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ON THE LAST TIME AND THE NUMBER OF TIMES AN
ESTIMATOR IS MORE THAN £ FROM ITS TARGET VALUE

By NiLs Lip HIGRT AND GRETE FENSTAD

University of Oslo and Norwegian Computing Centre,
and University of Oslo

Suppose 9n is a strongly consistent estimator for 6, in some ii.d.
situation. Let N, and @, be, respectively, the last » and the total number
of n for which 6, is at least ¢ away from 6,. The limit distributions for

¢2N, and £2Q, as ¢ goes to zero are obtained under natural and weak
conditions. The theory covers both parametric and nonparametric cases,
multidimensional parameters and general distance functions. Our results
are of probabilistic interest, and, on the statistical side, suggest ways in
which competing estimators can be compared. In particular several new
optimality properties for the maximum likelihood estimator sequence in
parametric families are established. Another use of our results is ways of
constructing sequential fixed-volume or shrinking-volume confidence sets,
as well as sequential tests with power 1. The paper also includes limit
distribution results for the last n and the number of r for which the
supremum distance ||F, ~ F|| = ¢, where F, is the empirical distribution
function. Other results are reached for 5/ 2N and £5/2Q, in the context of
nonparametric density estimation, referring to the last time and the num-
ber of times where |f,(x) — f(x)| = ¢. Finally, it is shown that our results
extend to several non-i.i.d. situations.

1. Introduction and summary. Let X,, X,,... be a sequence of inde-
pendent identically distributed (i.i.d.) variables and suppose 0 is an estimator
based on the first n observations which is strongly cons1stent for some
parameter 6, of interest, that is, 6, converges almost surely (a.s.) to 0,. How
large must n be in order for 0 to be very close to 6,?

This natural question can be made precise in several different ways. (i) We
can ask for an m such that

(1.1) Pr{lén—GOISE} >095 foralln>m.

An approximate answer to this question is readily given in the traditional cases

where one has convergence in distribution of Vn (0 — 6,) to some appropriate
N(0, 02). Then Vn /oy > 1.96 suffices and we find m = 1.96202/¢% (and the
assumption of strong consistency is not needed). (ii) We might ask for simulta-
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neous closeness for all large n, with high enough probability, that is,

(1.2) Pr{l@n - OOI <eforalln > m} = Pr{ sup lén - OOI < s} = 0.95,
which also can be thought of as 4 requirement for a sequential fixed-width
confidence interval procedure. There is a finite m solving this problem since
supnzmlo 6ol >, 0 when 8, - 0, as. (iii)) We could study the random
variable

(1.3) N, = sup{n >1: lén - BOI > e},

which by the assumption of strong consistency is finite with probability 1. One
has

(1.4) Pr{e®N, 2y} =Pr{N, = m} = Pr{\/ﬁ sup |6, — 6,| > \/y‘o}
n=zm

in which m = (y/e2) is the smallest integer greater than or equal to y/¢2, and
¥, = me? is close to y; y, — €2 <y < y,. This shows that problems (ii) and (iii)
are closely related; 2N, has a limiting distribution if Vm sup,, . |6, — 6,| has.

While problem (i) is well-studied and solved, problems (ii) and (iii) are
virtually unstudied, presumably because the random variables they are con-
cerned with depend upon the full sequence of estimators and as such cannot be
observed. They have nevertheless some immediate probabilistic and statistical
appeal and provide information about the speed of convergence of 0 to its
target value. Stating or proving almost sure convergence touches bas1c chords
in both probabilists and statisticians. Since 6, — 6, a.s. means nothing but
that N, is a.s. finite, it appears natural to inquire about its approximate size,
for example via its approximate distribution and approximate expected value.
Even Serfling’s physician [(1980), page 49] is interested in (ii) and (iii). The last
n viewpoint also invites two competing estimation methods to be compared in
terms of the limit distributions of their respective N, ; and N, ,. There are
also natural connections to sequential testing and sequential confidence sets.

This paper provides general solutions to (i) and (iii) and several related
problems. The answer to question (1.2) turns out to be m = 2.241%0¢ /¢2, for
example. In Section 2, the limit distribution of ¢2N, is found in the i.i.d. case,
under natural conditions, also in the more laborious p-dimensional case,
where a result is reached for a general distance function [|6, — 6,(. The limit
distribution is that of the maximum of a certain squared mean zero Gaussian
process. Section 3 demonstrates that these natural conditions are fulfilled in
important classes of cases, including smooth functions of averages and maxi-
mum likelihood estimators. Comparing estimators in terms of limit distribu-
tions for their N.’s is seen to lead to the familiar expression of asymptotic
relative efficiency, that of a ratio of inverse variances, in the one-parameter
case. Our arguments establish still another asymptotic optimality property for
theparametric maximum likelihood estimator sequence, also in the p-parame-
ter case: No other sequence will have its tail stochastically faster included in a
given e-neighbourhood, regardless of distance measure used.
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In Section 4, a somewhat more involved problem is solved, that of obtaining
a limit distribution theorem for the last n for which the supremum distance
|F, — F|l exceeds &, where F, is the empirical distribution function, that is, for
the last n in the Glivenko—Cantelli theorem. A certain optimality property for
F, is established. Section 5 considers the N, problem in a different context,
that of nonparametric density estimation. In this situation, £2N, goes to
infinity; it is £5/2N, which has a limiting distribution. Section 6 goes back to
the situation of Sections 2 and 3, is technical and demonstrates the conver-
gence of s2EN, to the appropriate limit, again under natural conditions.

In Section 7 the general methods of earlier sections are used to establish
convergence results for other natural quantities related to the full estimator
sequence, like @,, the number of times the estimator misses with more than e.
Once more there is an asymptotic optimality property for the parametric
maximum likelihood method: No other estimator sequence has stochastically
fewer s-misses. And a result obtained for nonparametric density estimation is
that the best smoothing parameter for the kernel method, in the sense of
leading to the fewest e-misses as well as to the smallest last n, is equal to
1.008 times the traditional suggestion. Finally Section 8 contains a number of
additional results and remarks.

These problems have only rarely been discussed in the literature. Bahadur
(1968) considered a variable similar to our N, and indeed asked (page 307)
“What else can be said about N, [than that it is a.s. finite], especially for very
small £?” He derived only a log-log law for N,, however, and failed to find
what he [also] was searching for (page 308): a simple N,-related criterion for
comparison of estimators that would be equivalent to the traditional measure
of asymptotic relative efficiency. We find such a relation, however, as men-
tioned above; see (2.5) and (7.2). Robbins, Siegmund and Wendel (1968) found
in effect the limit distribution of ¢2N, for a one-sided version of the problem,
but only in the case of a simple average of zero mean unit variance variables.
They phrased their result in the more probabilistic guise of the last exit time
for sample sums S, outside the linear ne boundary. Kao (1978) generalised
some of their results and proved convergence of moments under minimal
conditions, but still only in the probabilistic random walk case just mentioned,
which in our statistical reformulation corresponds to estimators of the simple
i.i.d.-average form. Some results of Miiller (1968, 1970, 1972) also turn out to
be related to some of ours, as explained in Remark (i) in Section 2. Finally,
Stute (1983) proved a more statistically inspired result, similar to ours of
Section 2, but only for certain M-estimators of a simple one-dimensional
location parameter. We emphasize that our results cover general classes of
multidimensional estimators (and even an infinite-dimensional case, in Section
4) as well as general distance measures.

Our results give natural asymptotic relative efficiency measures for compar-
ison of estimators, like (7.2) in the p-dimensional case, but are of first order
arid cannot distinguish between competing sequences with the same first order
limit distribution. Some second order results are in Hjort and Fenstad (1991)

and Hjort and Khasminskii (1991). These lead to measures of asymptotic
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relative deficiency in cases where the asymptotic relative efficiency is 1, and
make it possible to exhibit estimator sequences that in the second order sense
have the smallest possible expected number of ¢-errors; see also 8E.

2. Limit distribution of ezN:. A simple but fundamental lemma is the
following:

LemMmA. Consider i.i.d. variables Z; with mean zero and variance 1 and let
S, =X7?_.Z, Then

(2.1)  Vm suplS,/nl >4 We = sup|W(¢)/t| =; max |W(s)l,

nx=m t>1

where W(-) is the Brownian motion process.

Proor. By Donsker’s theorem, S,/ Vm converges in distribution to
Brownian motion W(¢), a Gaussian mean zero process with independent
increments and covariance function min(s, ¢), in each of the function spaces
DI[b, cl; see, for example, Billingsley (1968). Hence Vm S[m,]/[mt] tends to
W)/t in D[1,c]; from which it follows, by continuity of the supremum
mapping, that

W(t)

; =4 Sup IW(S)I

c l<s<1

Vm  sup

m<n<cm

S S ..

——n' = sup \/HI—MI -4 sup
n 1<t<c [mt] 1<t<c
[employing the trick that W*(s) = sW(1/s) is a new Brownian motion]. The
stronger statement of the lemma follows from this provided we can demon-
strate

Y, = lim sup Pr{\/ﬁ sup |S,/n| > 6} -0

m — nxzcm

as ¢ grows to infinity, for each given positive §; see, for example, Billingsley’s
(1968) Theorem 4.2. But vy, < 6.75/c52 as a consequence of a special case of
inequality (6.4) stated and proved in Section 6. O

This proves useful. Assume that a one-dimensional §, admits a representa-
tion of the type

(2.2) b, 0,=0,Z,+R,,

where Z, = S,/n is the average of Z;’s that are i.i.d. with mean zero and
variance 1, o, is the standard deviation of the limiting distribution and R, is
the fesidual noise, typically of size O,(1/n). Define N, as in (1.3), let y > 0 be
given and let m and y, =y be as in (1.4). Then, when ¢ — 0, which is the
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same as m — o,

Pr{e?N, > y} = Pr{N, > m}
= Pr{\/ﬁ sup |6, —.0| = \/y_o}

nx=zm

= Pr{ao\/ﬁ sup |S,/n + o5 'R, | = ‘/_}?._} - Pr{«rOWmalx > \/.;},
n=m

provided the R,’s are small enough. What is required is precisely that the

difference between Vm sup, . ,,l008,/n + R,| and a,/m sup, . ,,IS,/n| goes

to zero in probability as m tends to infinity. For this it suffices that

(2.3) D, =Vm sup |R,| -, 0,

nxzm *
since the absolute value of the diﬁ'erencg is dominated by D,,. [Note that
the requirement for convergence of Vn (6, — 6,) to N(0, o) is the weaker
VnR, - » 0. Accordingly, we have the basic result

(2:4) &N, =4 g W

for any estimator that admits representation (2.2) under condition (2.3). The
next section demonstrates that (2.2) with (2.3) hold for smooth functions of
averages and for maximum likelihood type estimators.

ReMaRks. (i) The lemma was proved using just familiar D[1, c]-conver-
gence and an extra inequality for vy, to take care of [c, ). An alternative and in
some sense more elegant approach is to demonstrate convergence in distribu-
tion of S,/ Vm to W(¢) on the full halfline [0, ), in some appropriate metric
space of functions, and then apply the x(:) — sup,.,|x(¢)/¢| mapping. One
‘appropriate space’ is that of all right-continuous functions x(-) with left-hand
limits satisfying x(0) = 0 and lim, _,, x(¢)/¢ = 0, equipped with the topology
induced by the norm sup, . olx(¢)| /max{1, ¢}. Convergence can indeed be proved
using the tail inequality for vy,, and is also related to what is proved in Miiller
(1968); see also Miiller (1970, 1972).

(ii) Note that the limiting distribution in (2.4) is only dependent upon o,
and that the competition criterion of achieving the stochastically smallest limit
distribution for N, becomes equivalent to that of achieving the smallest
possible limiting variance.

(iii) Another optimality property for the maximum likelihood estimator:
Consider estimation in some given parametric model. From the previous
remark it is clear that under traditional regularity conditions (see Section 3),
no other sequence of estimators will have its tail {§,: n > m} included in a
given neighbourhood stochastically faster than the sequence of maximum
likelihood solutions. Of course the same is true for the rather wide class of
estimator sequences that are asymptotically equivalent to these, like Bayes
estimators.
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(iv) Asymptotic relative efficiency: Let én , and 5,, o be two estimator
sequences, both strongly consistent for 8, and suppose \/— (0 — 0,) tends to
N, o ) for j = 1,2. The traditional notion of asymptotic relatlve efficiency
(ar.e. ) is the limiting ratio of sample sizes needed by method 1 and method 2
to achieve some desirable accurdcy. The classical formula for the a.r.e. of
method 2 w.r.t. method 1 is a.r.e.= 02/02, motivated from approximate risk
or from approximate length of confidence intervals; see Serfling [(1980), page
50-52]. This measure also plays a natural role in the Pitman approach to
comparing test statistics; see Serfling’s Section 10.2. Define last n variables
N,, and N, , for the two estimator sequences. The ratio of sample sizes
viewpoint invites the following as natural measures of asymptotic relative
efficiency:

(2.5) lim med{Ney) _ -‘—T—l2-=are limENE:1=gf=are
©) S med(N,,) oz 2T REN, e 0T

(see Section 6 for convergence of moments). This provides fresh and indepen-
dent motivation for the a.r.e. measure; see also 7A, 7B and 8E.

Let us now turn to the p-dimensional case. Let N, be defined as in (1.3) but
with respect to some given distance function (|6, — 6/l in %P, for example,
ordinary Euclidean distance. We have primarily distances of the type {(x —
yYA(x — y)}'/2 in mind, where A is symmetric and positive definite, but
require only that ||x|| is a function on p-vectors with the properties [lx + y|| <
llxll + llyll, llll = O if and only if x = 0, ||lx,, |l = |lx[| when x, — x, llax|l = |alllx|l
for scalars a and [lx|l = [(xy, ..., %)l < cZP_,lx;| for some constant c. See 8D
for other distances.

THEOREM. Suppose that

o 1n
(2.6) 0, — 0, =2y W > Z +R,,
i=1

where the Z;'s are i.i.d. with zero mean and the p X p identity matrix as
covariance matrix. Suppose further that

(2.7) D, = Vm sup | R, | -, 0;

n=zm
in particular Vn (8, — 09) >4 N0, %,). Let G,(s) = 3F/2W(s), where W(s) =
(Wi(s),...,W,(s)) is a vector of p independent Brownian motions, each evalu-

ated at the same s. Then, as € tends to 0,

¢

2
(28) &N, >y G2 = { sup [G,(s)[} = sup [ZH2W(s)].
O0<s<1 0<s<1
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Proor. Somewhat more elaborate arguments are necessary now. We prove
first that

(2.9) Vm' sup [3/2S,/n] =4 Gy max = sup [S2W(s)|,

n>m 0<s<1
where again the S,’s are partial sums of the Zs. Observe first that the
stochastic process (S1 (mey)/ VM Vm . Sp,(me,)/ Vm \/_ Y, where S;, is the jth
component of S,, converges to (Wl(tl) W(t )) in each D[b c]” equipped
with the product Skorohod topology. [Thls p-varlate version of Donsker’s
theorem follows from the 1-variate theorem by tightness and finite-dimen-
sional convergence.] By the continuous mapping theorem, 3Y/2/m m S|/ [mt]
converges to 3i/?W(¢)/¢ in D,[1,c], the space of all right- contlnuous func-
tions [1, c] — 9?” with left-hand limits, equipped with the Skorohod topology.
And since the supremum mapping is continuous also,

Vym sup ||2¥2%S,/n| =Vm sup "2%,/2S[mt]/[mt]||
m<n<cm l<t<c
-, sup [S2W(e)/t] =, sup [2FPW(s)].
l<t<c cl<s<1

Claim (2.9) follows since v, = limsup,, _,,, Pr{ym sup, . .I|2/2S,/nll > 8}
tends to 0 as ¢ grows, by a simple inequality relating this quantity to a sum of
p one-dimensional analogues; see the proof of the lemma.

The rest of the proof follows from (2.9) and regularity condition (2.7). For
let again m and y, be as in (1.4). Then

Pr{e’N, > y} = Pr{\/—nf sup ||24/2S,/n + R, | = \/5/;}
n=m
is seen to converge to Pr{sup, ., ..I252W(s)ll = y/y}, which is the same as
€N£1/2 -4 Gp,max or EZNE -4 G}?’max. O
In a parametric model the maximum likelihood estimator sequence achieves
the smallest possible limit covariance matrix and therefore also achieves the
stochastically smallest possible limit distribution for N, regardless of distance
measure [|6, — 8,ll, see Remark (iii) above for the one-dimensional case.

CoROLLARY. Let conditions be as in the theorem and let 16, — 6, = (o, -
0,) 20 X8, — 0,))'/2 be 3. -weighted Mahalanobis distance. Then

(2.10) Vm sup ||§,, - 00“ =4 Xp.max and e2N, >, X}zz,max’

n=zm

as, respectively, m — © and & — 0, where x2 ... = max,_, ., LF_,W(s)*.

In particular the limit distribution is the very same one in each estimation
problem with p parameters. One can prove that (2.10) continues to hold when
3, is replaced by a strongly consistent estimate E (2 -, 2o does not
suffice). Details are in Hjort and Fenstad (1990).
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The (in some sense) natural extension of (2.5) to the p-dimensional case
would be ar.e.= EH(3,)/EH(3,), where H(3) = max,_,_; W(s)ZW(s),
since ¢2EN, » EH(Z) under Euclidean distance. There is no simple formula
for EH(Z), however. A simple explicit a.r.e. measure emerges in 7B.

3. Applications to special cases. In this section we confirm that the
necessary regularity conditions (2.6) and (2.7) indeed pertain in the usual
situations, both under parametric and nonparametric circumstances. In the
one-dimensional case, suppose that 5n admits the representation

A 17 1 »
(31) an_00= _E UOZi+Rn’ Rn=6n = ;Z
n =

where the U,’s are i.i.d. with mean zero and finite variance and §, — 0 a.s.
Then (2.3) holds, since

D, = Vm sup |8,U,| < sup|5,lVm sup|T,| -, 0,
n=zm n=zm n=m

in that the second term has a limit in distribution, by the lemma of Section 1,
and the first term tends to 0 in probability, by the definition of §, — 0 a.s.
There is a similar result for the p-dimensional case: If (3.1) holds, with X,
replacing of and where the U;’s are iid. vectors with mean 0 and finite
covariance matrix and §, is a matrix with components that all tend to 0 a.s.,
then D,, of (2.7) tends to zero in probability. This follows essentially by the
one-dimensional argument. To see this, let norm(3§,,) be the matrix norm of §,,,
defined as the maximum of ||§, x|l over ||x|| < 1; for Euclidean distance-norm
norm(é,) is equal to the largest eigenvalue, for example. Then ||5,T, Il <
norm(6n)||l7n||, which goes a.s. to 0 by the continuity of the || - || norm.

3A. Smooth functions of averages. Suppose 6, =h(B,) and 6, = h(b),
where B, is the average of i.i.d. variables B, with EB; = b and Var B; = 2. If
h has a continuous derivative in a neighbourhood of b, then

Vn (8, — 0o) = K(b)Vn (B, — b) + {k(b,) — k'(b)}Vn (B, — b)

for some random b, between b and B,. This is as in (3.1) with 6, = r(b,) -
K (b). But it is easy to see that §, — 0 a.s. by the strong law of large numbers
for B,. Hence (2.4) holds, with o = h'(b)2 2, More generally, suppose 6,

-d1mens1onal and that 0 =h (Bn -y B, ) for j=1,...,p, for r aver-
ages of ii.d. vectors (B, ... B Y with mean b =(by,...,b,) and finite
covariance matrix 7T, and let h (b) 0o, ;- If only hy,..., h, have Jacobi

matrix J(x) with partial derlvatlves dh (x)/dx, that are continuous in a
neighbourhood of (b,,...,b,), then (2.7) holds. And this implies (2.8) with
3o = J(B)TJ(b).

_ Exampie 1. Suppose X, X,,... are iid. with finite sixth moment. Then
6, =1/n)L? (X, — X)? the natural and strongly consistent estimator of
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0, = E(X; — EX,)?, is a smooth functlon of the sample averages of X;, X2 X3
and e2N, >, o Wmax, where o2 is the limit variance of Vn (6, — 6,). [In fact,
0 =9 + ag — 6a, — al)r® where a, = E(X; — EX,)? /7P and r is the stan-
dard deviation for X;.]

3B. Maximum likelihood estimators. The typical argument that leads to a
limit distribution result for the maximum likelihood estimator uses Taylor
expansion to get

(3.2) Vn (8, — 6,) = J; 2 U(X;) >4 N,{0,J51},

where U(X;) = dlog f(X;,0,)/0 is the score function and J, —, J,, the
variance matrix for U(X;) computed under f(x,8,), that is, the familiar
Fisher information matrix. It follows from previous arguments that (3.2) also
secures convergence in distribution of 2N, as in (2.8), with 3, = J;!, pro-
vided there also is a.s. convergence J, — J,. But this is true under weak
conditions. It is, for example, not difficult to prove that the conditions used in
Lehmann’s (1983) Section 6.4 suffice.

One can also prove that if the model specifies f(x, #), but the true density
f does not belong, then (2.8) holds again under mild regularity conditions,
but with a different interpretation of 6, and a different matrix. The 6, that
now enters is not ‘“‘true,” but rather ‘““‘least false’” or ‘“‘best fitting” and
can be characterised as the parameter value that minimises the Kullback—
Leibler distance d[ f: f(-,0)] = [f(x)log{f(x)/f(x,6)}dx. Furthermore, 3, =
JyK,Jy !, where K, is the variance matrix, under the true f, of the score
function computed at 6,; and J, is minus the expected value, under the true
f, of the twice differentiated log-density also computed at 6,. If the model
happens to be perfect, then 6, deserves to be called ‘“true” and J, = K,
Proofs and discussion of these claims about maximum likelihood under the
agnostic viewpoint can be found in Hjort [(1986), Chapter 3].

ExampLE 2. Consider again maximum likelihood estimation in a given
parametric family f(x,6). Let distance be measured in the invariant Maha-
lanobis way, 16 — 0 oll?=1(0 —0,YJ)(8 — 6,), and let N, be the last n for
which 11§, — 00|| > &. Then ¢2N, tends to max,_,_, W(s)’JO 12K \J 5 12 W(s)
(which is Xp, max if the model is correct). For a specific example, sup-
pose the model specifies the normal density f(x,8) = f(x, u, o), but assume
only that the true [ is symmetric with finite fourth moment. Then the
least false parameters are u,= E;X; and o, = stdev; X;. One also finds
Jy 12K J ;12 = diag(1,1 + B,/2), where B, = E{(X — u,)/oo}* — 3 is the
kurtosis. Hence ¢2N, tends to max,_,_{W(s)? + (1 + B,/2)W,(s)?}, where
W1 and W, are independent Brownian motions.

ExampLE 3. Let (Yy,...,Y,) be multinomial (n,6,,...,6,), with ):" 0, =1
and ©?_,Y, = n. Let N, be the last n at which TP (6, - 0, .)2/0; > €2, where
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b, =Y, ;/n is the usual maximum likelihood estimator of 6;. This corresponds
in fact to measuring distance from (01,..., 1) to (01,..., ,—1) in the
Mahalanobls way; see the Corollary ending Section 2. Hence e2N, tends to
XZ_1, max- The same is true if ;s are replaced with 6,’s in the denomlnators
see Section 8F.

3C. Differentiable functionals. In many situations, the estimator 5n can
be thought of as a functional T evaluated at the empirical distribution
function F,, while the true parameter 6, correspondingly is equal to T(F)
for the true F. Suppose T is so-called locally Lipschitz differentiable at F
w.r.t. the supremum norm ||G — F|| = sup,|G(x) — F(x)l which means that
T(G) — T(F) = (I(F, xXdG(x) — dF(x)} + O(IG — F|)®), featuring the in-
fluence function I(F,x) = lim__, {T'((1 — ¢)F + €§,) — T(F)}/e. This might
be interpreted as a reasonable minimum amount of smoothness on the part of
T(-). Examples are given in Shao (1989), including general L- and M-estima-
tors. In particular the somewhat nonsmooth median functional is still locally
Lipschitz differentiable. Under this assumption it holds that

n 1
b — 9, = —ZI(F X,) + O(IF, - F|?).
i=1

But it is known that |F, — F||> < Kn~!loglog n a.s., for some large K; see,
for example, Shao (1989). It follows that |[R,| < K'n~! loglog n in representa-
tion (2.2) and this implies (2.3). Consequently (2.4), or (2.8) in the p-dimen-
sional case, are true for functionals that are locally Lipschitz differentiable.

4. The last n for Glivenko-Cantelli. Let X, X,,... be independent
from some continuous F and let F, (¢) be the empirical distribution function
(1/n)?_ KX, < t} based on the first n data points. Then

Vym sup |F,(¢) — F(t)| =4 (F(£)(1 = F(£))} " *Waser
(4.1) n>m

e2N,(t) =4 F(2)(1 - F(2))W2,,,

by previous efforts, where N,(¢) is the last n for which |F,(¢) — F(¢)| > . Can
we obtain similar results for the supremum distance ||F, — F|[?

The answer to these somewhat more involved questions must involve
asymptotic arguments in n and ¢ simultaneously. Let K(s,?) be a Kiefer
process on [0, ) X [0, 1]. This is a two-parameter zero mean Gaussian process
with continuous sheets and

(4.2) cov{Ko(51, 1), Ko(82,85)} = (81 A 82) (81 A £y — tit5).

It behaves like a Brownian bridge in ¢ for fixed s and like Brownian motion in
s for fixed ¢. Note that K(s,t) = sK,(s™!,t) is another Kiefer process.
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THEOREM. Let N, be the last n at which ||F, — F|| > ¢ and let K, be the
maximum of |K(s, t)| over the unit square [0,1] X [0, 1]. Then

‘/n_l sup "Fn _-F" 4 Kmax and €2Ne 4 Kx%la.x’

nx=zm

as, respectively, m — « and ¢ — 0.

Proor. Considerations involving the inverse transformation X! = F~X(¢,),
where the ¢;’s are i.i.d. from the uniform distribution F(¢) = ¢ on [0, 1], reveal
that the distribution of the full sequence of ||F, — F|l is equal to that of
| F, o — Foll, where F, , is the empirical distribution of the n first ¢’s.
Accordingly we might as well take F to be F, from the outset, and this
simplifies matters below.

The Le Cam-Bickel-Wichura-Miiller theorem states that the process

1 [ms]
Ku(s,t) = 7= §1 [H{X; <t} - Fo(¥)] = —[Tnl_nj—]{'F[ms](t) -t}

converges in distribution to K(s,¢) in D{[b, c] X [0, 1]} with the Skorohod
metric for each [b, c] interval; see, for example, Shorack and Wellner [(1986),
Chapter 3.5]. For us it is more convenient to study

m
H,(s,t) =Vm {F, () —t} = mKn(s,t) -, s Ky(s,t) = K(s7L,¢).
[The (4.1) results follow anew from this.] By the continuous mapping theorem,

Vm sup | F, — Fo| = sup sup |H,(s,t)| =4 sup sup |K(1/s,2)| =K -
n=m s>1 0<t<1 s>10<t<1

Reasoning once more as in (1.4), we also obtain &N, —, K2 .. This inciden-

tally also gives a sequential fixed-width nonparametric simultaneous confi-

dence band for F.

The argument presented here is heuristic at one point, since convergence in
distribution of the H,, process is only guaranteed on each [1,c] X [0, 1].
Therefore only convergence of Vm sup,, -, .| F, — Fll to the maximum of
IK(s,t)| over [1/¢,1] X [0,1] is rigorously proved, so far. What needs to be
ascertained is that

(4.3) Y, = lim sup Pr{\/ﬁ sup | F, — Fy| = 6} -0 asc—

m— o nx=cm

see Billingsley’s (1968) Theorem 4.2 and the corresponding technical point in
the proof of the lemma of Section 2. It will suffice to prove

(4.4) Pr{\/ﬁ sup | F, — Fy|| > b} <A/b* forall band m

nxzm

for some large enough constant A, since this implies y, < A/c?6*. [An alterna-



480 N. L. HJIORT AND G. FENSTAD

tive route is to prove weak convergence in some appropriate function space on
[1, ) X [0, 1], with suitable metric. A result of Miiller (1970) is of this type. Yet
another way is via strong Hungarian approximations, as pointed out to us by
David Pollard.] ]

To prove (4.4) we shall usé general fluctuation inequalities provided by
Bickel and Wichura (1971) for two-parameter processes. For neighbouring
blocks B and C in the unit square, one can show E{K,(B)’K,(C)% <
3u(B)u(C), where u is Lebsegue measure, see Shorack and Wellner [(1986),
Chapter 3.5]. This implies Pr{sup, ;o 1K ,.(s, D)l > b} < A/b* for some uni-
versal constant A, by Bickel and Wichura’s Theorem 1 in conjunction with
their inequality (1). But

1 n
5\5’7 max |F, - Fo| <Vm max —IE, = Foll

m/2<n<m m/2<n<m
n
s\/ﬁmax—||Fn—F0||= sup |Km(s7t)|‘
ns<m m s,tel0,1]

This is soon translated into Pr{ym max,, _,, o lF, — Foll = b} < A/(b/ V2)*
for all m and b. Let 2 <m < 2**', Then the left-hand side of (4.4) is
bounded by the sum of Pr{V2¢ maxyi_, gi+1llF, — Fyll > \/Eb/ Vm}for i > k.
Bounding each of these in the way just described gives at the end of the night
(4.4), with constant 64 A /3, which concludes our proof. O

The two-parameter stochastic process approach is very powerful and
allows us to reach other related results as well. As but one example, let CM2 =
AF(t) — F()}* dF(¢) be the Cramér-von Mises statistic. Using the H,, pro-
cess from the proof above we have

m sup CM2 =, suplem(s, t)?dt >, sup flK(s, t)2 dt = A2,
nxm s>1°70 0<s<170

We also have 2N, - A% if N, is the last n where CM, > . [Ways of

simulating the distributions of A> and K,_, are described in Hjort and

Fenstad (1990).]

ASYMPTOTIC OPTIMALITY OF F,. Are there estimators better than F,, as
measured by expected smallness of N, as ¢ tends to 0? The answer to this
question is no, if one rules out the superefficiency phenomenon. This follows
from the Hajek convolution type representation theorem for limit distributions
for Vn (F, — F) proved by Beran (1977), in conjunction with the arguments
used above.

5. The last n for nonparametric density estimators. Consider a
kernel type estimator f,(x) = (1/n)L?_;K(x — X;)/h,)/h,, for the unknown
density f(x) based on the first n data points in an i.i.d. sequence. What is the
size of N,, the last time [f,(x) — f(x)| > &? Techniques from Sections 2 and 3
can be employed to reach a limit distribution result though some extra care is
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needed since %, varies with sample size (the minimum requirement for strong
consistency is kA, — 0 and nh, — ).

Suppose f has two continuous derivatives around the given x and
let the kernel density K have mean zero and unit variance and finite Bx =
[K(u)?du. Let h, = cn™'/%, well known to be the optimal rate. Study Z,(t) =
m?/ % fi,n(x) — f(x)} for the fixed x. It splits into a bias term b,,(¢) and a zero
mean term Z2(¢). The first can be seen to converge to the function
c2f"(x)/(2t?/5), uniformly over finite ¢-intervals. The second can be proved
to converge in distribution to a Gaussian zero mean process with covari-
ance function of the form c~'g(s/t)f(x)/t*/®, where in fact g(z) =
2% K(u)K(2'°u) du. Hence

Z,(t) »a 2(2) = [33"(x) + ¢V (2)V2V(1)] 127

for a certain normal zero mean stochastic process V(-) with constant variance
Bk. From this result, using arguments parallel to those of Section 2, it is not
difficult to derive

5/2
&2, >y 232 = {sup|Z(1)]}
t21

How should ¢ in cn~'/5 be chosen? The approximate mean squared error is
h*f"(x)?/4 + Bx f(x)/nh and is minimised for A, = c,(x)n"'/5, where
co(x) = {Bx f(x)/f"(x)*}'/%. One version of the variable kernel approach to
density estimation is to aim for this value, using a smooth pilot estimate to
reach éy(x), say. We could try to make EN, as small as possible by making
EIZ@®))”? as small as gossible. But this expectation can be written
a~%/*Ela®/%/2 + N(0,1)|>/* times other terms not depending on ¢, where

= ¢/cq(x). Careful numerical integrations reveal that minimum occurs for
a, = 1.008. Hence 1.008¢,(x)n~"'/® is best from the EN, point of view; see
also 7D.

The derivative of f is even more difficult to estimate with good precision.
This is reflected in high values for N/, the last n for which |f,(x) — f'(x)I
exceeds ¢. By techniques similar to those sketched above, one can prove that
¢"/2N! tends to some appropriate (Z,,)"/? in distribution.

It would be interesting to reach results for N.’s connected to global deviance
measures like [(f, — f)?/fdx or the statistically natural but technically dif-
ficult [|f, — fldx as well. Techniques from Bickel and Rosenblatt (1973) would
be appropriate but we have not pursued this.

6. Convergence of moments. We have proved that ¢2N, —, o¢ W2, (in
the one-dimensional case) and it is clear that ¢2EN, should tend to odEW2,,
under conditions pertaining to uniform integrability. The present section
derives this and a couple of related results under natural conditions.

“We should like to prove

E&?N, = fw Pr{e?N, > y} dy — fw Pr{c¢W2,, >y} dy = EaiW_2,,
0 0
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and this holds by Lebesgue’s theorem on dominated convergence provided we
can bound

Pr{e?N, > y}
(6.1) _ A ] _ 2 _ 2
—Pr{\/m supl0n—00|2 \/yo}, m = y/e*), Yo =me7,

nx=m
with some integrable function uniformly in ¢. A sufficient condition is there-
fore that for some positive &,

6.2) Pr{Vm supl|f, — 0,| >a} < K/a?>** when0 <a/Vm <&
n 0 0

nxm
for some positive A and some companion constant K.
We start with the simplest case 6, — 6, = 0, S, /n, with partial sums of Z,’s
that are i.i.d. with mean zero and variance 1, as in the lemma of Section 2.

LeEmMMA. Suppose EIZ,»IZH‘ < o for some A > 0. Then there is a constant
Co., Such that
(6.3) E|S,|*** < ¢y, ,n***/?E|N(0,1)] for all n

(and c,.., can be replaced by 1.001 if we change “for all n”’ to “for all large
n”’). Furthermore,

2+

2+A

n

5T forallmand a.

} 6.75¢,, ,E| N(0,1)]
>2a;) <
a

(6.4) Pr{\/—n? sup

nx=m

Proor. Of course S,/ vVn —, N(0,1). Results from von Bahr (1965) can

be used to show E|S,/ Vn |>™* = EIN(, DI*** + r,, where |r,| < M/ Vn for

some M. In particular there is convergence and (6.3) (with accompanying

parenthetical remark) follows from this. As a step in the rest of the proof we
utilise a generalisation of Kolmogorov’s inequality, namely

Pr{ max|S;| > a} <E|S,|***/a?**,

which can be found in Loéve [(1960), page 263], for example. Let ¢ > 1,
suppose q* <m < ¢q**!, and let us abbreviate c,,,EIN(0,DI*** with K.

Then
S

n

n>m q15n<qi+l

o a i
Pr{\/—rﬁ sup Za} <y Pr{ max |S,| > _fl_}
ik Vm
© K(qi+1)1+/\/s

IA

K 1+A/2,,1+4/2 = (l)i(lﬂ/z)
= m q > | —
24+
a i=x \ 4

K q3+3r/2

= 2+

a q
The best value of g corresponds to g'**/2 = 3 /2 and the result follows. O

1+A/2 _ 1 :
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Note that the right-hand side of (6.4) becomes 6.75/a® for A = 0; this was
needed in the proof of the lemma of Section 2. Robbins, Siegmund and Wendel
(1968) have inequality (6.4) for this simplest A = 0 case (but with constant 8
instead of 6.75). )

This basic lemma can now be used to prove Ee2N, — 1.832¢¢ in various
situations. Consider smooth functions of averages. Suppose én = h(B,) esti-
mates 8, = h(b), where B, is the average of i.i.d. variables B; with mean b
and variance 72 as in Section 3A. In particular, 2N, -, o¢W_2,,, where
o2 = K(b)?r2, if only h has a continuous derivative around b.

THEOREM. Suppose in addition that E|B,|>™ is finite for some positive A.
Then e2EN, - 2Goé, where G = 0.915966 ... is the Catalanian constant (see
Section 8A). .

Proor. We are to prove (6.2). This is very immediate if 4’ is bounded, but
some care is needed to cover all the interesting cases where k' is unbounded,;
see Example 1 of Section 3A. With notation as in Section 3A we have

Pr{\/ﬁ sup |§n - 00| > 2a}

nzm

< Pr{m sup |K(b)(B, - b)| = a}
n=zm
+ Pr{\/z? sup |(#(8,) — ' (5))(B, - b)| = a}
K'|K(b)[*" r2+A _ _
< I (agl)‘ 7 +Pr{\/1; supp(|Bn—b|)|Bn—b| za},
nzm

where K’ is a new constant and writing p(r) for the maximum of |#'(x) — h'(b)|
as |x — bl <r. Let &, be such that p(r) <1 when r <¢, [we even have
p(r) > 0 as r - 0] and let g(r) = p(r)r, a continuously increasing function.
The second term above is bounded by

K/T2+A
P B,-b|> —l(i)}_ el
r{:ggl 22 Vm = {‘/Hg—l(a/‘/E)}z

which again is bounded by K'72*2/a%**  provided ym g Ya/Vm) = a, or

a/Vm > gla/Vm), or 1 = p(a/ Vm). But this holds when a/ Vm < &,, which
proves (6.2). O

This result extends without serious difficulties to p-dimensional 4, being a
smooth function of r averages. With notation as in Section 3A the proviso for
correct convergence of Ee2N, is finiteness of E|B; jlz”‘ for some positive A for
j=1,...,r. One may also look for conditions in the maximum likelihood
estimator case. The essential requirement is E|dlog f(X;,0,) /B(le2 A < o for

j=1...,p.
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7. The number of e-misses. We have been able to reach rather general
and elegant results for N, by the stochastic process approach, working with
Vm (67[,,1t 6,) and its llmltlng process o W(¢)/¢t. This approach can also
successfully be applied to other random nonobservable quantities of interest,
thereby broadening the perspective.

TA. The one-dimensional case. To illustrate this point, consider @,(a), the
number of times among n > a/s2 where |0, — 6, > &. Then

(7.1)  €?Q.(a) =4 03Q(a/0f) = ogu{t = a/ad: |W(t)/t] > 1},

in which u is Lebesgue measure on the halfline. This can be proved as follows,
under conditions (2 2)-(2.3). Write @.(a) cleverly as [, /.2, I{|9[31 6ol = €} ds,
then let m = 1/£2 and change to ¢ = s/m. After tending to details similar to
those of Section 2, the result is

2 = ] — > -

£“Q.(a) j;ma>/ml{‘/_”7|0[mt1 ool 2 1} dt =4 f Hoo|W(t)/t| = 1} dt
and the limit can be rewritten as 02Q(a/o¢) above. There is also simultaneous
convergence in distribution of (¢2N,, £2Q.(a)) to oZ(sup, . ,|W() /1%, Q(a/cd)).
This follows by measurability and a.s. continuity of the appropriate functionals
on Dla, b]-spaces and an extra argument to take care of the tail. It can also be
proved via the continuous mapping theorem on the function space on [0, »)
described in Remark (i) of Section 2. These results can also be proved for
a = 0. We leave the details out, but regularity conditions (2.2)-(2.3) suffice
once more. In particular, ¢? times the total number of s-misses goes to
o2Q(0) = o2uft = 0: |W(t)/t| = 1}. Note that EQ(d) = E(x? — b)I{x > b},
using Fubini’s theorem. In particular, EQ(0) = 1 and EQ(0.95) = 1/2, which
means that the estimator sequence has about 1/(2¢2) misses of size oye for
n < 0.95/¢2 and about 1/(2¢2) misses of size oy¢ for n > 0.95/¢2. We men-
tion finally that Kao (1978) has the £2@,(a) result, but only for the special case
of simple i.i.d. averages and a = 0.

7B. The multidimensional case. One result is the following, under condi-
tions (2.6)~(2.7): Let @, (a) be the number of times, among n > a/e2, where
(6, — 6,Y35%b, — 6,) > &2, with notation and conditions as in the theorem of
Section 2. Then 2@ (a) tends to Q(a) = u{t > a: LP_,W.(¢)? > t?}). Note that
Q(a) has mean value E(y2 Xs — a)I{x? X7 = a}, which is easy to compute. In
particular, the total number of e-misses for the estimator sequence (with the
Mabhalanobis distance) is about p/e2.

Another result with two interesting consequences is as follows: Let distance
function and conditions be as in the theorem of Section 2 and let @, be the
total number of |16, — 6yl > ¢ cases. Then £2Q, tends to @ = u{t > 0:
I25/2W(t)/tll = 1}. Our first point is yet another asymptotic optimality prop-
erty for the maximum likelihood sequence: In the limit, as ¢ — 0, provided the
underlying parametric model is correct, no other estimator sequence has
stochastically fewer e-misses. Our second point is that EQ can be computed
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and leads to an a.r.e. measure in the multidimensional case; see the discussion
that led to (2.5) and the end remark of Section 2. Taking |x — y|| = {(x —
yYA(x — y)}/2, the mean of Q is [fPr{W(t)3}?A3LY/2W(t)/t > t} dt, which
becomes EZ'3(/?A3(/?Z, where Z ~ N,(0,1,). Hence EQ = Tr(AZ,). One
can also prove convergence of ¢2EQ, to EQ under conditions that are in fact
simpler than those of Section 6. Suppose Vn (4, ; — 8,) =, N(O,3,) for j =
1,2, and let @, ; be the number of ¢-misses for method j. Then the arguments
presented before (2.5) suggest

. EQ,, Ti(A3)
(7.2) ar.e.= 811_13) Q. , = Tr(A3,)

Under ordinary Euclidean distance, a.r.e. becomes Tr(3,)/Tr(Z,); see also 8E.

7C. The number of e-misses for Glivenko—Cantelli. Consider the more
complicated situation of Section 4. Let @, be the number of times ||F, — F|| > &.
Combining arguments above with those of Section 4, one can show that
£%2Q, >, @ = ufs: A(s) > 1}, in which A(s) = max,_,_,I1K(s,?)/s|. But, for
fixed s, Ky(s, - )/s is distributed like W°(-)/ Vs, where W°(-) is a Brownian
bridge, so that A(s) =; [W°||/ Vs, where |[W°|| is the maximum of |[W°(¢)|.
This leads to EQ = /& Pr{lW°|| > Vs}ds = EIW°||* = w2 /12. Accordingly, the
full estimator sequence will have about 0.822/¢® cases of |F, — F| > e.
Similarly, ¢2 times the total number of cases of [(F, — F)?dF > &% will
converge in distribution to a variable with expected value 1/6. And for a final
example of a nontrivial result reached using these methods, let @* denote the
number of [|F, — F|dF > ¢ cases. Then ¢2@Q} tends to an appropriate @* and
e2EQ* tends to EQ*, which can be proved to be equal to E{/q|W °(¢)| dt}?, and
which is found to be 7/60 by quite strenuous calculations.

7D. The number of s-misses for a density estimator. Let finally @, be the
total number of times |f,(x) — f(x)| > ¢ in the density estimation problem
considered in Section 5. Analysis similar to that above leads to £5/%Q, =, @ =
u{s: |Z(s)| = 1}, where Z(-) is the process defined in Section 5. One can then
show that

(7.3) EQ = E|c*f"(x)/2 + ¢~ /2f(x) 2 BY2N(0, 1)| .

The value of ¢ that gives the smallest expected number of ¢-misses in the limit
as € —» 0 can be shown to be 1.008¢cy(x), as in Section 5. Similar but more
cumbersome calculations can be carried out for @., the number of times
Ifi(x) — f'(x)| = ¢, under the optimal scheme A, =cn~'/7. One finds that
£"/2Q’ tends to a certain @'. The best value of ¢ from the point of view of
approximate mean squared error is co(x) = {8yx f(x)/f"(x)*}'/7, where yg =
/K'(u)? du. But the value of ¢ that minimises EQ' can by determined efforts
be shown to be 1.049¢,(x).
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8. Complementary remarks and results.

8A. Numerical information. Central in our limit distribution results
is the variable W, = max,_,_;IW(s)|. Its distribution can be found in
Shorack and Wellner [(1986), page 35], for example. One can prove that
EW, o = Y7/2 = 1.2533; EW2, = 2G = 1.8319, featuring Catalan’s con-
stant; Var W, = 2G — 7/2 = 0.5110% stdev(W2,)) = (EW2,, — 4G?)'/2 =
1.6055. In the case of a single parameter, therefore, the following holds, in the
notation of Section 6: ¢ EN/* — /m/2 0y, if only E|Z,* < «; £2EN. - 2Ga¢,
if E|Z|*™" is finite for some positive A; £2stdev(N,) - 1.605502, if E|Z,|*™*
is finite. The distribution of N, is skewed to the right, as skew(N,) = E{(N, —
EN,)/stdev(N,)}* - 2.3308 if E|Z;|°*" is finite. In the case of several parame-
ters and the Mahalanobis distance, we have proved &2N, -, X7 max» the
maximum of x2(s) = L7_,W(s)? over [0, 1]. A way of computing its distribu-
tion is provided by DeLong (1980), along with a few quantiles. [More details
and a fuller table of quantiles, arrived at by simulation of Brownian motions,
are given in Hjort and Fenstad (1990).]

8B. Extension to non-i.i.d. situations. Our basic results read £2N, —,
alW2,, and £2Q.(0) > ¢2Q(0) (in the one-parameter case), where o is the
variance of the limit distribution for Vm (6,, — 6,). These continue to hold for
largeAclasses won-i.i.d. situations. The key ingredients are process convergence
Vm (8(s) — 09) =4 0gW(2)/t in D[b, c]-spaces (tightness and convergence of
finite-dimensional distributions) and a tail inequality for [c, ). Proving this
for a particular case requires attention to technical details depending upon
that case, however. In the technical report version of this article, such atten-
tion is given to linear regression and to a situation with auto-correlation.

8C. A slow minimax estimator. Let X, X,,... be independent Bernoulli
trials with success probability p. The maximum likelihood estimator for p
after n trials is p, = Y, /n, where Y, is the number of successes in the first n
trials. From earlier results, we known that ¢2N, >, p(1 — p)W.2,,, where
N, is the last time |5, — p| > &. Now consider the minimax estimator p* =
(Wnp, +1/2)/G/n + 1) and the accompanying N/, the last time |p} — p| > «.
Some analysis reveals that

w 1/2)-p 1
Vm (pfmy = P) =4 VP(L = p) Et) + \(/p€1)—p§ 7| = DlLel.

This can be used to prove 2N} —, p(1 — p)max,_,_,IW(s) + b(p)Vs |?
where b(p) = (1/2 — p)/{p(1 — p)}'/%. Accordingly, N* for p* is stochasti-
cally larger in the limit that N, for p, (unless p = 1/2). There is a similar
story for @, and @}, the number of times p, and p} miss with more than «.
One can prove that £2Q, -, @ and £2Q* -, @*, where EQ = p(1 — p) and
EQ*=p(1 -p)+(1/2 -p) =1/4.
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There are analogous results for the cdf estimator F* = (Vn F, + 1/2)/
(\/rz + 1), which can be shown to be minimax when the loss function is
J(F — F)*dw, w any given weight function with mass 1. Then F* can expect
1/(4¢?) instances with loss greater than or equal to £2, regardless of the
underlying F, whereas the nonminimax estimator F, can expect [F(1 —
F)dw /e? such instances.

8D. Other distances. Our basic result (2.8) was phrased in terms of a
distance function |6, — 6,ll. The arguments carry through also for other
measures of distance that are not of the norm type. As a particular ex-
ample of some interest, let d[6, : 8] be the Kullback-Leibler distance [f(x, 6,)
log( f(x, 6¢)/f(x, 6)} dx in some model with a p-dimensional parameter. Let 6,
be the maximum likelihood estimator and let M, be the last n at which
dl6,:8,] > &. Then 26 M, -, x2 ... of (2.10) can be proved under mild condi-
tions. Note that the limit is the same regardless of the actual parametric
family. This holds when f(x,68,) represents the true model. A more general
result, valid under the agnostic viewpoint presented in Section 3B, is given in
Hjort and Fenstad (1990), along with further examples with other distance
functions.

8E. Second order results. Our ar.e. measures in (2.5) and (7.2) do not
distinguish between estimators with the same limiting distribution. To do so
requires second order asymptotics for ¢2N, and £2Q,. In Hjort and Fenstad
(1991) and Hjort and Khasminskii (1991), the limiting behaviour of differences
between @.’s has been sorted out in cases where their ratio tends to 1, thereby
making it possible to find second order optimal estimator sequences in many
cases of interest. Thus, in the binomial situation, the (Y, + 2/3)/(n + 4/3)
sequence can be expected to make 2.667 fewer e-errors than the traditional
Y,/n sequence, for example, regardless of the underlying p parameter. And
among all estimators of the form =7_(X, — X,)?/(n + ¢) for a normal vari-
ance the one with denominator n — 1/3 can be expected to make the fewest
£-€rTors.

8F. Sequential fixed-volume confidence regions. Suppose (2.5) and (2.6)
hold, and write N* for the last time (8, — 8,Y3 %6, — 6,) > £2 Then £2N*
tends to )(g, max Of (2.10), provided merely that in - 3, a.s. (convergence in
probability does not suffice). Let ¢ be small and given, find ¢ such that
E’r{xi e < €} = 0.95, put m = [c/2], and consider I* = {6: (6 — 6Y3 ;%6 —
6,) < €%). Then Pr{6, € I* for all n > m} = 0.95. The details of this construc-
tion are in Hjort and Fenstad (1990).

8G. Shrinking boundaries and tests with power 1. Methods of this paper
can be used to construct sequential confidence regions with shrinking volume
as well as sequential tests with power 1; see Hjort and Fenstad (1990).
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8H. The probabilities of N, ; <N, , and @, ; < Q. ;. Consider two com-
peting estimator sequences with accompanying last e-miss variables N, ; and
number of e-misses variables @, ; as in (2.5) and (7.2). The probabilities
Pr{N,, <N, ,} and Pr{Q, ; < Q, ,} will usually converge as & goes to 0; in fact
g% (N, 1, N, 5, @1, Q. ») has a joint limiting distribution in terms of two corre-
lated Brownian motions under natural conditions. These limits are found in
Hjort and Fenstad (1990). As an example, consider the average estimator
6,1 = X, and the median estimator 6, , = M, for the mean parameter in the
normal model. Then N, ; <N, , with probability about 0.72 and Q.1<Q,.,
with probability about 0.69. To give X, a harder match, replace the second
estimator with the solution of L7_; arctan(X; — 6) = 0, an M-estimator with
a smooth and bounded influence function. Then the figures become, respec-
tively, 0.56 and 0.55. These are simulation-based figures computed using the
exact limit distributions.

Acknowledgment. We are grateful to a reviewer and to David Siegmund
for comments that inspired improvements and for pointing out some of the
probabilistic literature which we had missed in an earlier version.
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