

hence, H = P[Pr−1; (−m)r+2] ⊂can P = P[Pr−1; (−m)r+2,0]. Assume that

m< 0 holds. The total coordinate ring of P is the Z⊕2-graded polynomial

ring k[x0, . . . , xr−1, y0, y1, . . . , yr+2] with the grading degxi = (1,0) (1≤ i≤
r − 1), deg y0 = (0,1), deg yi = (m,1) (1 ≤ i ≤ r + 2); X is obtained by a

graded equation of bidegree (2m,1). Since m< 0, any bidegree (2m,1) poly-

nomial is obtained by linear combinations of the elements in {yiyj}1≤i≤j≤r+2.

Then any divisor obtained by graded equations of bidegree (2m,1) has sin-

gular points along the points defined by the graded equations y1 = · · · =
yr+2 = 0 by the Jacobian criterion. This is a contradiction since X must be

a smooth divisor. Therefore, m≥ 0.

Hence, the above exact sequence splits. We now normalize the bundle

structures for simplicity. That is, we rewrite H := P[Pr−1; 0r+2] ⊂can P :=

P[Pr−1; 0r+2,m] with m≥ 0; X is a smooth divisor on P with X ∈ |O(0; 2)|
and D =X ∩H , and D is smooth. Since H � Pr−1 × Pr+1 and D � Pr−1 ×
Qr, we can take the pullback of a point S(� Pr−1)⊂H � Pr−1 × Pr+1 p2−→
Pr+1 in Pr+1 such that S ∩D = ∅. We can assume that S is the section

of p : P→ Pr−1 obtained by the canonical first projection, that is, that S =

P[Pr−1; 0]⊂can P= P[Pr−1; 0r+2,m]. Then the relative linear projection from

S over Pr−1 � Y yields a morphism σ : P \ S →X ′ := P[Pr−1; 0r+1,m] over

Pr−1 � Y . The restriction of σ to X gives a double cover τ : X →X ′. The
branch divisor B ⊂X ′ of τ is smooth with B ∈ |O(0; 2)|. Since the strict

transform of the divisor D′ := P[Pr−1; 0r+1]⊂can X
′ = P[Pr−1; 0r+1,m] in X ′

is exactly D, the intersection B ∩D′ is also smooth. This is Example IV.

Now, we consider the case (ii)(d). We write E := π∗OX(L); then X �
PPr−1(E) p−→ Pr−1. We can write OP(1)|D �OPr−1×Qr(−m,1) for some inte-

ger m ∈ Z, where OP(1) is the tautological invertible sheaf on X with

respect to the projection p. Hence, E � (p|D)∗(OP(1)|D)�OPr−1(−m)⊕r+2
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by Lemma 2.19. Therefore, X � Pr−1 × Pr+1, which is Example II. Thus,

we have completed the distinction of case (1).

Case (2) For convenience, let m1 :=m, where m is the value in Case (2).

Then only case (ii)(c) can occur since π|D1 is a Pr-bundle. We note that

D has two irreducible components D1 and D2 since E1 is irreducible. We

note that (D2 ·R)> 0 since π is of fiber type and π|E1 is surjective. Hence,

ρ(D2) ≥ 2 by the previous argument. Therefore, π|D2 : D2 → Y is isomor-

phic to P[Pr−1; 0r,m2]
p−→ Pr−1 with m2 ≥ 0. That is, D2 also satisfies the

hypothesis of case (2) by repeating the same argument. We can assume

that 0 ≤ m1 ≤ m2. Under the isomorphism D1 � P[Pr−1; 0r,m1], we can

write ND1/X �O(u; 1), with u ∈ Z. We have u=−m2 since ND1/X |D1∩D2 �
ND1∩D2/D2

and ND1∩D2/D2
�OPr−1×Pr−1(−m2,1). Hence,

p∗ND1/X � p∗
(
p∗OPr−1(−m2)⊗OP(1)

)
�OPr−1(−m2)

⊕r ⊕OPr−1(m1 −m2).

Thus, the exact sequence

0→OPr−1 → π∗OX(D1)→OPr−1(−m2)
⊕r ⊕OPr−1(m1 −m2)→ 0

splits since m1 ≤m2. Therefore, X � P[Pr−1; 0r,m1,m2], with 0≤m1 ≤m2.

We note that D ∈ |O(−m1−m2; 2)| by Corollary 2.27. This is Example III.

Cases (3)–(6) Next, we consider cases (3)–(6). Then dim(π|D1)
−1(y) =

r − 1 for any closed point y ∈ Y . Hence, only case (i) in Proposition 2.23

occurs.

Case (3) In this case, Y is isomorphic to Qr.

First, we consider the case r = 2. We have that π|D is isomorphic to

p23 : P
1 × P1 × P1 → P1 × P1, and we can write ND/X �OP1×P1×P1(1,−m1,

−m2), with m1, m2 ∈ Z.

Claim 5.3. We have that m1, m2 ≥ 0.

Proof. It is enough to show that m1 ≥ 0. Let f = {t}× P1 ⊂ P1 × P1 � Y

be a fiber of p1 : P
1×P1 → P1, where t ∈ P1. Let Xf := π−1(f), and let Df :=

π−1(f) ∩D. Then Xf → f is a P2-bundle, Df is a smooth divisor in Xf

with Df �= 0, and OXf
(−(KXf

+Df ))�OX(−(KX +D))|Xf
�OX(2L)|Xf

.

Thus, (Xf ,Df ) is a log Fano manifold such that r(Xf ,Df ) is an even number

and ρ(Xf ) = 2. Hence,Df = P[P1; 02](� P1×P1)⊂can Xf = P[P1; 02,m] with

m≥ 0 by Proposition 4.2. Thus, NDf/Xf
�OP1×P1(1,−m). Since NDf/Xf

�
ND/X |Df

�OP1×P1(1,−m1), we have m1 =m≥ 0.
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We know that (p23)∗ND/X � OP1×P1(−m1,−m2)
⊕2 by Lemma 2.19.

Hence, we can show that the exact sequence obtained by Lemma 2.16

0→OP1×P1 → π∗OX(D)→OP1×P1(−m1,−m2)
⊕2 → 0

splits. As a result, we are able to show that D = PP1×P1(O⊕2
P1×P1)⊂can X =

PP1×P1(O⊕2
P1×P1 ⊕OP1×P1(m1,m2)) with 0≤m1 ≤m2 by Lemma 2.16. This

is Example VI.

We now consider the remaining case r ≥ 3. We can write the normal sheaf

ND/X � OPr−1×Qr(1,−m) with m ∈ Z. Then (π|D)∗ND/X � OQr(−m)⊕r

by Lemma 2.19. Hence, we can see that the exact sequence obtained by

Lemma 2.16

0→OQr → π∗OX(D)→OQr(−m)⊕r → 0

splits. Hence, D = P[Qr; 0r] ⊂can X = P[Qr; 0r,m] by Lemma 2.16. This

is Example V; the divisor −(KX + D) is ample if and only if m ≥ 0 by

Remark 3.2. Thus, we have completed the distinction of case (3).

Case (4) We can write (π|D)∗ND/X � TPr ⊗ OPr(−m) with m ∈ Z by

Lemma 2.16. Hence, we get the exact sequence

0→OPr → π∗OX(D)→ TPr ⊗OPr(−m)→ 0

with surjectivity following from Lemma 2.16. It is well known that

Ext1Pr

(
TPr ⊗OPr(−m),OPr

)
�
{
0 (m �= 0),

k (m= 0).

We also know that all nonsplit exact sequences for the case m = 0 are

obtained by

0→OPr →OPr(1)⊕r+1 → TPr → 0.

If the exact sequence is not split, then X � Pr ×Pr by the above argument.

This case has been considered in Example VIII. If the exact sequence splits,

then we can show that D = PPr(TPr)⊂can X = PPr(TPr ⊕OPr(m)). This case

has been considered in Example VII; the divisor −(KX +D) is ample if and

only if m≥ 1 by Remark 3.3.

Case (5) We can write (π|D)∗ND/X � (O⊕r−1
Pr ⊕OPr(1))⊗OPr(−m) with

m ∈ Z by Lemma 2.16. Since r ≥ 2, the exact sequence

0→OPr → π∗OX(D)→
(
O⊕r−1

Pr ⊕OPr(1)
)
⊗OPr(−m)→ 0
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splits. Thus, X � P[Pr; 0r−1,1,m] and D ∈ |O(−m; 1)|. Since OX(−KX)�
O(r−m; r+1), we have OX(L)�O(1; 1). We know from Corollary 2.26(2)

that m≥ 0; this case has been considered in Examples IX and X.

Case (6) We can write (π|D1)∗ND1/X � OPr(−m)⊕r with m ∈ Z by

Lemma 2.16. Since r ≥ 2, the exact sequence

0→OPr → π∗OX(D)→OPr(−m)⊕r → 0

splits. Thus, X � P[Pr; 0r,m]. We know from Corollary 2.26(2) that m≥ 0

holds; this case has been considered in Examples VIII, IX, and XI.

5.2. Birational type case

Here, we consider the case where π is birational. We know that π|D1 : D1 →
π(D1) is a birational morphism by Lemma 2.21(1) and an algebraic fiber

space by Lemma 2.22. Hence, π|D1 : D1 → π(D1) belongs to case (7) or case

(8). However, we have dim(D1 ∩ F ) = r − 1 for any nontrivial fiber F of

π for case (7); this contradicts Proposition 2.23(i). For case (8), we have

dim(D ∩ F ) = r for any nontrivial fiber F of π. Thus, only case(ii)(a) in

Proposition 2.23 occurs. That is, Y is smooth and π is the blowup along a

smooth projective subvariety W ⊂ Y of dimension r− 2. Let DY := π(D)⊂
Y . Then DY � P2r−1, and W ⊂DY is a linear subspace of dimension r− 2

under the isomorphism DY � P2r−1. Let E ⊂X be the exceptional divisor

of π. Then π∗DY =D + E. We note that there exists a divisor LY on Y

such that π∗OY (LY )�OX(L+E) by Theorem 2.11 since (E ·C) =−1 and

(L ·C) = 1. Therefore, OY (rLY )�OY (−(KY +DY )) by Theorem 2.11 since

π∗OY (rLY )�OX(rL+ rE)�OX(−(KX +D) + rE)�OX(−π∗KY −D−
E)� π∗OY (−(KY +DY )).

Claim 5.4. We have that (Y,DY ) is also a log Fano manifold with r |
r(Y,DY ).

Proof. It is enough to show that LY is an ample divisor on Y . We know

that NE(Y ) is a closed convex cone since NE(X) is. Hence, it is enough to

show that (LY ·CY )> 0 for any irreducible curve CY ⊂ Y . If CY �⊂W , taking

the strict transform ĈY of CY in X , then (LY ·CY ) = (L ·ĈY )+(E ·ĈY )> 0.

Hence, it is enough to treat the case CY ⊂W . We note that W ⊂DY and

all curves in DY are numerically proportional since DY � P2r−1. Therefore,

we can reduce to the case CY �⊂W .

Since DY � P2r−1, we have ρ(Y ) = 1 by Lemma 2.21(2). Thus, Y � P2r

and DY ∈ |O(1)| by [Ft2, Theorem 7.18]. This is Example I.
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Therefore, we have completed the proof of Theorem 4.5.
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