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ASYMPTOTIC PROPERTIES OF THE LSE IN A REGRESSION
MODEL WITH LONG-MEMORY STATIONARY ERRORS

By YosHIHIRO YaJimal

Wakayama University

We consider asymptotic properties of the least squares estimator (LSE)
in a regression model with long-memory stationary errors. First we derive a
necessary and sufficient condition that the LSE be asymptotically efficient
relative to the best linear unbiased estimator (BLUE). Then we derive the
asymptotic distribution of the LSE under a condition on the higher-order
cumulants of the white-noise process of the errors.

1. Introduction. Let the observed process {y,} follow the regression model
of the form

Ve = thﬂ + &,

where X, = (x,,,...,x,;,) is a k-vector of nonstochastic regressors and {¢,}, the
sequence of errors, is a stationary process with mean 0 and spectral density
f()), and B =(B,,...,B,) is a vector of unknown regression parameters.
Throughout this paper f(A) is assumed to have the form

(1) Q) =f*(A) /11— e, 0<d<1/2,

where f*(A) is a positive continuous function. Since f(A) diverges to « as
A =0, {¢) is a strongly dependent process and its autocorrelations vy, =
Eee,.4, h =0,1,2..., are not absolutely summable. The f(A) of (1) includes
the spectral densities of both a fractional Gaussian noise model [Mandelbrot
and Van Ness (1968)] and a fractional ARIMA model [Granger and Joyeux
(1980) and Hosking (1981)], two popular long-memory models [Geweke and
Porter-Hudak (1983), Theorem 1].

Here we discuss the asymptotic efficiency and the distribution of the LSE
for B. These problems have been investigated widely. However, the case that
{¢,} is a stationary process with the spectral density f(A) of (1) has not been
clarified fully yet since this process causes considerable mathematical difficul-
ties.

In Section 2 we consider the asymptotic efficiency of the LSE relative to the
BLUE. The LSE is not identical with the BLUE unless {¢,} is an uncorrelated
process. However, the LSE is used frequently since the covariance matrix of
{e,} must be known for the computation of the BLUE while the LSE is always
available and is an unbiased estimator. Hence it is important to compare the
LSE with the BLUE for various correlation structures of {e,}.

Received April 1989; revised November 1989.

!Present address: Faculty of Economics, University of Tokyo, Horgo 7-3-1, Bunkyo-Ku, Tokyo,
Japan 113.

AMS 1980 subject classifications. Primary 62M10; secondary 62J05.

Key words and phrases. Long-memory models, regression, least squares estimators.

158

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
The Annals of Statistics. BIEORS ®

R

o 22

WWww.jstor.org
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Grenander (1954) derived a necessary and sufficient condition on X, that
the LSE be asymptotically efficient relative to the BLUE when f(A) is positive
and continuous. On the other hand, only a few results seem to be known when
{e,} follows a long-memory model. ‘Adenstedt (1974), Beran and Kiinsch (1985)
and Samarov and Taqqu (1988) discussed properties of the sample mean,
¥r=XT ,y,/T for the case x, = 1, k = 1. Beran and Kiinsch (1985) also
considered so-called M-estimators [Huber (1981)]. Yajima (1988) considered
the case x,; =t'"!, k > 1, a polynomial regression. One of the remarkable
results is that the LSE is no longer asymptotically efficient, which differs from
what occurs when f(A) is positive and continuous. Here we evaluate the
asymptotic covariance matrices of the LSE and the BLUE for more general
regressors. Next we extend Grenander’s result to our model.

In Section 3 we discuss an asymptotic distribution for the LSE. Yajima
(1989) derived a central limit theorem for finite Fourier transforms, which is
equivalent to x,; = e'™', Here we consider more general regressors. Eicker
(1967) and Hannan (1979) discussed the same problem under the condition
that the white-noise process of {¢,} is independently distributed or a martingale
difference. Here we impose a different condition on higher-order cumulants of
the white-noise process and evaluate the asymptotic covariance matrix in
detail.

2. The asymptotic efficiency of the LSE. First we introduce so-called
Grenander’s conditions on X, [Grenander (1954), Grenander and Rosenblatt
(1957) and Anderson (1971)]. Let

T—h
aZj](h) = let+h,ixtj’ h=0’1)"',
t=
T
= Z x,+h,ix,j, h=0,— 1,... .

t=1-h
(G.1) at(0) > asT—>w», i=1,...,k.
(G.2) 7l‘im x7.1./07(0) =0, i=1,... k.

(G.3) The limit of
1/2
al;(h)/{a%(0)a%;(0)} " = rf(R)
as T — x exists forevery i, jand h,i, j=1,...,k,and h=0,+ 1,....
Let
Tlif}n"i?(h)=l’ij(h)» i,j=1,2,...,k, h=0,+1,...,

and let R(h) = [Pij(h)]-
(G.4) R(0) is nonsingular.

Then there is a Hermitian matrix function M(A) with positive semidefinite
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increments such that

R(h) = [ e dM(2).

Grenander (1954) derived a necessary and sufficient condition that the LSE be
asymptotically efficient under (G.1)-(G.4) when f(A) is positive and continu-
ous. We present his result to make the comparison between it and our result
clear [cf. Grenander (1954), Grenander and Rosenblatt (1957) and Anderson
(1971)]. Let B, and B be the LSE and the BLUE, respectively. Then

A B
Br= (XTXT) XrYr,
B~T = (X}Ef"lXT)_lX}EflyT»

where Y, = (y,,...,y7), Xp=(x,), a T X k matrix of rank 2 (< T) and
%y = (0;;) with o;; = y;_; is the T X T covariance matrix of £, = (g, ...,&7).

THEOREM (Grenander). Let
DT = diag(”x]_”Ty ey ”xk”T)’
where ||x;ll7 = (a%,(0)'/2.

(i) Assume that f(A) is a continuous function in [—m,w). Then under
(G.1)-(G.4),

(2) lim Dy E((Br ~ B)(Br — B))Dr = 2w R(0) " [ £(1) dM(2)R(0) .

(ii) Assume that f(A) is positive and continuous in [—,w]). Then under
(G.1)-(G.4),

- -1

3 Jim D, (B~ B)(Ar - 8))Dr = |(2m) " [ () aM(n)|
(iii) A necessary and sufficient condition under (G.1)-(G.4) that the LSE be
asymptotically efficient for {e,} with a positive and continuous spectral density
is that M(A) increase at not more than k values of A, 0 < A < m, and the sum

of the ranks of the increases in M(A) is k.

Now we turn to the case that f(A) is expressed of the form (1). Let M, (1)
be the (p, ¢)th entry of M(A). And let

T T
mT () = (Z x,pe‘i"‘)( y xtqei“)/(277||xp||T||xq||T)
t=1 t=1
and
A
MZ()) = f_vmgq(w) dw

and MT()) = [MZ(M)]. If we regard MT(1) and M()) as matrix measures
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in [-m7, 7], RT(h) =[rf(R)] and R(h) are their characteristic functions,
respectively. Then (G.3) implies

(4) MT(A) >w M(2)

as T — o, where —, means that MT()) converges weakly to M(A). [See
Eicker (1967), page 68, Kawata (1972), Theorem 9.2.1, and Ibragimov and
Rozanov (1978), Section 7.4.] That is, for any continuous function ¢(A) in
[—77, 77],

(5) lim (" 9(1) aM7(1) = [ $(1) dM(2).

This fact is the key to developing the following arguments. Asymptotic proper-
ties of the LSE and the BLUE depend heavily on the behavior of M;,(A) near
A = 0. Hence hereafter we assume, if necessary, by changing the numbering of
x,;,0=1,...,k, that

(6) M;,(0+) — M;;(0) >0, i=1,...,m, 0<mc<k,
Mii(0+)_Mii(0)=0, t=m+1,...,k.

Also, N stands for general constants being independent of T' but is not always
the same one in each context. And « is a k-component vector and ||a|| implies
the Euclidean norm. First we evaluate the asymptotic covariance matrix of the
LSE.

THEOREM 2.1. Let {¢,} be a stationary process with spectral density f(A) as
in (1). Let conditions (G.1)-(G.4) be satisfied.

(i) Suppose that m = 0 in (6). Then relation (2) holds and every entry of
the right-hand side matrix is a finite value if and only if for any § (> 0) there
exist ¢ such that

(7) [ F(A)dME(A) <8, i=m+1,...,k,
[Al<e

for every T.
(ii) Suppose that m > 0 in (6) and condition (7) holds. Then the limit of

f” F(A) dMZ(N) /T, 1<i,j<m,
as T — x exists if and only if the limit of
[ 11— e dME(A) /T, 1<i,j<m,
as T — o« exists.

Next if we define

by = £*(0) Jim f_:ll — e dME(N) /T, 1<i,j<m,
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then
qlﬂl_IgoDEl(XTI‘XT)E{(éT - B)(BT - 3)'}(X}XT)DEI = 27 B,
where .
Dy = diag(lx,l, 7%, ..., 12, L, T 12 il - gl
and

o0 B,

and B, = [b{}], a m X m matrix and B, is a (k — m) X (k — m) matrix whose
@, j)th entry is [T f(A)dM,,,, i\, (A).

Proor. (i) First assume that relation (2) holds. We have
D, E{(Br — B)(Br — B)}Dr
= (D;IX;XTD;I)_1(D;IX;ETXTD;I)(D;IX}XTD#)_l.
(G.3) implies
lim D;'X; X, D' = R(0).

T >

Hence

lim D7'%;%, X, D' = lim 2m[" F(A) aM ()

T -

=27 [ f(1) dM(1).
Then if we note that for any 8 (> 0) there exists ¢ such that
[ F(N)dM, (M) <8, i=m+1,...,k,
Al<e

[Halmos (1974), page 125, Theorem B] and that f(A) is continuous in[—, — c]
and [c, 7] for any ¢ (> 0), condition (7) immediately follows from (4) by the
argument of Loéve (1977), page 185, Theorem A, replacing [, . . in his proof
by [\ <. and vice versa. The converse can be shown in the same way as in
Loéve (1977) if we note that

[ a) a0
for any set A c [—, 7].
(ii) We have
DEI(X}XT)E{(E;T - B)(Br - B)’}(X}XT)DEI = D' X3, X, D7t
First we show that [7_ f(A)dMZ(1)/T?¢ and [ |1 — e™|"** dME(A)/T?,
1 <i, j < m, are bounded with respect to T'. Since noting
mT(A) < T/27

< [ FO) aM () + [ F(0) dM,, (1)
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and
fv mi(A)dA =1,
we have n
J7 1) dM(0) /T < max fQ)* [ 11— 7 AME(0) /T
< (2m) T max f(0)* [ |1 - 7 dr < N.
[Al<w —m/T

Next it follows from (4) that

(8) Jim f(A) dMT(A)/T? =0
- Al=c

and

(9) lim 11— e 7% dM, (1) /T?* =0

T /|Alzc

for 1<i<m, m+1<j<k. Then relation (10) follows from (7) and (8).
Hence the proof is complete. O

[ F) dME(A) /T, 1<i,j<m,
as T — « exists. Then noting (8) and (9), we have that

min f*(A) limsupa[fﬂ |1 — e 24 dMT(/\)]a/Tz"

|A|SC T >

Tli:r;a’[f;f()t) dMT(/\)]a/TZd

IA

IA

max f*(A) lim inf a’[fw L dMT(/\)]a/Tzd
Al=<e T—o -7

for any k-component vector «. Noting that f*(A) is continuous and, next,
letting ¢ go to 0, we see that the limit of &[/7 |1 — ™| ** dMT(M)]a as
T — « exists. The converse can be shown similarly if we note that

min f*(/\)Tlim a’[[ﬂ |1 — eir| =2 dMT(/\)]a/Tzd

[Al<e

< li;n_)igfa’[[;f(/\) dMT(/\)]a/Tzd

IA

lim sup oz’[[17 f(A) dMT(A)]a/TZd

T >

IA

max f*(A) %im a’[fv |1 — eir|~2 dMT(/\)]a/Tzd.

Al<e
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Next we shall prove the second assertion. We have already proved

Tlii’lf_vf(") dME(A) /T =bY,  i<i,j<m.

Hence it suffices to show that
(10) lim [T F()dME(N) /T4 =0, 1<ism, m+l<j<k.

J

We have that

[ £y amzea|/r

1/2

1/2

{f s szu)/TZd}w{ [, famsn)

for 1<i<m, m+1<j<k. Then relation (10) follows from (7) and (8).
Hence the proof is complete. O

ReEmaRK 2.1. () If max, ., m7,(0), i =m + 1,..., k, is bounded with re-
spect to T for some c, then condition (7) is obviously satisfied. If x,; = cos v;¢,
sin v;¢, v; # 0, or a periodic function, a stronger condition holds:
max,, .. m},(1) converges to 0 as T — o« for some c.

(i) For example let
x“':tn(i), i=1,...,m,

with —1/2 < (n(i) and n(i) # n(j), i #j. Then it is shown in the same way
as in Theorem 2.2 of Yajima (1988) that

B = £*(0)[{(2n (i) + 1)(2n(j) + D}I(1 - 2d) /{T(d)T(1 - d)}]
Ll Gy n())y — o2d—1
Xfofox OyrDlx — y dxdy.

If n(i) = —1/2 for some i, the evaluation of the asymptotic covariance matrix
in Theorem 2.1(ii) can be sharpened and a direct calculation shows that we
have to replace ||x,IT in Dy by ||x;|IT?/(log T)"/2 and (2n(i) + 1) in b by
1, respectively.

Now we consider the asymptotic covariance matrix of the BLUE. Here we
impose a new condition on x,; besides (G.1)-(G.4).

(G.5) 1maxTxfi/a?i(O) =0(1/T?%), i=1,...,k,
<ts<

for some 6 > 1 — 2d.
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THEOREM 2.2. Let {¢,} be a stationary process with the spectral density of
(1). Assume that

(11) 0<My(0+) —M(0) <1, i=1,...,m,

and the right-hand side matrix of (3) is well defined. Then under (G.1)-(G.5),
relation (3) holds.

Proor. We have

D, E{(Br - B)(Br — B)}Dr = (D7'X737'X,D7")

Hence it suffices to show that
lim D7'%; 37X, D;! = @m) " [" F() T aM(h).

We shall prove the result successively for the three cases. (i) f*(A) a constant.
(i) F*(A) = c¢/|p(e*)|* with a constant ¢, where ¢(2) = 1 — LP_,¢,;2/ with
¢, # 0 and ¢(z) # 0, |z| < 1, and all the roots of #(z) = 0 are distinct. (iii)
f*(A) is a general positive continuous function.

Cast (i). We can put f*(A) = 1/27 without loss of generality. Let {n,} be
the white-noise process of {¢,}. Since {¢,} is a fractional ARIMA(O, d, 0) process,
{,} has the infinite autoregressive representation

=]
Z 77-jEt—j =M
Jj=0

where

m=T(j—a)/{T(j +1HI'(-d)}.
[See Hosking (1981), Theorem 1.] Then let Ay be the T' X T lower triangular
matrix with (i, j)th entry =,_; and let 35 be the T X T covariance matrix
associated with a stationary process with the spectral density 1/{(27)2f(A)}.
By noting that f(A)~! is a continuous function in [—, 7], it follows from (5)
that
lim D7'%; 37 X, D7 = lim (2m) 7t [ F(0) " aMT (M)

T >

= @m) 7 [ )T aM ().

- Hence we have only to show that

(12) Tliian;lX;(E; — A7 Ap) XDt =0
and
(13) lim D7'X7(ApAp — 271) X, Dpt = 0.

T o
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First we shall show relation (12). Put

= max x5/a(0
K 1<t<T,1<i<k n/ ()

e

Then noting that

Sr—ApAp = )y 7Tj”j+|s—t|]
J=min(T-s+1,T—-¢t+1)
and
(14) lm| < Nj~¢~1,

we find that the absolute value of every entry of D;'X, (3% — A7 A) X, D7t
is bounded by R

T s % 1/2 © 1/2
2 2 1-2d
ZMTZZ( )y ’Tj) ( )» Trj+s—t) <NT " *urp

s=1¢=1\j=T-s+1 j=T—-s+1

Hence we have relation (12). Now we prove (13). Let
¢;,;(d) = —(})F(j —d)I(i —j—d+1)/{T(=d)I'( - d + 1)}

and
o2(d) =T(t+ DIt +1-2d)/{T(¢t+1-d)}>

Let By be the T X T lower triangular matrix with (i, j)th entry —¢,_; ;,_(d)
and let

Cr = diag(0d(d),0¥(d),...,02_,(d)).
Then

%' = BrCr'By

[Hosking (1981), Theorem 1, and Yajima (1985), Lemma 3.2]. First we show
(15) lim D7'X7(A7Ap — BpBp) X, D7t = 0.

T —
Let &, ; and Z; ; be the ith column of ApX,D;' and BpX,D;', respec-
tively. Since
(16) SE>ARAp > 350

[Shaman (1976), Corollary 2.1 and Theorem 2.2], where the inequality is
defined in positive semidefinite sense, [|l&; |l is bounded over all T'. Hence it
suffices to show

lim ”wi’T—Z-i’T”=O, i=1,...,k.
T—o o

Define A, ;(d) by

' Ai(d) =1+ ¢, (d)/m;.

Then
Ai(d)=1—-(Tt+1)I(t+1—-i-d)}/{T(t+1-d)T(t+1-1i)}.
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We evaluate )\t,i(d ) by
A, () <N{i/(t-1i)}, i <t
<N{t/(t =)}, <is<t,
with £, 0 < ¢ < 1, being specified later. [See Yajima (1985), page 311.] Then

, 2
T i—1
l@; r — éi,THZ Spp) ( > |7Tj| Mi—l,j(d)l)

i=2\j=1

T it i-1 |2
=ur) | X+ X

i=2\j=1 j=ift+1

< N#T(T2§(1—d)—1 + T2_§(2d+1)).

By taking ¢ such that 2 — £€(2d + 1) — § < 0, the result is obtained. Finally we
show

17) TliRODTX;(B’TBT -3:Y)X, D= 0.
Let z,;r be the (i, j)th entry of B;X,;Dz'. Then if we note that
11m 10, 2(d)=1
[Yajima (1985), Lemma 3.2], and
with i, j being fixed, it follows from Toeplitz’s limit theorem that
1111102 (1-1/0,_ 1(d)) 2hr = i=1,...,k,
which implies (17). Then relation (13) follows from (15) and (17).
Cask (ii). From (5) and (16),

l1msupa(DT1XTET1XTDT I <a[(27r)_ f f(/\)_ dM(/\)]

T >

Hence we have only to show that
(18) 1i;x11nfa'(D;1X;2;1XTD;l)a > a'[(2'n')_1/" f(A)_ldM(A)]a.

The assertion is shown straightforward for a general ¢(e‘*). Hence to make
the proof clearer, we consider the case that ¢ = 1/27 and ¢(e’*) = 1 — ¢ e,
Then {¢,} is a fractional ARIMA(1, d, 0) process. Let I be the T X T identity
matrix and L, be the T X T matrix with 1’s on the diagonal directly below
the main diagonal and 0’s elsewhere. Then let

FT = IT — ¢,Lyp.
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Define ¢, = (8,,...,47) by

éT = F TgT'
Let 3, be the covariance matrix of &,. We partition 3, and F, into
A2 ~1 ;1
2p = 0_-1 IT | and Fr = fl’T ,
Or  2or For
respectively, with & £2 (= Esl) dr, a (T — 1)-component column vector,

S.r a (T —1)X (T - 1) matrlx fir=10,0,...,0y and Fpp a T X (T — 1)
matrix. Then
Spt=Fp 57 Fr
= (fw fir— flT&Tl‘ingleT - F2TS2_T1&T fir + FzTiz_TI‘;T&%iz_TlelT)/(’f%
+ Fyr 357 Fyr,
where
o = 62 — 635167

Lemma A.1 in the Appendix assures that o;% converges to a positive value as
T — . And it follows from (G.5) and Lemma A.1 that

and
lim o'D7' Xy frr623 52 Fsr XpDp'la = 0.
Then if we note that 3,, is identical with the (T — 1) X (T — 1) covariance

matrlx of the case that {¢} is a fractional ARIMA(O, d,0) process and
For 22T0'T0'T22TF2T is a positive semidefinite matrix, we obtain

llmlnfa DTIXTET 1X DT o > llm CYDT XT 2T22TF2TXTDT o

T > T >

- a'[(zﬂ)*[” F(A)HdM(A) |
We complete the proof of (18).

CASE (iii). There exist ¢M(2) =1 - L?_, ¢Pz/ and ¢$®(2) =1 —
_1¢Pz’ such that ¢(2) # 0, |2l < 1,i =1, 2 and all the roots of d(2) =
O, i = 1 2, are distinct, and if we define

fEA) = e /[6D(e)[* and  fF(A) = /| 6P (e[,
then
fE(A) < F*(A) < fF(hr), -7 <AL,
and
fEN) P =fEN) e, —m<A<m,

for any & (> 0). Then the proof is complete as in Grenander (1954), page 259.
(]
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If condition (11) does not hold, then the right-hand side matrix of (3) is no
longer well defined. A general result for this case has not been obtained yet.
Here we consider a polynomial function as a typical example. If we assume
that .

(19) x;=t"Y i=1,...,p, O0<p<m,
then

M, (0+)-M,(0)=1, i=1,...,p,
and
(20) 0<M;(0+)-M;;(0)<1, i=p+1,....,m

THEOREM 2.3. Let conditions (19) and (20) be satisfied. Let
r = diag(llxill,/T, .. I, /T Ny il s 2l
Then under (G.1)-(G.5),

o . ) . w, o0\!
tim DrB((8r — 8)(Gr - 801D =220 )
where W, is a p X p matrix with (i, j)th entry,
[(i — d)I(j - d){(2i — 1)(2j — 1}

/AF*0)I(i — 2d)T(j — 2d)(i +j — 1 - 2d)}
and W, is a (k — p) X (k — p) matrix with (i, j)th entry

[ A Mo g (V).

Proor. Let a”(T) and o;*(T) be the (i, j)th entry of D7 X; 37 X, D7t
and D;'X;3+ X, D7, respectlvely Then by Theorem 2.3 of Yajima (1988), it
suffices to show that

Tlimo"f(T)=0, l<i<p, p+1l<j<k.

From (16),
o5 (T) = o(T)| < (a8 (T) = o(T))"*(03(T) = 0(T)) """,
ij = it
Since wmT(A),i = 1,..., p, has the same property as the Fejér kernel has and

|1 — ei*|?? satisfies a Lipschitz condition of order 2d, we have

[P aME(A) = O(T %), i=1,..,p
[Zygmund (1959), Chapter 3, Theorem 3.15]. Hence the first right-hand side
term in the previous inequality is bounded in T, while Theorem 2.2 assures
that the second term converges to 0 as 7' — . Hence we have only to show
that

hm o-*(T) =0.
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We have

1/2
o3 (T)] < {Tz"(,%)‘l fWScf<A)“dM£<A)}

fonr

Al<e

f(A)‘ldMﬁ(A)}
1/2
+{T‘M(zw)‘l[ch()x)“dMi?(A)}

1/2
><{(27)—1['A'>cf(A)—1dMg(A)} .

Noting that f(0)~! = 0, we see that the first right-hand side term can be made
as small as desired uniformly in T' by letting ¢ go to 0. Next assumption (19)
assures that the second term converges to 0 as T — o, ¢ (> 0) being fixed.
Hence the proof is complete. O

REMARK 2.2. (i) Shaman (1976) assumed that f(A) is positive and continu-
ous to derive relation (16). However, as is seen from his proof, his result still
holds for an invertible stationary process having an infinite autoregressive
representation. A fractional ARIMA(p, d, ¢) process with —1/2 <d <1/2is
invertible. [See Hosking (1981), Theorem 2, and Yajima (1985), Proposition
2.3.]

(ii) (G.1) and (G.2) imply

li 2 7aT.(0) = 0.
lim max x,/a;,(0)
[See Anderson (1971), Lemma 2.6.1.] (G.5) specifies the rate of convergence.

(iii) Clearly m; =0, 1 <j <, for d =0 and N =0 in inequality (14).
Hence as is well known, (G.5) is unnecessary in this case.

Now we have a generalization of the result given by Grenander (1954).

THEOREM 2.4. Assume that m = 0 in (6) and condition (7) holds. Then a
necessary and sufficient condition under (G.1)—(G.5) that the LSE be asymptot-
ically efficient for a stationary process {¢,} with the spectral density f(A) of (1)
is that M(A) increase at not more than k values of A, 0 < A <, and the sum
of the ranks of the increases in M()A) is k.

Proor. Combining Theorem 2.1(i) with Theorem 2.2 and following the
same arguments developed by Anderson (1971), Section 10.2, we have the
- result. O

The intuitive interpretation of Theorem 2.4 is the following. If M(A)
increase at A = 0, at which f(A) diverges to », then the LSE, being con-
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structed by neglecting the correlation structure of {¢,}, cannot separate M(A)
from f(A) so that it is not asymptotically efficient. However, if M(A) increases
at A, 0 <A <, where f(A) takes a finite value, then the LSE can discrimi-
nate between M(A) and f(A) and, hence, is asymptotically efficient.

ExampLE 2.1. We shall give an example which clarifies the implication of
Theorems 2.1-2.4. Let

Ye = BiXy t+ BaXps T &4,

where

Xy = T1o + Ty COS Vit + 715 COS Vo,

X9 = Tog + Tgy COS Vi + Tog COS Wy,
with v, # 0,7 = 1,2, and v; # v,. And let

7= (ry,79), i=0,1,2.
Then
R(h) = M, + cosv,hM; + cos vohM,,
where M, = I'7y7,[, M, = 1/2)I'7;7T, i = 1,2, and
. -1/2 -1/2
= dlag((Tfo + (Tfl + 7%2)/2) , (730 + (731 + 1'%2)/2) )
[See Anderson (1971), page 581.] Define the relative efficiency of the LSE by
e(d) = Tl‘iil}”det[E(éT - B)(BT - B),]/det[E(éT - BT)(éT - ﬂ)I] .

Now we consider the following three cases in each of which e(d) takes a

different value.

() Let 7, =1(0,0y, 7, =(1,0) and 7, =(0,1). Then m =0 in (6) and
condition (7) holds. Since

max xZ/a%(0) = O(1/T), i=1,2,
1<t<T

(G.5) also holds. Then it follows from Theorems 2.1(i), 2.2 and 2.4 that the
LSE is asymptotically efficient and, hence, e(d) = 1. Actually

Tli_IEnDT{E(éT - B)(BT - Bz),}DT = }E‘LDT{E(BT - B)(BT - B),}DT
_ f(vy) 0
| - 2”( 0 f(r) )

(i) Let 7,=(1,0), 7, =(1,0) and 7, =(0,1). Then m =1 in (6) and
conditions (7) and (11) are satisfied. It follows from Theorem 2.1(ii) and
Theorem 2.2 of Yajima (1988) that

Jlim D7 Y(X7 X, )E{(Br - B)(Br — B)} (X7 X7 ) D7
Y 0
— 2 11 ,
”( 0 f(v2))
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where
bY = (2/3) F*(0)T(1 — 2d) /{(2d + 1)T'(1 — d)I'(1 + d)}.
On the other hand, it follows from Theorem 2.2 by noting
lim D7'(X7X;) D7t = R(0) = I,

T
that
. 1 ' 4 ~ ! AR, -1 3 V1 0
lim D7Y(X;/%;)E{(Br - B)(Br - B) (X7 Xr) D7 = 2”( fé ) f(yz))'

Hence e(d) = 0.

(iii) Let 7, =(1,0), 7, =(0,1) and 7, =(0,0). Then m =1 in (6) and
p =1 in (19). It follows now from Theorem 2.1(Gi) by noting
lim,_, D74 X; X,)D7! = I, that

.oz A A " p» 0
TI,IBLDT{E(BT - B)(BT - B) }DT = 277'( (1)1 f(vy) ),
where
Y =F*(0)Ir'(1 — 2d)/{(2d + 1)T'(1 — d)T'(1 + d)}.
Theorem 2.3 implies that
.oz ~ = " w 0) "
Jim Dy E{(Br — B)(Br ~0))Dr = 24y 1|
where
wy = T(1 = d)*/{f*(0)I(1 - 2d)T'(2 - 2d)},
and w, = f(v,)" . Hence
0<e(d)=(1+2d)T1+d)I(2-2d)/T(1-4d) <1, 0<d<1y/2.
The actual values of e(d) are listed in Table 1 of Yajima (1988).
3. The asymptotic distribution of the LSE. In this section let {¢,} be a

strictly stationary process all of whose moments exist, which has the infinite
moving average representation

& = Z bjnt—ja
j=0
where ©%_, b:27 # 0, |z| < 1, so that

J J
2

(21) 27rf()\)/0n2 =

[
ijA
Y b;e
j=0

with o2 = En?. Next let ¢!(t;,...,t,_,) be the rth-order cumulant of
Mes Mesty -5 MNeae,_, @A f(Ay, ..., A, ) be the rth-order cumulant spectral
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density of {n,}. Then
ety ...t 1) =/ lexp(iz )tjtj)fr"()\l,...,)\,_l) dAy... A,y
- 5

with IT = [— 7, 7]. Assume

[

(22) Yy le?(ty, ..y t,_1)| < .

LIPS tp_1=—®

Then we have an asymptotic distribution of the LSE, which is a generalization
of the result given by Yajima (1989) for finite Fourier transforms.

THEOREM 3.1. Let ¢ satisfy (22). Assume the' same conditions as in
Theorem 2.1(Gi). Further assume that

(23) max(m {(1)) 12 =o(1/TY4*/%),  i=m+1,...,k,
IAl<

for some & (> 0) and

(24) J7 (mT(0))da = o(1/T444%), i=1,. k.

Then D7 (X7 X)X By — B) has a limiting normal distribution with means 0
and covariances given in Theorem 2.1(ii).

Proor. It follows from Lemma A.2 in the Appendix that the cumulant of
any order of the LSE converges to the corresponding cumulant of the normal
distribution. Hence we have the result. O

REMARK 8.1. If x,; =t'"', 1<i<m,and x,; = cosv,, sinv;, v; # 0, or a
periodic function for m + 1 < i < k&, by noting that

max (] (M))2=01/TV?), i=m+1,...,k,

A<
for some & (> 0) and
f (m (A)?dr = 0(log T/TY?), i=1,...,k,

we see that conditions (23) and (24) hold.

APPENDIX
Define the backward shift operator B by Be, = ¢,_;. And let
6, = ¢(B)e,, -0 <t <o,

And let H{é, s,t}, s < t, be the Hilbert space generated by {¢,, &, 1, ..., £} and
the inner product of x and y in H{é,s, ¢} is defined by (x,y) = Exy. And let
P, . ,x be the projection of x into H{,s,¢}. Then we have the following
result.
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LEmMmA A1, Let
nir = & ~ Pg pr1,mEe t=1,...,p.
Then the covariance matrix of {ni p,...,n} p} converges to a positive definite
matrix as T — .
ProoF. Since

lim n*,=¢, — P, £
T__mnz,T ¢ &, p+1,98¢

=n,
say, the covariance matrix of {njr, ..., n¥ 1} converges to that of {n},..., n}}.
Define {7} by .
M =ét_f)(é,t+1,w}ét’ —o <t <o,

And define {w;} and {8,}, 0 <j < =, by
e ) —a 0 ) .
Y Yzl = (1-2) and Y 0,27 =¢(z) 7,
Jj=0 Jj=0
respectively. Then since
&= 2 0,6, ; and ¢, = )y Yiff s
Jj=0 j=0
we have
(A]') ni* = Z ( Z 0i+j—p+n'/’n)ﬁ;—j, i= 1,---,17,
Jj=0\n=0

with 6, = 0, n < 0. Let @ be the p X p matrix whose (i, j)th entry is the
coefficient of 7%, ;_; in n¥,,_; of (A.1). Then

Q = [ Z 0n—i+j'/’nj|'
n=0

8; is expressed as

p
0; =Y e, —pt1l<j<oo,
i=1
where ¢, i = 1,..., p, is a nonzero constant and |v,| < 1,i=1,..., p, with
v; # v,, L # n. Then @ is expressed as
Q = @,Q,Q3,
where @, and Q; are p X p matrices with (i, j)th entry c,»;**' and v/~",

respectively, and
K Q2 = diag((l - Vl)_d,. . ey (1 - Vp)_d).

Hence @ is a nonsingular matrix. Since {#*} is an uncorrelated process,
(nf,...,n}} are linearly independent, which means that the covariance matrix
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of {nf,...,n}} is positive definite. O

LEmMMA A.2. Assume (23) and (24).

(i)
T T r
- an
cum| X Xy ey L Fer,infen | = o(T" : ”xi(j)“T)
Hn=1 Hr)=1 J=1

forl1 <i(j)<m,j=1,...,q,andm + 1 <i(j)<k,j=q+1,...,r,r >3,
qg > 0.

T T
(ii) cum( ) Yoy, iEeayr - ) Xery, i(mEe(r)
t)=1 t(r)=1

r
= 0( I1 ”xi(j)”T)
j=1
form+1<i(j)<k,j=1,...,r,r> 3.
Proor. (i) We can prove the result as in Yajima (1989). Let

T
xfi(A) = X x, et
t=1

and

PTj(5) = mg|x§‘kj()‘)|
and

Qr; = f_ﬂ lx%}()\”d)‘-
And let

B(A) = ¥ bjeiit,
Jj=0

For notational simplicity we express [pi-1dA;...dA,_; by [dA. Then it
follows from Lemma 2 of Yajima (1989) that

T T
cum( Z X1y, i)Ee(1ys + + + Z xt(r),i(r)et(r))
(=1 t(r)=1

r—1 r
= fxf'k,i(l)(_ ) ’\j) I_Ix%k,i(j)()‘j—l)
j=1 )j=2

r—1

- r—1 r—1
xb( Yy Aj) ]’Ib(—Aj)f,ﬂ( b Aj,)tz,...,)t,_l) dA
Jj=1 Jj=1 Jj=1

= [g(}) da,



176 Y. YAJIMA

say, where A = (A;,...,A,_;). We choose 8 so that & satisfies (23). Since we
can change the numbering of x,;;, and A; if necessary, we can restrict the
domain of integration to

S={|MI<1/T,1<j<n,Al>1/T,n+1<j<q-1,
Wjrg-1l > 8, 1<j<u, N l<du<j<r-g-1}.
It follows from (1) and (21) that ‘

(A.2) [6(M)|<N/W¢, —m<A <.
Clearly,
(A.3) |xz(A)| < TY2||x; ..

Then noting that f"(A,,...,A,_;) is a bounded function and using (A.2) and
(A.3), we obtain

n+1

r
j|g(5\)|d/\ < NT(+0/2+@n=0d [T lxsilly TT Prisy(8)
S Jj=1 J=q+u+1
q+u
XL{j=Qzlx?,i<j>(Aj—l)|}

{5 e

Then similar to Lemma 3(i) of Yajima (1989), the right-hand side of the above
inequality can be bounded above by

n+1
- 2 —1d d—1/2 d
NT G/ .nl”xi(j)”T(T "% in il + TOQr, itn+2))
o

q+tu

X IT @ruy T1 Pri8)
Jj=n+3 J=q+u+1
for n <q—1or u > 0 and by
q r
NT1—q/2+(q—1)dH}lxi(j)HT ]._I PT,i(j)(a)
j=1 j=q+1

for n =q — 1 and u = 0, respectively. The assertion follows from (23) and
(24).
(ii) We can restrict the domain of integration to
V={A|InI>8,1<j<n, I\l <é,n+1<j<r-1}
Then similar to (i), [Slg(X)I dA is bounded by

n+1l r

j= j=n

X

for n > 0, and by
r
Tl/zllxi(l)“T ]_I PT,i(j)(a)
Jj=2

for n = 0, respectively. The assertion again follows from (23) and (24). O
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