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ELFVING’S THEOREM FOR D-OPTIMALITY

By HOLGER DETTE

Universitdt Gottingen

We consider a model robust version of the c-optimality criterion mini-
mizing a weighted product with factors corresponding to the variances of
the least squares estimates for linear combinations of the parameters in
different models. A generalization of Elfving’s theorem is proved for the
optimal designs with respect to this criterion by an application of an
equivalence theorem for mixtures of optimality criteria. As a special case an
Elfving theorem for the D-optimal design problem is obtained. In the case
of identical models the connection between the A-optimality criterion and
the model robust criterion is investigated. The geometric characterizations
of the optimal designs are illustrated by a couple of examples.

1. Introduction. Consider the usual linear regression model

(1.1) gi(x) = fi(x)0,,

where fi(x) = (f{(x),..., f1;,(x)) and x is the control variable which takes
values in a compact space 2~ with sigma field & including all one point sets
and containing (at least) k; points x,,...,x, such that fi(x,),..., fi(x,) are
linearly independent (here the double index is used to be consistent with later
notation). 6 = (6,y,...,0;;,) is the vector of unknown parameters and the
functions fi,(x),..., fi;(x) are assumed to be real valued and continuous on
the design space &' For every x € 2" a random variable Y,(x) with mean
g1(x) = f{(x)0, and variance o? > 0 can be observed where different observa-
tions are assumed to be uncorrelated. In this paper we consider approximate
design theory where a design ¢ is defined as probability measure on the sigma
field 4 and the matrix

My(¢) = [ fi(x) fi(x) dé(=)

is called the information matrix (or moment matrix) of the design ¢ in the
model g;. An optimal design minimizes (or maximizes) an appropriate optimal-
ity criterion depending on M7 (¢) [or M(¢)], where M (¢) denotes a general-
ized inverse of M (&).

There are numerous optimality criteria in the literature to discriminate
between competing designs [see, e.g., Kiefer (1974), Silvey (1980) or Pukelsheim
(1980)] and we will only state the optimality criteria which are investigated
from a geometric point of view in this paper. A design ¢ is called D-optimal if
¢ maximizes the determinant of the information matrix M,(£). For a given
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vector ¢, € R*1 we call a design c,-optimal if it minimizes ¢, M} (¢)c;. In order
to satisfy the estimability of c¢’8, or testability of ¢}, = 0 for a given design ¢
we have to assume that ¢; € range(M(¢)) [see Pukelsheim (1980)]. Similarly,
for a given matrix A, € R*1*%1 a design ¢ is called optimal for A6, if
range(A;) C range(M,(¢)) and ¢ minimizes trace( A} M{(£)A,). For the statis-
tical interpretation of the proposed optimality criteria we refer the reader to
the books of Fedorov (1972) or Silvey (1980).

The theory described so far is based on the fact that the underlying model
(1.1) is known by the experimenter before the experiments are carried out.
This is not very realistic because in practice it is often the goal of the
experiment to identify a suitable model for the description of the dependency
of Y; from x. Sometimes an optimal design for a given model performs
extremely badly in other models [see e.g., Huber (1981), page 243 or Box and
Draper (1959)]. There are numerous publications in the literature to avoid
these drawbacks of “classical” design theory [e.g., Box and Draper (1959),
Stigler (1971), Atkinson (1972) and Atkinson and Fedorov (1975)]. In this
paper we will investigate a model robust version of optimality for the estima-
tion of parameter subsystems. To this end assume that the experimenter
knows that the ‘“‘true’” model belongs to a given class of models (e.g., polyno-
mials up to degree m — 1)

I = {gl(x)’ EEE gm(x)}’

where g,(x) = f{(x)0;, f/(x) = (f(x),..., fi,(*)) and 6; = (6,,,...,0,,). For
every I € {1,..., m} the functions f,,..., f};, are assumed to be real valued
and continuous on £, where the design space 2" should contain (at least)
C = max]’  k, different points x,..., x; such that forevery I = 1,..., m the
vectors fy(x,),..., fi(x) € R% are linearly independent. The information
matrix of a design ¢ in the model g, is now given by M/(¢) =
JarF(X) fi(x)dé(x), 1 =1,...,m. Assume that the experimenter wants to
estimate in every model g, € %, the linear combination ¢}0,, [ = 1,..., m,
where cy,...,c,, are given vectors with ¢, € R* or different linear combina-
tion in the same model (in this case all vectors f; would be the same) and let
B1, - - - » B,, denote positive numbers with sum 1. The vector 8 = (B,..., B,,) is
called a prior for the class %, and B, reflects the experimenter’s belief about
the adequacy of the model g, or the importance of the linear combination c}6,
l =1,..., m. The following definition is a natural generalization of the c;-opti-
mality criterion (m = 1) and was originally introduced by Lauter (1974) for a
model robust version of the D-optimality criterion.

DeriniTION 1.1. Let B = (B4,..., B,,) denote a vector of positive numbers
satisfying . .8, = 1,¢c, €R*, 1 =1,...,m,and ¢ = (¢},...,c,,) € R* where
k=X k;. A design ¢ for which all linear combinations ¢}, are estimable is
called c-optimal for the class %, with respect to the prior 8 = (B,,...,B,,) if
¢ minimizes the function

B(6) = 3. pulogleiM; (e
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If all models in the set %, are identical (ie., f;=f;, [ =1,...,m) the
minimizing design ¢ is called c-optimal with respect to the prior B =

(Bis-- s Bm)-

Note that in the case of identical models g, = g;, [ = 1,..., m, this is an
alternative approach compared to the determination of an optimal design for
A0, where A, = (cy,...,c,,) € R**™ and we will discuss these two optimal-
ity criteria in more detail in Section 4.

A very useful method for the determination of the optimal design are
geometric characterizations. For the D-optimal design problem Sibson (1972)
and Silvey and Titterington (1973) used strong Lagrangian theory to show
that the D-optimal design problem is the dual of the so called ‘“minimal
ellipsoid problem” [see also Silvey (1972)]. This means to find the ellipsoid
centered at the origin containing the regression space {f(x)lx € 27} and
having minimal content. The most famous geometric result in optimal design
theory dates back to Elfving (1952, 1959) and yields to a characterization of
the c;-optimal design (i.e., m = 1, B; = 1 in Definition 1.1). Following the
work of Elfving (1952, 1953, 1959) we define the Elfving set by

(12) @ =oo({f(x)lx € 2} U (~f(2)lx € 7)) <R,

where co(A) denotes the convex hull of a set A c R*. %, is a compact,
symmetric and convex set spanning R* and containing the point 0. A c,-opti-
mal design can be characterized as a design which allows a representation of
the intersection of the half line {Ac,|A > 0} with the boundary of the set %,
(see Section 2). This result was generalized by Studden (1971) to optimal
designs for parameter systems A’;6;. Fellman [(1974), Theorem 2.1.2] used the
set %, describing the location of the support points of the optimal design
where the optimality criterion is an arbitrary decreasing function of the
information matrix M,(£) with respect to the Loewner ordering.

All of the above characterizations do not have too much in common,
especially since there does not exist a geometric result of Elfving type for the
D-optimal design problem. It is the purpose of this paper to present a geomet-
ric structure which can be used for the characterization of optimal designs
with respect to all three optimality criteria. In Section 2 a generalized Elfving
theorem for the model robust criteria is derived by the application of an
equivalence theorem for mixtures of optimality criteria recently proved by
Gutmair (1991). The D-optimal design problem now appears as a special case
in this setup by the consideration of ‘“nested” models and an Elfving type
characterization for the most popular optimality criterion is stated in Section
3. The considered Elfving sets allow geometric interpretation of the optimality
criterion for A6, by the investigation of identical models (f, =f, I =
1,...,m) which are given in Section 4. Thus all three optimality criteria can
be treated considering the geometric properties of one type of Elfving set.

2. Elfving’s theorem for model robust designs. Elfving (1952) proved
the following geometric characterization for the c;-optimal design problem
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(m =1, B; = 1 in Definition 1.1) using the set %, defined in (1.2) [see also
Elfving (1959) and Pukelsheim (1981)].

Turorem 2.1 [Elfving (1952)]. A design & = {f;}V:l (for which ¢, is
estimable) is c,-optimal (in the model g,) if and only if there exist a positive
number y; > 0 and real numbers €, ...,&,, with €2, =1, v =1,...,s, such
that the point yc, = X._ip,ey, fi(x,) is a boundary point of the set %,
defined by (1.2).

The proof of a generalization of this theorem to the model robust setup
requires the following equivalent condition for c-optimal designs for the class
&, with respect to a prior B. Its proof involves general arguments for
mixtures of information functions and can be found in Gutmair (1991) or
Dette (1991).

THEOREM 2.2. A design ¢ (for which all linear combinations c)0, are
estimable, | = 1,..., m) is optimal for the class %,, with respect to the prior B
if and only if there exist generalized inverses G, ...,G,, of M(§),..., M, (&)
such that

Z, (c,lGlfl(x))z
1§1Bl aM; (é)e =

for all x € Z. The equal sign in this inequality appears for all support points
of every c-optimal design for the class %, with respect to the prior B.

We will now define an Elfving set #? generalizing the set %, of the
original Elfving theorem by

.@r/z = co({(elf{(x)"~~78mfrln(x)),|x € Z, IS R,
(2.1) m
l= 1,...,m, ZBl‘gl2 = 1})’
=1

which is also a convex, symmetric and compact subset of R*, k= L7 k,,
containing the point 0. Note that in the case m = 1 (8; = 1) (2.1) gives exactly
the set considered in Theorem 2.1. In general the structure of the k-dimen-
sional set %2 is very complicated and will be illustrated in some examples of
the following section. We are now, able to prove an analogous geometric
characterization of the c-optimal design problem for the class %, with respect
to a prior B as given in Theorem 2.1.

s

THEOREM 2.3. A design ¢ = {: et (for which c}0, is estimable | =

1,...,m) is c-optimal for the class %, with respect to the prior B if and only if
there exist positive numbers vy, ...,v,, and numbers &i{,...,&15 Eo1y-- -
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€9gr-++sEmis- s Ems SUCh that the following properties (a), (b), (c) and (d)
hold:
(a) vie,= X poe fi(x,) l=1,...,m.
v=1

(b) The point (y,c,...,¥mC.) is a boundary point of the set B with a
supporting hyperplane (d4,...,d,,).

(o) vicia; = B, l=1,...,m.

(d)

3

2 _ -
Biei, =1 v=1,...,s.

=1

Proor. Let & = {:”}Fl denote an optimal design for the class %, with

respect to the prior 8. By Theorem 2.2 there exist generalized inverses
G,,...,G, of M(&),..., M, (&) such that

(G fi(%))”
(2.2) lglﬂlm <1 forall x € &,
m 'G 2
(2.3) g G o1 s,

-1 aMp(é)e

Let y;2=¢c;M;(¢)c, and d, = v,G,¢c;, I = 1,..., m, then it follows from the
estimability of c,0, by the design ¢ that y,c, = M(&)d, = X3_1p,¢,, fi(x,),
l=1,...,m,where g, =f/(x)d,,l=1,...,m,v =1,...,s. This proves the
representation given in (a). Equation (2.3) and the representation of y,c; yield

(2.4) ZZ Byvic,d, = Zpylzlﬁl(d; fi(x,))* = lzlﬂl(d;fl(xy))z =1,
=]_ = =

v=1

which implies (¢, = d) f)(x,)) X7 ,8,62, =1, v=1,...,s, and shows condi-
tion (d).
From the inequality (2.2) and the Cauchy—-Schwarz inequality we get

m 2 m m
Ladi(afix)| < T gt LA(difi()" <1

for all x € £, whenever the numbers e,,...,¢, satisfy the equation
T .B,e2 = 1. Observing (2.4) it is now easy to see that the point
(y:€4 -+ ¥mCy) is a boundary point of #? with supporting hyperplane
a=(Bd,...,B,,d,) which proves (b). Finally the condition (c) follows
readily from the definition of y, and d;.

To prove sufficiency let (a},...,d,,), a, € R*, denote a supporting hyper-
plane to the set %% at the boundary point (y,c}, ..., y,c,,) and let a, = B,d,,
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l=1,...,m. Thus we have for all x € &, ¢,,...,¢,, satisfying . Biei=1

(2.5) l_fl(ﬁld,)'(g, ()| < 1.

Defining ¢,(x) = d) f)(x)/ \/Z;’Llﬂl(d’l fl(x))2, l=1,...,m, we see that (2.5)
implies

m
(2.6) Y Bi(d)fi(x))* <1 forallx € 2.
=1
Because (8,d}, ..., B,,d’,) is a supporting hyperplane to RE at the boundary
point (y,c}, ..., ¥,c),) we obtain from (2.5) (used at x = x,) and the represen-
tation (a)

m S m
1= ) Bivicid; = X p, Y eBifi(x,)d, <1
=1 v=1 I=1

and this implies X7 ,B,¢,, f/(x,)d, = 1, v = 1,..., s. By an application of the
Cauchy-Schwarz inequality we now get for » = 1,...,s
2

(27 1= lZ Biew, fi(x,) d;| < IZ BleilZ Bi(difi(x,))" <1,
=1 =1 =1

where the last inequality results from (2.6) and condition (d). Therefore we
have ¢,, = A,d; f,(x,) for some A\, €R, I =1,...,m, v=1,...,s. From the
normalizing conditions on the ¢, in (d) we thus obtain observing (2.7)

(2.8) 1= Y Bl =2 L B(d)f(x,))’ =22 wv=1,...,s.
=1 =1

On the other hand, we have from the property that (yi€4, ..oy y,C,) is a
boundary point of %% with supporting hyperplane (Bdy, ..., BLd))

s

1= Z By, dic, = Z b, Z Blglv(d’l fl(xv))
=1 =1

v=1

=y pvavlz B(d, (%)) = ¥ p,A,.
=1 v=1

v=1
Equation (2.8), p, > 0 and £{_, p, = 1 now show that A, = 1 whenever p,>0
and this implies ¢, = d)f(x,), [=1,...,m, v = 1,...,s, where we have
assumed (without loss of generality) that in the representation (a) all p, are
positive. From this representation we finally obtain for [ = 1,...,m,

Y = levglv fi(x,) = Z p,fi(x) fi(x,)d, = M(§)d,.
v= v=1 R

By the definition of a generalized inverse [see Searle (1982), page 238] it
follows that there exist generalized inverses G, ... ,G,, of the matrices
M(é),..., M, (§) such that

dl='ylGlcl, l=1,...,m.
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Observing the condition (c) it follows (note that a, = B,d, and that ¢,G,c, is
invariant with respect to the choice of the generalized inverse because c}0, is
estimable)

1 =y,cd; = viciGie, = yie, My (§)e;,  1=1,...,m

and the inequality (2.6) yields that there exist generalized inverses G,...,G,,
such that (2.2) holds for all x € 2". By an application of Theorem 2.2 it now
follows that the design ¢ is optimal for the class %, with respect to the prior
B, which completes the proof of Theorem 2.3. O

Comparing the original Theorem 2.1 of Elfving with the model robust
version given in Theorem 2.3 we see that there appears the additional condi-
tion (¢) in the generalization of the theorem. This requires the hyperplane
a=(ay,...,d,) to Z& at the point (yc},...,¥,c,,) to satisfy some “nor-
malizing” conditions in the lower dimensional subsets of the components. The
inner products of the vectors y,c; and a; corresponding to different models
have to be equal to the a priori probabilities B, for the models.

The following theorem gives a dual characterization of the c-optimal design
problem for the class %, with respect to the prior B. Its proof can be
performed by similar arguments as given in Pukelsheim (1980) [see Dette
(1991) for details] and is therefore omitted.

THEOREM 2.4 (Duality). Let E denote the set of all probability measures on
2 such that c; € range(M,(£)), I = 1,...,m, and

9 = {d=(d’1,...,d’m)'| <1

12 B,de; fi(x)
=1

m
Vxe ZVey,...,e, with Y Bgl= 1}
=1

denote the set of all covering halfspaces to #2. Then the problems
m m

min{ B, log[c’lM[(f)cl]} and max{ Y B, log(c’ldl)z}
-1 deg\ ;-1

¢eB

are dual problems and share a common extreme value.

3. A characterization of D-optimality and some examples. In this
section we will investigate a special case of Theorem 2.3, which is of particular
interest because it will yield a geometric characterization of Elfving type for
the D-optimal design problem. To this end consider the ‘“nested’’ models

fi(x) = fu(x), fa(x) = (f11(x)’ f12(x))’-~,

fr(x) = (fu(x), fia(x),. .., flm(x))

and the vectors “for the highest coefficient” & =(0,...,0,1Y € R}, 1=
1,..., m. For this special choice [which is of particular interest to decide how
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many regression functions f},(x) have to be included in the model] the
optimality criterion ®,(¢) reduces to

det M,(¢)
¥ det M,_(¢)
and for the uniform prior p* = (1 /m,...,1/m) we obtain the D-optimality

criterion. Thus we have (by an application of Theorem 2.3) the following
geometric characterization for the D-optimal design problem.

q)/s(f) = - ZBZ log

s

TueOREM 3.1 (Elfving’s theorem for D-optimality). A design ¢ = { } -

is D-optimal for the model g,(x) = 0,f(x)+ -+ +0,, f1,.(x) if and only
if there exist positive numbers y, > 0, l =1,...,m, and numbers &,q,...,
E1gr- s Emls- -5 Ems SUCh that

S
(a) 7151=(0’-~,0’71)'= vaelvfl(xv) I=1,...,m.

(b) The point (y,6y,..., Y€ m) (y4, 0,95, 0,0, Ygr oo o 0,...,0,%,) €
R™m*+D/2 45 o boundary point of the set .%7’3 c Rmm+b/2 p* =
(A/m,...,1/m), with supporting hyperplane (l/m)(d’l, dy,...,d",), d;=
(dll’ ey dll)'

(c) vd,;=1 forl=1,....,m

(d) Ye2=m forv=1,...,s

=1

We will finish this section giving two examples to get more insight into the
geometric structure of the characterizations of the c-optimal design problem
investigated in this section and in Section 2. Some more examples can be found
in a paper of Dette (1991).

ExaMpLE 3.2. In this example we want to determine the D-optimal design
for the model gy(x)=60,1 —x) + 0,x> where x €[0,1]. To this end let
m=2 k=1, ky=2fi(x)=1—-x and fix)=(1 - x,x2). Although we
could apply Theorem 3.1 directly, we will solve the more general problem
determining a c-optimal design for the class %, with respect to the prior
B* = (1/2,1/2) where ¢ = (¢c;,cy) = (1, hy, hy). The set Z£” defined in Sec-
tion 2 is given by

RE = {(xl,x2, x5)' k2 4+ x2 < 2, lxgl < V2 — a2+ xzz}
and depicted in Figure 1. We have to distinguish the cases hy=0and hy # 0.

(a) hy = 0: In this case the vector ¢ is given by ¢ = (¢}, ) = (1, hy, 0)
which shows that the vector (y;c},y,c3) can only intersect the boundary of
RE° at the curve H'= {(x,,x,,0)|x%+ x2 =2} obtained from the point
(f1€0), f5(0)). Therefore the c-optimal design [for the vector ¢ = (1, h,0)]
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FiG. 1. The set RE" for the models fi(x) = 1 — x, fax) = (1 — x, x2).

puts mass 1 at the point 0 (note that this result holds also for an arbitrary
prior B).

(b) h, # 0: In this case the vector (y,c},y,c,) touches the boundary of
. R8" at the some point ¢t € .%28" which is a convex combination of a point of
% and one of the points (0, 0, V2 ) or (0,0,— V2 ) depending on the sign of &,.
Therefore we see that the c-optimal design is supported at the points 0 and 1
(note that this result is independent of the prior 8). From now on we will
assume for definiteness that h, > 0. The calculation of the weights is more
complicated because we have to determine the quantities vy, vq, €11, €12, €21 €22
of Theorem 2.3. First we remark that the condition (y,c},vy,ch) € 0.%E"
implies
(3.1) yahy = V2 = \yi +v3h.

In the following let d = (1/2)§,, 8, 83) denote the supporting hyperplane to
RE" at the point (y,c}, v5¢5) = (y1,¥2h1, Yoho) then we have from condition
(c) of Theorem 2.3

(3.2) d = (y1' 82, (1 = v2h182)/(v3hsy)) for some §, € R

and the supporting hyperplane property implies (note that we have assumed
hy > 0)

vi + v3h — vshy

0y = .
’ 72h1[v vi + viht + Yzhzl
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Using (3.2) and (3.1) we thus obtain for the supporting hyperplane (1,/2)d
at the point (y,c}, y,cy) by straightforward -calculations d = (y;%,
(1 — V2y,hy)/ysh1,V2) = (d},d,) and from the definition ¢;, = d) f,(x,)
(compare with the proof of Theorem 2.3) we have &, = y;', &4 =
(1 — V2y,hy)/(yshy), €1, =0 and £, = V2. Condition (a) of Theorem 2.3
yields p; = vi, ps = v2hy/ V2, p; = (y2h)?/(1 = V2 y,h,) and Py tpy=1
From these equations we get by straightforward algebra

(3.3) yohy =V2(1-v%), pi=vi pa=1-19%
h2 B2l
3.4 2y41 — L —42l1-4-L| 2L .

From (3.1), (3.2) and (3.3) it can easily be shown that (1/2)X§;,§,,8;) -
(y1, Y2h1, v2h o) = 1 and that the ¢,, satisfy condition (d) of Theorem 2.3 [note
that we have used all other conditions of this theorem to derive (3.2), (3.3) and
(3.4)]. Thus we see that the c-optimal design for the class %, with respect to
the prior g* = (1/2,1/2), ¢ = (1, hy, k), puts masses p, = yZ and p, = 1 —
v? at the points 0 and 1 where y? is the positive solution of

(3.5) 2y2(h2 — h2) — y3(h3 — 4h2) — 2h2 = 0.

Note that this result includes also the case h, = 0 for which (3.5) reduces to
(y? = 1)?=0. For the vector ¢ =(1,0,1), h; =0, h, =1, we obtain the
D-optimal design (y, = 1/V2, y, =1/v2) for the model 6,(1 — x) + ,x2
(compare with Theorem 3.1) which puts equal masses at the points 0 and 1. If
one is only interested in the D-optimal design a direct application of Theorem
3.1 would yield to an essential simplification of the calculations.

ExampLE 3.3. We will now show that the condition (c) is indeed necessary
to obtain the equivalence of Theorem 2.3. To this end let m = 2, g* =
(1/2,1/2), b, =2, ky =38, fi(x) =1, x), fyx)=@Q,x,x2), Z=[-1,1] and
¢’ = (cf, ¢3), where ¢} = (1,2) and ¢}, = (1,2, 4) (thus we want to extrapolate a
linear or quadratic regression function at the point x, = 2). Consider the
design ¢ which puts masses 2/11,3/11,6/11 at the points —1,0,1 and let
e11= —V3/2, £3,=0, £;3=1y3/2, &5 = 1/‘/5, €99 = T V2, €93 = 1/v2
and y, = (4/11)/3/2, vy, = V2 /11, then it is straightforward to show that
the design ¢ satisfies the conditions (a) and (d) of Theorem 2.3. To prove that
the point (y,c}, y5cy) is a boundary point of #Z£" c R® define d = (d}, d}),
where d, = /3/2(0,1) and d, = (3/V2X~-2/3,0,1), then we have yc'd =
v1€1d; + v9c5dy = 2 and by the Cauchy-Schwarz inequality

[(e1£i(x) 1) + (eafa(x) do)]” < (3 + e3)[(fi(x) dv) + (f3(%) dy)7]
—9(x2- 1) +1<4

whenever £2 4+ ¢2 =2 and x € [—1,1]. Therefore it follows that the point
ye' = (y,€}, ¥2€5) is a boundary point of the set #£" with supporting hyper-
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plane (1/2)d = ((1/2)d}, (1/2)d}) and all conditions of Theorem 2.3 are
satisfied except condition (c) [e.g., (1/2)dy,c; = 6/11 # 1/2]. If the design ¢
would be c-optimal for the class %, with respect to the prior 8 = (1/2,1/2)
we obtain from Theorem 2.2 and straightforward algebra the inequality

12 (Mt x))” 1 113 2

_Z(l ,l (_gl)fl( )) =_x2+_(_x2_1) <1

2 2 M ¢)c, 16 102

for all x € [—1,1]. But for the point x = 0 this inequality does not hold and
thus ¢ is not a c-optimal design for the class %, with respect to the prior B.
This shows that condition (c) of Theorem 2.3 cannot be omitted.

4. A-optimal designs. The results of Section 2 can easily be transferred
to the case where the experimenter wants to estimate several linear combina-
tions A6, in different models g, € %, where A, € R**% [ =1,...,n, are
given matrices. An A-optimal design for the class .#, with respect to the prior
B, A=(A],..., A, allows the estimability of all linear combinations A6,
and minimizes the function X}_, B, logltrace{ M; (£) A, A’}1.

THEOREM 4.1. Let %) denote the convex hull of the set

{(f1(x)5'1, o H(x)e,) e Xy e, € R Zn: Bille, 5 = 1}

=1
c Rklxsl X o X Rans".

The design & = {* (for which all linear combinations A0, are estimable)
by jv=1 v

is A-optimal for the class %, with respect to the prior B if and only if there

exist positive numbers vy.,...,v, and vectors g, €R®, l=1,...,n, v=
1,...,s, such that the following properties (a*), (b*), (c*) and (d*) hold:
S
(a*) YIAI= Zpufl(xv)géu l= 1’"',""
v=1

(b*) (y,AY,...,y,A,) is a boundary point of the set #* with supporting
hyperplane D = (D}, ..., D,), D, € R¥*s,

(c*) y,trace(D;A;)) =B, 1=1,...,n.
(d*) Y Blle,z3=1 v=1,...,s.
=1

Note that in the case n =1 and B; = 1 Theorem 4.1 gives exactly the
Elfving theorem 1.1 proved by Studden (1971). In the remaining section we
will tackle this special case and investigate the relationship between optimal
designs for A’6, [i.e., optimal designs minimizing trace(A;M;(£)A), n =1
and s; = m in Theorem 4.1] and the c-optimal designs for the class %, with
respect to a prior B. To this end we consider the case of m identical models
fi = f1 (see Definition 1.1) and assume that the experimenter wants to esti-
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mate the linear combinations ¢}6,,...,¢,,60, in one model g,(x) = fi(x)d, for
given vectors cy,...,c, € R*. There are now two optimality criteria which
can be used for the dlscrlmlnatlon between competing designs, namely the
minimization of trace(A’lMl‘(g)Al) where A, = (cy,...,c,,) € R¥*™ and the
minimization of ®,4(¢) = L%, B, loglc; M (£)c,] where B = (B,... ,,Bm) is a
given prior (see Deﬁnltlon 1 1). The first criterion is an equally weighted sum
of the quantities c¢; M7 (¢)c; and the second is essentially a weighted product of
these terms. This has the consequence that the c-optimal design is not
changing if a ““component” ¢, of the vector ¢ = (c}...,c,,) is multiplied with
some positive scalar while the optimal design for A0, is changing with
different scalings of the columns of the matrix A,.

Another difference appears investigating the corresponding Elfving theo-
rems for the two optimality criteria. To this end we recall the definition of the
Elfving sets used in Theorem 1.1 of Studden (1971) (or Theorem 4.1 in the
case n = 1 and s; = m)

= co({fi(x)e'lx € 2, e € R™, |[elly = 1}) < RF*™,

By Theorem 1.1 of Studden (1971) (or Theorem 4.1 for n = 1 and s, = m) a
number vy, has to be determined such that y,;A, is a bounda:ry point of ./,
and a representing design [satisfying (a*) for n = 1 in Theorem 4.1] is an
optimal design for A',6,. For the solution of the c-optimal design problem we
have to find m positive numbers 7v,,...,y, such that the point
(y1€%, -, ¥mC)y) is a boundary point of the set %2 c R*" and which also
satisfies condition (c) of Theorem 2.3. This is, of course, a much harder task
compared to Theorem 1.1 in Studden (1971) and can be seen as the price
which has to be paid for the invariance property with respect to different
scalings of the components in the optimality criterion. For a more detailed
investigation we define the mapping (a, € R*, 1 =1,..., m)

Rklm_)RkIXm’
..
Pl (ay,...,d),) — (\/[Tlal,...,\/ﬁ,:am),

which is a one to one mapping from %2 onto ./,, then it can easily be seen
that 9.7, = W,(0.%%5). The following results show the relation between the
c- optlmal des1gn with respect to a prior B(c = (¢}, ..., c,,)) and the optimal
design for A0, (A; = (cy,...,c,,)). The optimal design for A}6, is c-optimal
with respect to a prior 8 dependmg on the supportmg hyperplane to ./, at
v1A; while the c-optimal design with respect to a given prior is optimal for Ao
where the columns of A, are the scaled versions of the vectors .

«

S
THEOREM 4.2. Let A; = (cy,...,c,), c=(c),...,c), £ = {:} - denote

an optimal design for A0, and y > 0 such that the point yA, is a boundary
point of the set ./, with supporting hyperplane D = (d,,...,d,) € Rk*m
[see Theorem 1.1 of Studden (1971)]. The design ¢ is also c-optzmal with
respect to the przor B =(By,...,B,) where the weights B, are given by

B, =vycid,, l=1,...,m.
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Proor. We will show that the design ¢ satisfies the conditions (a)-(d) of
Theorem 2.3. By Theorem 1.1 of Studden (1971) we have for yA; the repre-
sentation yA, = ©5_,p, fi(x,)e, € 0.4, where ¢, = (¢y,,...,¢,,) € R™ with
lle ll2 = 1. Thus it follows that the point \I’ (yA) = ((y/‘/_)cl, -
(v//B)c,,) is a boundary point of the set 5, and we obtain the representa-
tion

Y S ~
——C; = Y p.E, fu(x,) l=1,...,m,
VBl v=1

where &, = (1/+/B,)e;, and L2, B,é7, = lle, I3 = 1. This shows that the condi-
tions (a), (b) and (d) of Theorem 2.3 are satisfied. For the proof of the
remaining condition (c) we remark that it is easy to see that the vector
(\/_ dl,.. ‘/ﬁ_m d’,) defines a supporting hyperplane to %% at the boundary
point ‘If (yAl) and condition (¢) is now obvious from the definition of
B, = ycld ,» L =1,..., m. By an application of Theorem 2.3 we obtaln that the
design ¢ is c-optimal with respect to the prior B8 where B, = ycid,.

TuEOREM 4.3. Let yc = (1€ -+, ¥YmCr) denote an arbitrary boundary
point of #2 and ¢ = {: L@ design which allows the representation

S
(41) Y€ = Zpuglufl(xu) l= 1""’m
v=1

with real nuUmMbers €11, ...,615, s Emir+ -+ Ems Satisfying L Biel, =1, 1 =
1,...,v. The design £ is optimal for A}0, where A; = ¥,(yc).

Proor. The point A; = Ws(yc) = (y1y/B1¢1; -+ -, Ymy/Bm C,n) is a boundary
point of the set .2, and it follows from (4.1) that A; has the representation

S
A = Z p, fi(x,)e,
v=1

with ¢, = (/B1 €1, .-+, VB &m,) and lig,llz = 1. By the Elfving theorem 1.1 of
Studden (1971) we see that the design ¢ is optimal for A6,. O

REMARK 4.4. Note that Theorem 4.3 does not require the design ¢ to be
c-optimal with respect to a given prior B. It is enough that the design allows a
representation (4.1) of a boundary point of the set %#2. In general the
condition (c) of Theorem 2.3 is not fulfilled and thus ¢ is not c-optimal for the
given prior B.
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