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RELAXED BOUNDARY SMOOTHING SPLINES

By Gary W. OEHLERT
University of Minnesota

Ordinary smoothing splines have an integrated mean squared error
which is dominated by bias contributions at the boundaries. When the
estimated function has additional derivatives, the boundary contribution to
the bias affects the asymptotic rate of convergence unless the derivatives of
the estimated function meet the natural boundary conditions. This paper
introduces relaxed boundary smoothing splines and shows that they obtain
the optimal asymptotic rate of convergence without conditions on the
boundary derivatives of the estimated function.

1. Introduction and summary. Consider the nonparametric regression
problem (x;,y,), i = 1,2,...,n, y; = u(x;) + ¢;, where the ¢,’s are uncorre-
lated, with zero mean and constant variance o2. We consider the case of
uniformly spread data between 0 and 1: x; = (2 — 1)/2n. Here the x values
should be doubly indexed, because x; depends on rn, but this dependence will
not be carried in the notation. Our goal is to estimate the regression function
w(x) and we will judge the quality of an estimator 4i(x) by integrated mean
squared error (IMSE):

IMSE(%) = E[(A(2) = u(1))" dt.

As usual, the IMSE may be decomposed into an integrated squared bias term
and an integrated variance term.

Smoothing splines are one popular method for such a nonparametric regres-
sion. An mth order smoothing spline u(x), m > 2, is defined to be that
function with square integrable mth derivative which minimizes
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where f(™ indicates the mth derivative of f. The solution to the minimiza-
tion problem is well known: The minimizer is a polynomial in each of the
intervals (x;, x;, ;) with the polynomials constrained so that the function and
its first 2m — 2 derivatives are continuous. The polynomials are of degree
m — 1 below x; and above x, and degree 2m — 1 otherwise.

The asymptotic properties of the IMSE for smoothing splines have been
studied by a number of authors, including Wahba (1975), Craven and Wahba
(1979), Speckman (1981), Rice and Rosenblatt (1983) and Cox (1988). Consider
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cubic smoothing splines, where m = 2. If the function wu(x) has two deriva-
tives, then the smoothing spline has an IMSE which is O(n~%/%) provided that
the data are spread regularly across [0, 1] (or differ from regularity by a
sufficiently small amount) and thgt A is reduced at the rate n~*/°. Stone
(1982) showed that this is the optimal rate of convergence for estimators of
twice differentiable functions on compact intervals. If the function w(x) has
four derivatives, then the smoothing spline has an IMSE which converges to
zero at a faster rate. However, Rice and Rosenblatt (1983) have shown that the
rate at which the IMSE converges to zero depends on the second and third
derivatives of u at 0 and 1. If the second derivative is nonzero at either
boundary, then the rate is —5/6; if the second derivatives are zero but either
third derivative is nonzero the rate is —7/8; if the second and third deriva-
tives are all zero at the boundaries, then the rate is —8/9, which is Stone’s
optimal rate for a four times differentiable function. Utreras (1988) has
extended these results to the case m > 2.

The problem with the IMSE lies in the squared bias, not the variance. The
smoothing spline estimator is a natural spline, that is, it is a polynomial of
degree m — 1 near the boundaries, and it will be a good estimator of u near
the boundaries provided that u also satisfies the natural boundary conditions.
As p fails to meet the natural boundary conditions to a greater and greater
extent, the smoothing spline estimate of u will become more and more biased
near the boundaries since the spline estimate cannot adapt to the shape of u
near the boundaries.

How can this problem of boundary bias be corrected? Intuitively, the
trade-off between bias and variance in a smoothing spline is controlled by the
parameter A. To reduce the bias, we reduce A. A smaller A will relax the spline,
and should allow us to fit the boundary of u more closely. However, we do not
want to reduce A globally, since that would increase the global variance. We
only want to relax the spline near the boundaries. To do this we introduce a
modified estimator which we call a relaxed boundary smoothing spline. This
estimator is not a spline in the sense of being a piecewise polynomial; rather
the name is intended to indicate the motivation and heritage of the estimator.

Let w(t, @) be a continuous weight function in the open interval (0, 1) given
by

w(t,a) =t*(1-1t)°
for some a > 0. An mth order relaxed boundary smoothing spline is the
function g, which minimizes

T L On ) A f (e, m) (8 (0))

where the minimization takes place over the weighted Sobolev space of func-
tions g(¢) for which the integral converges.

This paper derives the rate of convergence (in the IMSE sense) for the
relaxed boundary smoothing spline for m > 4. (Somewhat weaker results
should hold for the case m = 3; see the Remarks.) We show that when u has
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m square integrable derivatives, then g, has an IMSE which converges at the
optimal rate n=2m/@m*1 Moreover, when u has 2m square integrable deriva-
tives, then g, has an IMSE which converges at the new optimal rate
p~4m/(Gm+1) with no further conditions on w. Ordinary smoothing splines can
only achieve this rate of convergence if u satisfies the natural boundary
conditions. Specifically, we prove:

THEOREM. Let x4, X, . . ., x,, (the nth row of a triangular array of observa-
tion points) be such that x, = (2i — 1)/2n. We observe data y; satisfying
y; = w(x;) + ¢;, where the &; are uncorrelated with zero mean and constant
variance. Assume that the mean function u(t) has 2m — 1 absolutely continu-
ous derivatives and square integrable 2mth derivative. Then g,, the relaxed
boundary smoothing spline estimate of u has integrated mean square error of
order n=4m/4m*D for m > 4, when A is decreased as n=2m/*m+ D),

The take-home idea from this paper is that using a relaxed boundary
penalty function can lead to a better asymptotic IMSE than standard splines
when the mean function has extra derivatives. Section 2 of the paper outlines
a proof of the theorem. The last section discusses computation of the relaxed
boundary smoothing spline and gives an example.

Other approaches are available for correcting the spline boundary bias
problem. Eubank and Speckman (1989) describe a fairly general bias reduction
technique for nonparametric regression. For spline smoothing, the technique
amounts to regressing the spline residuals on polynomials and adding the
predicted residuals to the spline fit. Heuristically, this approach is representing
the expected value function as the sum of a polynomial and a function which
meets the natural boundary conditions; see also Speckman (1988). A less
desirable alternative would be to weight the IMSE criterion rather than the
roughness penalty, for example, E[w(¢)(i(¢) — u(¢))?dt. Using w(t,2) from
above and the results of Lemma 5 of Rice and Rosenblatt (1983), it is not hard
to see that the integrated weighted squared bias for cubic smoothing splines
will be reduced to the appropriate order without further boundary conditions.
However, it seems much more appropriate to maintain our IMSE criterion
function and change the class of estimators we use than to keep our estimators
and change the criterion function.

2. Proof of theorem. The overall method of proof is that of Speckman
(1981), who approximated the IMSE of a smoothing spline by the IMSE of a
continuous analogue (Tikhonov regularization). Utreras (1988) derived the
rate of convergence for the squared bias of the regularizer in spline smoothing.
In fact, very little in their proofs is specific to the eigenfunctions and normed
spaces of ordinary spline smoothing, and the elegant methods of Speckman
and Utreras can be used without essential change by using norms in weighted
Sobolev spaces instead of the usual Sobolev norms and by using appropriate
eigenvalues and eigenfunctions in the continuous approximation. Thus, we will
be able to defer to their proofs after establishing a few continuity (bounded-
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ness) conditions and a formula for the eigenvalues. We repeat the Utreras
proof in some detail, however, since it is in the bias of the regularizer that
relaxed boundary smoothing splines make their gains. Some technical lemmas
are postponed until the end of the section.

Let W(m, a) be a weighted Sobdlev space of functions on the interval (0, 1).
A function f is in W(m, a) if f and its first m — 1 derivatives are absolutely
continuous and if [lw(t, @)(f*)(¢))? dt is finite for k = 0, 1,..., m. Note that
W(m, a) is a richer space than the usual Sobolev space W(m,0), that is,
W(m, a) contains more functions. Let || fll,.,» be the seminorm

1 F e = folw(t, &) (Fm(2)) dt.

The usual weighted Sobolev norm on W(m, a) is (E7 ol fllz,o)"/? [Kufner
(1980), page 18].

The continuous analogue of spline smoothing is called Tikhonov regulariza-
tion. In regularization, a target function f is approximated by a regularizer
function g and g is chosen to minimize a weighted sum of the norm of f— g
and a seminorm of g. For relaxed boundary splines, f is an element of
W(m, 0) and the Tikhonov regularizer of f is g,, the unique minimizer of

. 2 2
min - +A .
Utreras (1988) studied the asymptotic behavior of the Tikhonov regularizer

for standard smoothing splines by looking at the differential eigenvalue
problem

(- 1)mD2m¢’k = Xr¥r>
v0) =y¢P(1) =0, j=m,...,2m— 1.
For relaxed boundary splines, we look at a related eigenvalue problem:
(=1)"D™(w(:, m)D" (")) = X

D/(w(-, m)D™,())(0) = D (w(-, m) D™y ())(1) = 0,
j=0,1,...,m~1.

This is a singular, self-adjoint differential expression (the singularity is due
to the zeros of the weight function at ¢ = 0, 1) which is closely related to the
Legendre differential equation. The eigenvalues can be expressed as x, =
4 ™k-m+1Xk-m+2)---(k+m) for k=0,1,2,..., and the kth
eigenfunction is exactly the kth (shifted) Legendre polynomial ¢,; see Lemma
1. The ¢, clearly form a complete orthonormal system for W(0,0). Further-
more, since W(m, m) embeds in W(2, 0) (see Lemma 2) which itself embeds in
W(0, 0), the y, also span W(m, m) as elements of W(0,0). In addition, D™,
forms a complete orthogonal system for W(0, m) (see Lemma 1).

Following Utreras (1988), we express the continuous regularization problem
in terms of the eigenvalues and eigenfunctions. Any f € W(j,0), j > 0, can be
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expanded in the Fourier series

f=X futn

k=0
where f, is the kth Fourier coefficient

1
fo= f f(x)¢(x) dx.
0
Furthermore, for £ > m and g € W(m, m), we have
1
gr= [ &(x)dy(x) dx
0

_ (D"
Xk

1
— = ['Dmg(x) D™y (x)w(x, m) da.
X °0

[ 8(x)D™[w(x, m) Dy ()] dx
0

(Recall that y, = 0 for £ < m.) But since D™y, is a complete orthogonal
system in W(0, m) and since D™g is in W(0, m), we have that

[omel:,.. =lel.....= T nst
=

Substituting these Fourier expressions into the regularization problem, we
want to minimize

Y (g — )+ 2 L xp8k

k=0 k=0
The solution is the function g with coefficients
h
gk 1 + )\Xk ’

and the integrated squared difference between f and the regularizer g, can be

written
2.2

Ay
2 k
— = __—f2‘
I f g)."o,o ]EO 1 /\Xk)2 k

Recall that
1
fu= [ o) fl2) de = [ Dm0 D7 (), m) i,

by integration by parts for £ > m. If f € W(2m0), then all the derivatives of
f up to order 2m — 1 are uniformly bounded. In particular, this implies that
f € W(2m, 0) satisfies the boundary conditions
D/(w(-,m)D"f(¢))(0) = D/(w(-, m)D™f(¢))(1) =0,
Jj=0,1,...,m — 1.
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Thus, we may continue to integrate by parts obtaining
_(y"
Xk

where [* = D™[w(x)D™f(x)]. Note that fe W(2m,0) implies that f* €
W(0, 0), since w and all its derivatives are bounded. Thus,

(-n”

Xk

fi [ () D [w(x) D7f(x)] dx = ——— ¢,

T ()<l F*lleo < e

k=m

Substituting the expression for Fourier coefficients into the formula for
integrated squared error, we find that

22

X .
"f_g,\”go= Z "——_——sz
7 a0 (L4 Axy)?

Xfsz
2
kz=m (1 + ’\Xk)

*2
2 k

ram (14 Ax,)°

< 2l £*5,0-

/\2

Thus we have proved:
ProposITION 1. Suppose f € W(2m,0) and let f* = D™ [wD™f]. Then

2 2
| £—&lloo =< N F* oo

The advantage for relaxed boundary smoothing splines comes from the fact
that the relaxed regularizer has integrated squared bias of order O(A?) for all
functions f € W(2m,0). Ordinary smoothing splines can only achieve this rate
of convergence if the derivatives of the function f meet the natural boundary
conditions, which permit the additional integration by parts.

To complete the proof of the theorem, we need to show that the integrated
squared bias of the relaxed boundary smoothing spline can be approximated by
the integrated squared bias of the regularizer to sufficient closeness and to
derive an approximation for the integrated squared variance of the relaxed
boundary smoothing spline. This is the content of the following two proposi-
tions.

PROPOSITION 2. If m > 4, then the regularizer g, and relaxed boundary
smoothing spline g, , satisfy

£ = &nallo,o =1l = &illo,o(1 +0(1)),
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where o(lg denotes a term independent of A and n as A - 0, n?A > » and
nllf — g\llo,0 = .

ProOPOSITION 3. The integrated variance of the relaxed boundary smoothing
spline g, , satisfies

(1 + x2m) 24
o (1) = L5 n;/zn)l (1 +0(1)),

where o(1) denotes a term independent of n and A as n > ©, A > 0 and
nA — o,

Propositions 2 and 3 are essentially Theorems 2.3 and 2.4 of Speckman
(1981). The proofs in Speckman will work once we have established a frame-
work of normed spaces for the relaxed boundary smoothing spline and the
regularizer. Recall that we have an exact formula for the eigenvalues of the
differential problem; these eigenvalues satisfy Speckman’s Lemma 5.2.

Following Speckman, let Y = W(0,0) have the norm |- llo,o and let X =
W(0, 0) + W(0, m) have the norm

WCF @) s m =1 Fllao + Al &g m
For g € W(m, m), let Lg = (g, g™) and let

2
gl =ILgllX m =lgllo,o + Al g™ lom-

The map L from g€ W(m,m) to (g,g"™) in X is linear and injective.
Furthermore, W(m, m) continuously embeds in W(2, 0) (see Lemma 2) and
thus in W(0, 0); hence the usual L, norm of g is bounded by the weighted
Sobolev norm |[|gll,», m- So, by the closed range theorem and the open mapping
theorem, the image of W(m, m) is closed in X. In particular, for any element
(f, g) € X, there is a unique h € W(m, m) with image under L closest to
(f, &) in the norm ||| - |l A, . Lk is the projection of (f, g) onto LW(m, m).
[In this notation, the Tikhonov regularizer is exactly the element A, €
W(m, m) for which Lh, is closest to (g,0) € X in the ||| - [l » norm.] Let
h, = P,g. The projection from X onto LW(m, m) is bounded, and the pseu-
doinverse of L is bounded since the , .|l - | norm is equivalent to the weighted
Sobolev norm (see Lemma 3). Thus, the regularizer %, is obtained by a
bounded linear transformation of g.

We also need a discrete analogue of the space X. Let X, = R™ + W(0, m),
with norm

1 n
| 2
Iy, @) lnnm = — X 57 + Alglls m-
i=1

Let A, be the map from W(m, m) onto R" defined by A,g) =
(g(xy),...,8(x,)) and let L, be a map from W(m,m) to X, defined by
L.(g) =(A,(g),g™). L, is linear and for n > m, it is injective. We claim that
L, is bounded. We only need to show that 1/nY¥ g(x,)? is bounded by a
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multiple of |lgl|%, .. First, W(m, m) is embedded in W(2,0), so the L, norms
of g and g® are both bounded by llgll,, ». Next, standard quadrature
formulae (e.g., Lemma 4.1 of Speckman) bound the absolute difference

2% g(w)’ - et
n = i o 8
for g € W(2,0). Thus, 1/nY g(x,)® must also be bounded by IIgII?,,,m. So, by

the closed range theorem and open mapping theorem, L,W(m,m) is closed
and W(m, m) is complete with the norm

¢ 2
=< ?”g”z,o

1
worml €l =N Lnglln,m=— 2 g(x)* + M gllo, m-

i=1

Let fn » be the projection of a, = (y,,..., yn) 0) € X, onto L,W(m,m),
that is, f, , is the element in W(m m) which minimizes

”la’n Lnfl”n,)«,m‘

Again, standard quadrature formulae show that the pseudoinverse of L, is
bounded, so that
f n, AT n /\y’
where P, , is a bounded linear transformation.
With these spaces, the proofs in Speckman may proceed, and the theorem is
proved.

REMARK 1. The weighted Sobolev embeddings and equivalent norm results
used in the proof of the theorem do not depend on the exact form of the weight
function, but only on the rate at which the weight function goes to zero at the
boundaries. Any positive weight function which goes to zero like ¢™ at the
boundaries will work. Thus, we could use a weight function

t\" t\"
@) o) e
w,(t,m) ={272m, e<t<l-—g,
1-#\" 1-#\"
A
which should be more like an ordinary spline in the middle of the interval of

estimation, and still have the embedding and equivalent norm results of
Lemmas 2 and 4.

REMARK 2. The difficulty with using other weight functions comes when
we try to find the eigenvalues for the differential system. Since the weight
functions go to zero at the boundaries, the differential systems are singular,
and standard asymptotic formulae for the eigenvalues of nonsingular systems
le.g., Naimark (1967)] do not apply. I have not been able to find analogous
results for the singular case nor have I been able to extend the results for the
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nonsingular case to the singular case. If the eigenvalues are of the correct
asymptotic order, the results will still hold.

ReEMARK 3. The same difficulty with eigenvalues arises when we take a
nonuniform design for the observation points x,. If the observation points
follow the design density p(¢), then we must solve the eigensystem

(—1)mDm(w(" m)Dm'/’k(')) = xp¥rp (1),
D’(w(-, m)D™,(+))(0) = D’(w(-, m)D™y,(¢))(1) = 0,
j=0,1,...,m—1.

Again, if the eigenvalues have the correct asymptotic order, the results will go
through.

ReMARK 4. We proved the theorem under the assumption that m > 4,
which excludes the standard cubic spline case of m = 2. The reason we cannot
prove the theorem for m of 2 or 3 is that the quadrature approximation of
Jog(t)?dt by LT_,g(x;)?/n is only good to order n~! (instead of n~2) when
g € W(1,0) and the spaces W(2,2) and W(3,3) embed in W(1,0) but not
in W(2,0).

REMARK 5. We can get some results for m = 3 if we use the seminorm
I - lls,2 as the roughness penalty instead of || |l33. The space W(3,2) does
embed in W(2,0), so the quadrature approximation will be sufficiently accu-
rate. However, the order of the weight function is not as large as the order of
the derivative, so the boundary conditions

D/(w(-,m)D™f(t))(0) = D/(w(-,m)D™f(¢))(1) =0,
j=0,1,...,.m -1,

will be met only if D™f(0) and D™f(1) are both 0. [It is curious that this
weighted problem has restrictions on the mth order derivative rather than the
(2m — Dth order derivative.] Furthermore, we again need to show that the
eigenvalues have the correct asymptotic order.

REMARK 6. If the function f has only m derivatives, then we may show
that the bias term is of order A using the method of Section 6.3.2 of Eubank
(1988), leading to n~2m/@m+1 convergence. Also note that f having more
than 2m derivatives will not produce a further decrease in the bias. Take, for
example, the mth Legendre polynomial, which is infinitely differentiable but
still has bias of order A? and convergence of order n~4"/¢4m+D,

REMARK 7. The weight used in the relaxed boundary smoothing spline is
reminiscent of data tapers used in time series [see, e.g., Bloomfield (1976)].
While the motivations and details differ, both the weight function and data
tapers have the effect of improving the rate at which certain Fourier coeffi-
cients approach zero.
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We finish the section with four technical lemmas.

LEmMMA 1. The (shifted) Legendre polynomials i, solve the differential
eigenvalue problem

(_1)mDm(w(" m)mek(,)) = Xe¥>
D'(w(-, m)D™,(¢))(0) = D’(w(-, m)D™y,(¢))(1) = 0,
j=0,1,...,m =1,

with eigenvalues x, = 4 "T'(m + k + 1)/T(m — k + 1).

Proor. The shifted Legendre polynomials ¢, are the orthogonal polynomi-
als on the unit interval with respect to the weight function w = 1, with the
standardization that ¢,(1) = 1. They differ from ordinary Legendre polynomi-
als only in that ordinary Legendre are defined on the interval (—1, 1); shifted
Legendre polynomials can be obtained from ordinary Legendre polynomials by
the change of variable ¢ = (x + 1)/2. The differential problem is equivalent to
the integral problem

[ty dt = 5,

[P @On - 0" dt = b,

with 0 =x; =x2= " =Xm <Xms+1 < . Shifting back to the interval
(-1,1) via x = 2¢ — 1, we get

f_lle(x)z[/k(x) dx = O,

[ @) - )" dx = 47,85

The Legendre polynomials are orthogonal and thus meet the first of the two
requirements. Furthermore, the mth derivative of the nth Legendre polyno-
mial is 1-3--- (2m — 1DC{™}/?(x), where C{™}1/?(x) is an ultraspherical
polynomial [see Abramowitz and Stegun (1965), Section 22.5]. These ultra-
spherical polynomials are a (complete) orthogonal system with weight function
(1 — x?)™, exactly as required. The eigenvalues can be easily calculated given
Table 22.2 of Abramowitz and Stegun (1965). O

LemMa 2. The weighted Sobolev spaces W(m, m) continuously embed into
the Sobolev space W(2,0) for m > 4.

Proor. First, W(m, w) trivially embeds in W(n, w) for m > n. Next, result
6.4 of Kufner (1980) shows that W(m, w) = W(m,n) for any n > . Third,
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result 8.35 of Kufner (1980) shows that W(k, &) > W(r,e — 2(k — r)) if 0 <
r<kande>2k—r)— 1. So, for m = 2k > 4, we have

W(2k,2k) = W(k,0) = W(2,0).
Form=2k+125,wehave‘ N
W2k + 1,2k +1) > W(k +1,1) > W(k +1,2) - W(3,2) = W(2,0). O

Lemma 3. The , Il - Il norm is equivalent to the usual weighted Sobolev
norm on W(m, m).

Proor. It suffices to show that the norms are equivalent on a dense subset
of W(m, m); we will show they are equivalent on C*([0, 1]), which is dense in
W(m, m) by Theorem 7.2 of Kufner (1980). Let W,(m, m) be the closure of
C5(0,1) in the usual Sobolev norm, where C3(0,1) is the space of infinitely
differentiable functions which are zero in a neighborhood of 0 and 1. Then any
f € C*([0,1]) can be written uniquely as f = f, + f;, where f, is the degree
2[(m — 1)/2] + 1 polynomial which agrees with f and its first [(m — 1)/2]
derivatives at 0 and 1 and f,, € Wy(m, m). The two norms are equivalent on
the polynomial part and the two norms are equivalent on Wy(m,m) by
Proposition 9.2 of Kufner (1980). Since W(m, m) is the direct sum of two
subspaces and the norms are equivalent on both subspaces, the norms must be
equivalent on the direct sum, W(m, m). O

3. Computations and examples. Kimeldorf and Wahba (1971) give an
explicit solution to the smoothing problem in a reproducing kernel Hilbert
space. To use their solution, we must first obtain the reproducing kernel.
Decompose W(m, m) into the direct sum of & (a space of polynomials of
degree at most m — 1) and Wy(m, m) as in Lemma 3. The polynomials are
written in the form

m-—1 )
p(x) = Z aixly
i=0

and the inner product of two polynomials is

m—1 ) m-—1 ) m—1
< Z ax’, Z bixl>= Z ab,
i=0 i=0 i=0

so that the monomials x* are orthogonal basis elements for . The reproduc-
ing kernel for & is
m—1

K(s,t) = ), st
i=0

The space W,(m, m) has the inner product

fgy=[ (1= 1)" Fomgtm g,
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and the (shifted) Legendre polynomials of degree m and higher (denoted y;,
i > m) form a complete orthogonal basis for W,(m, m) satisfying

D™[t™(1 - t)" D™ | = xa¥,

where the eigenvalues y, are given'in Lemma 1. Thus the reproducing kernel
on Wy(m, m) can be written
IACILAL )

Ky(s,t) = ¥
0 i=m Xi

Now using Theorem 5.1 of Kimeldorf and Wahba, we have that the function
f € W(m, m) which minimizes

1 n . N
TE (F(x) =9)" + [ = )" (Fe(2))" dt
i=1 0
may be written as
f(2) = w (UMU") UMy + /M1 - U'(UMUY) T UMy,

where w' = w'(t) = (1, 4,¢%...,t™ ), ¥ = (31, Y25+ -, V)

1 1 “ee 1
X1 X2 Xn
Upsn = | #8 x3 - xp |,
x{n—l xén—l x'rln—l
s (xl)ll’(t) = (%) ¥(t) |
i=m Xi i=m Xi

and

k=m

Man — ,: Z d’k(xl)d’k(xj) ] + Al
Xk
The technique outlined above is not particularly efficient, but it is adequate
for reasonably small sample sizes provided some care is exercised in evaluating
terms involving M~! when A is small. Most problems can be avoided by noting
that M can be written as M = AI + PP’, so that

M~'=(I-P(A+PP)'P)/x

Note also that this technique does not require that the observation points be
uniformly spaced.

An approximate technique for uniformly spaced points can be derived from
the analogous continuous regularization problem introduced during the analy-
sis‘of the bias in Section 2. The solution of the continuous problem was a ridge
regression on the (shifted) Legendre polynomials. As an approximation in the
discrete case, we simply do a ridge regression on the (shifted) Legendre
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polynomials using the asymptotic eigenvalues (times the smoothing parameter
A) as the ridge constants. In the example below, the exact and approximate
methods are indistinguishable.

In practice, we must use a finite number of Legendre polynomials in either
the exact or approximate methods. The number of polynomials required to
achieve accurate results will vary with m and A. In the example below,
computations with 15 and 30 polynomials differed in the fifth digit while
computations with 25 and 30 polynomials differed in the seventh digit. Results
below are based on computations with 30 polynomials.

Consider the function

2 1 1
f(x) = cos(mx) + 57 cos(2wx) — 799 cos(:‘31-rx) vy cos(4wx),
constructed in analogy with the example in Rice and Rosenblatt (1983) to have

the property that

F®(0) = f@(0) = £P(0) = fD(1) = fO(1) = FO(1) = FP(1) = 0.
We observe y; = f(x;,) +¢; for i =1,...,100 and x; = (2{ — 1)/200. Assume
that the variance of ¢; is 10~8. The ordinary smoothing spline of order 4 will
have an integrated mean squared error that is dominated asymptotically by
bias at the boundary, since the function f does not satisfy the natural
boundary conditions.

For this particular design and error variance, the minimum mean squared
error at the 100 design points occurs when A = 10724, The mean squared
bias is 1.089 X 10~ !° and the mean variance is 1.213 X 10~° for a mean
squared error of 1.322 X 10~°. The bias and variance as functions of x are
plotted as the solid lines in Figures 1 and 2. The relaxed boundary smoothing
spline of order 4 has minimum mean squared error when A = 2 X 1075, The

4 6

bias x 1015

2 0 2

-4

0.0 0.2 0.4 0.6 0.8 1.0
X

Fic. 1. Bias in estimating f(x) = cos(mwx) + & cos(2mx) — 755 cos(3mx) — g5z cos(dmx). Solid
line: smoothing spline, m = 4, A = 10~ 124, Dashed line: relaxed boundary smoothing spline,
m=4,A=2Xx1075
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variance x 109
4 6

2

Fic. 2. Variance in estimating f(x) = cos(mwx) + & cos(2mx) — 755 cos(87x) — g5z cos(4mx) when
% = 1078, Solid line: smoothing spline, m = 4, A = 10~ '2*, Dashed line: relaxed boundary
smoothing spline, m = 4, A = 2 X 1075,

mean squared bias is 1.767 X 10~ !! and the mean variance is 1.247 X 10~°
for a mean squared error of 1.264 X 10~°. The bias and variance as functions
of x are plotted as the dashed lines in Figures 1 and 2.

While the bias does not dominate the variance for the ordinary spline in this
design, the ordinary spline bias itself is dominated by boundary contributions.
This is clearly not the case for the relaxed boundary spline, where the bias is
spread over the entire interval. On the variance side, the relaxed boundary
spline has variances which are less than the ordinary spline in the middle of
the interval and greater near the endpoints. This is intuitively what would be
expected from the shape of the weight function.
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