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By approximating the classical product-limit estimator of a distribu-
tion function with an average of iid random variables, we derive sufficient
and necessary conditions for the rate of (both strong and weak) uniform
convergence of the product-limit estimator over the whole line. These
findings somehow fill a longstanding gap in the asymptotic theory of
survival analysis. The result suggests a natural way of estimating the rate
of convergence. We also prove a related conjecture raised by Gill and
discuss its application to the construction of a confidence interval for a
survival function near the endpoint.

1. Introduction. Let {X,, i > 1} and {U,, 1 > 1} be two independent
sequences of nonnegative iid random variables. Let F' and G be the common
distributions of {X,} and {U}, respectively, and assume F is continuous. The
maximum likelihood estimator of F based on {X;,..., X,} is its empirical
distribution. However, in many cases, the complete observations of X; are not
available. In random censorship models, we only observe {Z;, §,, 1 <i < n},
where Z; = X; A U; and §; = I;x _y, Based on these observations, the ana-
logue of the empirical distribution is the celebrated product-limit estimator,
introduced by Kaplan and Meier (1958) and defined by

(1_ dNn(S)),

(1.1) F@t)y=1- T[] Y.(s)

O<s<t

where
Ni(5) = ey, dN(5) = Ny(s) = Ny(s )
and
V()= Ll

We also introduce the notation H(¢) = P(Z, <t) =1 — (1 — F(t))(1 — G(2)),
H(@)=P(Z, <t, 6,=1 = [({(1 — G)dF and 7y = sup{¢t: H(¢) < 1}.
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The large-sample properties of the product-limit estimator have drawn
considerable attention from many authors. In summary, the relevant results
appearing in the literature may be classified into two cases: (1) restricting to
a time interval [0, ¢,] with ¢, < 74 and (2) extending to the time interval
[0, 7 ], essentially the whole line. For the rate of strong uniform convergence
of the first case, Foldes and Rejto (1981a, 1981b) proved that

(12)  limsupn'/%(loglog n) "*sup|F,(t) - F(t)| = C as.,
n t<ty

where C is some constant depending on ¢,. (Hereafter, a.s. is the abbreviated
“almost surely,” and all limits with n are taken as n — «.) In particular, two
types of strong approximations provided new insights to understand the
asymptotic behavior of the product-limit estimator. Lo and Singh (1986)
showed a representation of F, — F by an average of iid random variables
plus a small remainder term. They divided the time interval [0, ¢,] into small
intervals in a proper manner and proved that

N 1-F(t) »
sup|B,(¢) —~ F(t) — ——— ¥ n(t)
(13) t<tg, n j=1
= 0(n~**(log n)3/4) a.s.,
where
0; tAZ: dH1
14 X = 7 — S—
( ) T’j(t) 1_H(ZJ_) (Zjit} ,/(‘) (1 _H)2

is the influence curve of the Kaplan—Meier estimator. The order in (1.3) was
later much improved. Burk, Csorgo and Horvath (1988) and Major and Rejto
(1988) used the strong approximation of the empirical process and obtained
the following results:

(1.5) sup |F,(t) — F(t) — n"2W,(t)| = O(log n/n) a.s.

t<t,

where W, is a Gaussian process with covariance satisfying

(16)  LmE(W,(5)W,(t)) = (1 = F(s))(1 - F(t)) [ 4
. i =(1- - D —

n mee o (1-H)
for s <t, and ¢ < ¢,. It is easy to see (1.6) is also the covariance of (1 —
F(s)n(s) and (1 — F(¢))n,(¢). Applying the functional law of the iterated
logarithm, one can see that both (1.3) and (1.5) imply (1.2) with

1/2
C = supv2 (1 — F(t))(ft(l ~-H)? dHl) .
t<tq 0
Therefore the result of weak convergence of n'/%(F, — F) to a Gaussian
process in space D[O0, ¢,], first shown by Breslow and Crowley (1974), can be
regarded as a simple corollary of either (1.3) or (1.5).
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However, results on the rate of uniform convergence on the interval [0, 7]
are far less complete. Although the approximations of (1.3) and (1.5) indicate
that the behavior of F,(¢) — F(¢) is close to a sample average or a Gaussian
process, it cannot be extended to the interval [0, 7,;] without additional
conditions. The purpose of this paper is to give a full analysis of the behavior
of F(t), especially near 7. By developing some useful representations that
are slightly different from (1.3), we characterize the rate of uniform conver-
gence by some sufficient and necessary conditions on the distributions of
lifetime and censoring time. These developments lead to some important
findings on the asymptotic behavior of F,. For example, under certain condi-
tions, a confidence interval can be derived for the distribution function near
the endpoint where the ordinary confidence interval based on the Greenwood
formula may be inaccurate. To better understand the aim of this paper, we
give a brief review of the existing results in the literature.

Under the strongest condition

G(ry) <1=F(ry),

Foldes and Reijto (1981b) and Gu and Lai (1990) proved (1.2) holds over
[0, 7 ]. The more important and challenging part of the problem is the case
when

(1.7) F(ry) < 1.
(This assumption implies 75 < %.) By assuming
w1
1.8 —dF <
(1.8) f, Tog <=

in addition to (1.7), Gu and Lai (1990) proved that (1.2) can be extended to the
interval [0, 74 ]. In fact, the above conditions guarantee the weak convergence
of nl/Z(ﬁ'n(t) — F(¢)) to a Gaussian process in the space D[0, 7;;] and hence
the associated law of iterated logarithm can, in turn, be derived. Without
assuming (1.8), Gill (1983) and Ying (1989) considered the normalized process

n'/2(F,(t) — F(t))
(1= F(¢))(1+ s dH,/(1 - H)?)

(1.9)

and proved that it converges weakly to a Brownian bridge in the space
D[Oz 7y ]. However, their result does not render a rate of uniform convergence
of F, — F over [0, 74 ]. In fact, the Studentized process corresponding to (1.9)
may not even be a tight sequence in D[0, 7;] without (1.8) [see Chen and
Ying (1994)]. To the best of our knowledge, the only result regarding uniform
convergence of F, — F over [0, 7], without assuming (1.8), is the strong
uniform consistency proved by Stute and Wang (1993). In general, the
problem of the rate of strong or weak uniform convergence over the whole
line remains unanswered.

In practice, inference about the survival function 1 — F relies on the rate
of convergence of F, — F over [0, 7y], particularly near the endpoint 7.
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Since the estimator PA’n is rather unstable near 7, several approaches were
proposed to amend the problem. In general, it is commonly accepted that
ﬁn(t) should be regarded as unreliable when ¢ is bigger than the last
uncensored observation [see e.g., Hall and Wellner (1980)]. In other words,
instead of considering F (t) — F(¢) one should consider a stopped process
F(t ANXEF)—F(t AX}F), where X =max{§,Z;: 1 <j < n} is the largest un-
censored observation. More generally, one can consider the stopped process
FE(t nt,) — F(@ At,), where t, - 7. However, there has been no theoreti-
cal justification of whether, or to what extent, the stopped process is more
stable than the nonstopped process.

To avoid this difficulty, Lai and Ying (1988) proposed a modified
product-limit estimator by smoothly decreasing 1 — ﬁ'n to 0 in an interval
which is chosen so that the number of observations larger than the two
endpoints of the interval are at the same order n *, where 0 < A < 1.
Essentially, the product-limit estimator is truncated up to this interval. This
modified estimator was successfully applied to linear regression and rank
regression models with censored data [see, e.g., Lai and Ying (1988, 1991)].
However, it is practically hard to determine an appropriate A. The essence of
the problem goes back to the rate of convergence of F,(¢) — F(¢) when ¢ is
close to 7.

To tackle the same problem, Gill (1993) proposed a rather simple method
to estimate F(7y) in a slightly more specific setup. Suppose F(r5) < 1 and
both F and G have left-continuous positive densities at 75, say f(ry) and
g(ry), respectively. Since F is unstable near 7, it was suggested therein
to use F (1 — n~1/?) instead of F ,(7i) to estimate F(ry). The open ques-
tion that arose there is whether this estimator is accurate to order
Op((log n/n)/?). This conjecture is intuitively appealing. First, one can see

F(ry) —F(tg —n= %) ~ f(14)n" % = o((log n/n)"?),
since F' has positive left-continuous density at 75. Second, suppose the
representation given in (1.3) can be extended to [0, 7] with a negligible

remainder term, then F (ry; — n~'/%) — F(ry; — n~'/?) can be approximated
by (1 — F(ry — n 1/2))/7LZL=17]I(1-H -n 1/2) with variance

(1= F(rg —n %) . e dH,

n 0 (1-H)?
N ifTan—uz f(t) dt N (f(TH)logn)
n’o g(1g)(ty — 1) 2g(mg)n |

Therefore it is natural to conjecture that estimation of F(ry) by F (1, —
n~1/%) is accurate to order Op((log n/n)'/?).

In this paper, we provide a rather general analysis of the rate of conver-
gence of FA’n — F over the interval [0, 5], especially near the endpoint 7.
Focusing our attention on the case when (1.7) holds, we present sufficient and
necessary conditions for both strong and weak uniform convergence at the
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rate n™?, where 0 < p < 1/2. We also derive a representation of ﬁ F by a
sample average plus a remainder term which is negligible over [0 ] It is
shown that the asymptotic behavior of F " (¢) — F(¢) over [0, 7] still coincides
with that of an average of iid random Varlables Our findings indicate that
one can detect the rate of uniform convergence of F, by comparing the
number of uncensored observations with that of censored observations near
the endpoint. We then point out a way to consistently estimate the rate of
convergence. In particular, we also pay attention to the asymptotic behavior
of the stopped process and F, (1) which are of special interest. The limiting
distributions of F' (7)) are also clarified. As a byproduct, we give a solution to
the aforementioned conjecture in Gill (1993). We prove that F (ry — n V%)
and F ' (1) converge at the same rate (log n/n)'/? to the normal distribution
with mean 0 and variance f(75)/(2g(7y)), where f(ry5) and g(ry) are the
positive left-continuous density functions of F(¢) and G(¢) at ¢t = 75, respec-
tively. This result provides a way to construct a confidence interval for F(¢)
with ¢ near 7; and hence complements the usual approach based on the
Greenwood formula that may not be reliable for ¢ near 7. Sections 2 and 3
contain respectively the results on strong and weak convergence. The lemmas
are proved in the appendices.

Before we move on to the next section, we note that it is not possible to find
a universal rate of uniform convergence without adding any conditions. In
other words, F, may converge to F' at an arbitrarily slow rate near the
endpoint 7;; when the censoring is arbitrarily heavy [see, e.g., Chen and Ying
(1994)].

2. Strong convergence. The following theorem gives a sufficient and
necessary condition for the rate of strong uniform convergence of F,(¢) — F(¢)
over [0, 7 ].

THEOREM 2.1. Assume F(ry) < 1. Then, for 0 <p <1/2,
(2.1) sup |F,(t) — F(t)| =o(n?) a.s.

t<Tty

if and only if
(2.2) [fa-6)" P aF < .
0

Furthermore, if (2.2) does not hold, then
n?limsup sup |F,(¢) — F(t)|=n? lim sup B (r4) — F(ry)]
(23) n t<X¥
=mo qa.s.
where X* = max{§,X;: 1 < i < n} is the largest uncensored observation.

REMARK. The heaviness of the censoring near the endpoint is reflected by
the size of p in condition (2.2) [and also in conditions (3.2), (3.4) and (3.10) in
the next section]. The smaller the p is, the fewer the uncensored observations
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are near the endpoint. This, in turn, is reflected in the convergence rate of ﬁn:
the smaller the p, the slower the rate of convergence. (The same remark can
be made for the weak convergence discussed in Section 3.) When p = 0, (2.2)
holds trivially, and (2.1) becomes the strong uniform consistency of F, [see
Stute and Wang (1993)]. In fact, the above theorem can be viewed as a
Marcinkiewicz—Zigmund type of strong law of large numbers. When p = 1/2,
condition (2.2) is identical to (1.8), under which the law of the iterated
logarithm was proved by Gu and Lai (1990).

REMARK. As stated previously, we assume the continuity of F throughout
the paper. For discontinuous F, our main results can still be derived with
some attention paid to the discontinuity points of F. One can also appeal to
an argument involving smoothing. The idea is to move the probability mass
at each discontinuity point of F' evenly onto a small interval. Specifically, let
A={a;, i=1,2,...} be the collection of discontinuity points of F with
probability p;, = P(X = a;) > 0. Let d; > 0 be such that X7_,;d; < . One can
choose to consider

X=X+ Z diI(ai<X) + fz dilai:X)’
i=1 i=1

U=U+ '21 d; L, <y
ie

where ¢ is independent of (X, U) and follows the uniform distribution on
[0, 1]. Let F and G be the distribution functions of X and U, respectively.
Then F is a distribution which smooths the probability mass of F at its
discontinuity points to the associated small intervals and G assigns prob-
ability O to these intervals. Then it can be verified that the rate of uniform
convergence for the product-limit estimator based on samples from F and G
is the same as that of the product-limit estimator F,. And condition (2.2) is
also equivalent to its tilde version. Therefore Theorem 2.1 also holds for
discontinuous F. We note that, for discontinuous F, F(¢) is estimable only for
t < 1. Furthermore, F(r;) may not be estimable if P(X = 74) > 0 and
P(U = 7g) = 0. In general, the rate of uniform convergence for discontinuous
F should be considered over the interval [0, 7;;) instead of [0, 7 ].

In this paper, we assume F(7;) <1, which implies 7; < «. The case
Ty = @ is also of interest. In fact, we may classify all possible situations into
three cases: (1) F(ry) <1 and G(ry) =1; (2) F(ry)=G(ry) =1; and
(3) F(ry) = 1 and G(7y) < 1. The first case is the subject of this paper. The
third case is relatively easy to study, and all classical results on large-sample
properties (the strong law of large numbers, the central limit theorem and
the law of the iterated logarithm) can be proved via the representation in
(1.5) which holds over [0, 7] in this case. The second case is a rather difficult
one which also includes 7 = . With some other assumption in addition to
(1.8), Lai and Gu (1990) proved the law of the iterated logarithm. We do not
know any other results on the rate of convergence for case 2. A full analysis of
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this case might be technically much harder. Meanwhile, this case is practi-
cally of secondary interest since we know 1 — F(¢) is close to 0 when ¢ is close
to 7.
We may conclude from Theorem 2.1 that
n?lim sup sup |I$'n(t) - F(t)| = nPlimsup sup |ﬁ'n(t) - F(t)|

n t<ty n tSXn

nplimsup|PA’n(TH) - F(TH)| a.s.,

which takes the value 0 or « according to whether or not (2.2) holds. Hence
the process F,(¢) — F(¢) and the stopped process F,(t A X¥) — F(t A X))
have the same rate of strong uniform convergence. The process F,(¢) — F(t)
achieves this rate at the endpoint 74. In Section 3 we shall show similar
results for weak convergence.

By a direct application of Theorem 2.1, one can easily prove the following
corollary.

COROLLARY 2.2. Suppose F(ry3) < 1 and

. (F(re) —F(1))" (F(ru) = F(1))"
(24) 0< 11tn%1i21f 1-G(0) < limsup 1-G(t) <

t—> Ty

for some a > 0. Then (2.1) holds for 0 <p < 1/2 ifand onlyifp < 1/(1 + a).
In particular, if « < 1, (2.1) holds for all p < 1/2.

The proof is straightforward and is omitted.

REMARK. The critical caseis p = 1/(1 + a) < 1/2, and we shall return to
this case in Corollary 3.2.

_ We also present in the following proposition a strong approximation of
F, — F by an average of iid random variables. This representation plays an
important role in the proof of our main results.

PROPOSITION 2.3.  Assume F(ry) < 1 and (2.2) holds for some 0 <p < 1/2.
Then

F,(t) = F(t) -

sup
(2.5 t<t,

l_F(t) i SiI{ZL-St) _ t dHl
n  ~\1-H(Z-) J1-H

= 0(n12(log )" (1 - H(t, —))** 2P v 1)) as,

where ¢, is such that (1 — H(¢,, — ))n* — « for some 0 < A < 1. Furthermore,
1-F(t) 2

Z 6iI(Z,;§t} _ft dHl
n S \1-H(Z-) h1-H

= 0((n"2 v /%) (log n)"?) a.s.

sup | (1) — F(t) ~

(26) t<Tg
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REMARK. The above approximations of FA’n — F by an average of iid vari-
ables are different from (1.3). The representation in (1.3) achieves a better
order but is restricted to some interval [0, #,] with ¢, < 7. It is reasonable
that a representation of F — F by an average of iid variables over [0, 7]
may produce a larger error term. It should be noted that the iid random
variables in (1.3) are different from those in (2.5) and (2.6). To see their
relations, we notice that both terms in the expression of 7;(¢) in (1.4) have the
same mean [! dH,/(1 — H). So we can write

n n 5, . dH,

£ e L)
n tNZ; dH1 t dHl
§(/ (1 —H)Z_ol—H)‘

Roughly speaking, when ¢ is close to 75, the oscillation of the second term in
the above expression of Y7_ 1nj(t) is dominated by that of the first term. So
the order of X;_7m,(¢) is the same as that of the first term in the above
expression. To obtain an approximation for F F over [0, 7], it suffices to
use the first term of the above expression. ThlS in fact, greatly simplifies the
technical analysis. We remind the readers that the validity of the above
representations depends on certain conditions such as (2.2).

For an illustration of the above results, we give the following example.

ExaMPLE. Let G(¢) =1 - (1 —t)?, 0 <t < 1, where 8 > 0. Suppose F(1)
< 1 and F(¢) has positive continuous density at ¢t = 1 [e.g., F(¢) =1 — e,
t > 0]. The uniform convergence of ﬁ'n — F over [0,1] can be classified into
three cases:

(i) B < 1. Equation (2.1) holds for all p < 1/2. In this case, (1.8) and hence
the law of the iterated logarithm hold;

(i) B = 1. Equation (2.1) is also true for all p < 1/2. This is now an example
of the conjecture raised in Gill (1993) which shall be addressed in
Theorem 3.6;

(iii) B > 1. Equation (2.1) holds only for p < 1/(8 + 1).

One can understand that the order of ¥, — F over [0, 7] is dominated by
that of the average of the iid random variables presented in (2.6). For
instance, when B8 = 2,

limsupn'/? sup |F,(¢) — F(¢)| == aus.

n t<Tp

And the order on the right-hand side of (2.6) is (log n/n)"'/%, which is
substantially smaller than n~1/2. Thus (2.6) indeed provides a proper approx-
imation.
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In relation to the estimation of the distribution function, an equally
important problem is the estimation of the cumulative hazard function which
is defined as

; dH,
A(t) = —log(1=F(1)) = [ T—5

and estimated by
+dN,(s)
n( ) _f Yn(S)

Parallel to Theorem 2.1 and Proposition 2.3, similar results also hold for
the rate of convergence of A ,,.

PROPOSITION 2.4. Assume F(ry) <1 and 0 <p < 1/2. Then:
(i) Equation (2.2) implies

zI(Z <t}

1
AL () — A(t) — — Z (W - A(t))

n.;

sup [A
(2.7) =t

- O(n’1/2(log n)l/z[(l —H(t, —))er 2y, 1])

where t, is such that n*(1 — H(¢, — )) — « for some 0 < A < 1. Furthermore,

sup
(2 8) t<Ty

A A(t))‘

=0((n"'? v n=3/?)(log n) 1z ) a.s.

(i1) We have
(2.9) sup [A, () — A(t)|=0o(n?) a.s.

t<Ty
if and only if (2.2) holds.
(iii) If (2.2) does not hold, then

nPlim sup|/A\n(TH) - A(TH)|
n

(2.10) R
= n?limsup sup |An(t) - A(t)| =o qa.s.
n t<Xk

In the following we show the proof of the above proposition. We first use
the empirical approximation demonstrated in Lemma A.1 in Appendix A to
show (2.7). To prove (2.8), we divide the interval [0, 7;;] into two parts: [0, 7, ]
and [7,, 7], where 7, defined in (A.1) in Appendix A is appropriately chosen.
Since (2.7) also holds for ¢, = 7,, we then argue that the variation of A, — A
over the interval [7,, 7] is negligible to show (2.8). The proof of (2.9) and
(2.10) uses the representation results in (2.8) and some martingale properties
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of the counting process. Proposition 2.4 shall rely on some lemmas that are
deferred to Appendix A. With the help of Proposition 2.4, the proofs of
Theorem 2.1 and Proposition 2.3 essentially only utilize the Taylor expansion
[see (2.24)].

PROOF OF PROPOSITION 2.4. (i) Suppose (2.2) holds. Write

. dN, ., dH,
Aty —a@) =+ ( 1—H_n[0(1—H))
(2.11)

Let ¢, be such that n*(1 — H(¢, — )) — « for some 0 < A < 1. Observe that

1.  dN,

n’o (1 _H)l/(lfp)

IA

(1 H(z, )
pw dH,
j;) (1 _ H)l/(l—p)

a.s. by the law of large numbers

by condition (2.2). Now apply Lemma A.1 and write
-n(l-H)

dN,

f Y,(1-H) "

. |Y, = n(1-H)| dN,
<] (1-H)Y, «n

sup
t<t,

dN,
<0(1)n"2(log n)"? ["(1 - H) *? —" as.byL Al
(2.12) <0()n (log n) _/;)( ) - a.s. by Lemma

< 0(1)n""*(log n)l/z[(l — H(t, —)) Ay 1]
tn dNn/n
/0 OT)”“”’) a.s.

< 0(1)n"2(log n)"*[(1 = H(t, —))** "> P v 1] as.
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Hence (2.7) holds by (2.11) and (2.12). Now replace ¢, in (2.12) by 7, as
defined in (A.1). We have

-n(l-H) IN
/ Y,(1-H) "
<O((n"'? Vv n=3r/?)(log n)l/z) a.s.
Observe that (A.4) in Lemma A.2 implies
-n(l-H)
sup dN,
t>1, f Y(l _H)

So (2.13) also holds over the interval [0, 7 ]. Therefore (2.8) follows.
(ii) Suppose (2.2) holds. Similarly to (2.11), we can write

R () — AD)
1( . dN, : Y
_( ol-H o(l—Hf )
——f Yn(i f n(l_H)dHl,
(1 H) o (1-H)
where the first term is (1,/7)L}_1,(¢). We can compute the last term in (2.14)

in a similar fashion to (2.12) and find that its order is the same as that in
(2.13). It then follows from Lemma A.5 and (2.14) that

supnp|f\n(t) - A(t)| -0 a.s.

(213) t<7

*0 i.o.) = 0.

(2.14)

t<m,
In order to show (2.9), it then suffices to show
(2.15) sup n"|f&n(t) - A(t)| -0 a.s.
T, <t< Ty

To this end, we observe the monotonicity of A(#) and A,(¢) and use the
triangle inequality to write

sup n?[R,(£) = A(2)]

T, <t< T

< sup n?|A,(t) — A (7,) — (A(¢) = A(7)| + n?|R(5,) — A(7,)]

<n?(Ru(mi) = Ru(7)) + nP(A(7) = A(7,)) + n?|A,(7,) = A7)

The third term in the above expression clearly converges to 0 a.s. by the
preceding arguments. For the second term, we have

m dH,
(A7) = A(m)) = n? [ "o —p

: dH
H p/-p) [(H 1
=nf(1 - H(r)) f -7/

K
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since n?(1 — H(r,))?/1~P) < MP/A~P) by the definition of 7, in (A.1). For the
first term, we notice

P(n?(A,(ry) — A, (7,)) # 0io.) = P(N,(74) = N,(7,) # 0i0.) =0

by (A.4) in Lemma A.2. So (2.15) follows. The sufficiency is thus proved. The
necessity is implied in the next part.
(iii) Suppose (2.2) does not hold. By the continuity of A(¢), we can write

b

0 n " R
(2.16) sup L = sup |An(t) — A, (t —)| < 2 sup |An(t) — A(t)
1<j<n Yn(Zj) t<X¥ t<X¥

where X* is the largest uncensored observation among the first n observa-
tions. Hence (A.5) in Lemma A.2 implies that

lim sup sup |An(t) - A(t)| = a.s.

n t<X}¥

To show

limsupnp|/A\n(frH) - A(’TH)| =® a.s.,

we realize that

lim supnp|An(TH) — A, 1(TH)|

< limsupnp|(/A\n(TH) - A(TH)) - (AnH(TH) - A(TH))|
< 21imsupnp|f\n(’rg) - A(TH)|-

So it suffices to show

(2.17) lim supnp|/A\n(TH) - /A\n+1(7H)| = a.s.

Now we write
An(TH) - /A\n+1(TH)
wmdN, (1)  radN, (1)
LYo h oo
dN,(t)
Y,(6)(Y,(2) + 1)

(2.18)

=(1- 8n+1)/;zn+l

1 Z,o  AN(2)
- 6n+1( Yn+1(Zn+1) - '/(-) Yn(t)(Yn(t) + 1) '
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By (A.5) in Lemma A.2 and the Kolmogorov zero—one law, we know either

(2 19) li s ( /Zn+1 dNn(t)
. imsupn®s,, (o—5—— — a.s.
n ! Yn+1(Zn+1) 0 Yn(t)(Yn(t) + 1)
or
VA dN, (t)
2.20 li P§ . = 8.
(2:20) A G S
If we can show (2.20) implies
(2.21) limsupn?(1 — n+1)/ Y(Y " 1) © a.s.

then, by combining (2.21) and (2.19), we know (2.17) holds since at least one
of (2.21) and (2.19) is true. Now assume (2.20). To show (2.21), let m be an
arbitrary positive number and define

dN,

n

t
t>0 —_— g
), (Y, +1 "
(T, = « if the set is empty). Let &, = o{(Z, 61),...,(Z,, 5,)}. Let A, be the

n’ n

event {Z, > T,_,} and let B, be the event {8, —0} It is easy to see
P(A,NB,|% _,)=P(5,=0,2,2T, ,|7_,)

inf 20202020 ) ey

t<ry  P(Z,>t) A

inf P(8,=0|Z, > t)P(A, |7, ,) as.,

t<Tg

(2.22) T, = inf{

v

IA

where the first inequality is due to the independence of (Z,, §,) and 7, _,.

Since (2.20) implies P(A, i.0.) = 1, it follows from Lemma A.3 that
P(5,,,=0,Z,,,>T,i0) =P(B,NA,1io.)
> inf P(8,=0|Z, >1¢).

0<t<rty

(2.23)

Now one notices lim,_,, P(8;, =0|Z; > ¢) = 1. Hence
inf P(6,=0]Z,>1¢t)>0.

0<t<rtyg
Again, by the Kolmogorov zero—one law, we know from (2.23) that
P(s,,,=0,2,.,>T,i0) =1,

which implies

dN,
m >m a.s.

Let m — «; (2.21) and hence (2.17) follow. The proof is complete. O

Z,,
limsupn?(1 — 6n+1)f B
0

n
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PROOF OF THEOREM 2.1. Write 1 — F.(¢) = exp(— A (¢)), where

_ : 1
A (t) = —folog(l - ?) dN,.

n

By the strong uniform consistency of F‘n over [0, 4] [cf. Stute and Wang
(1993)], we can write, via the triangle inequality and the Taylor expansion,

sup| £,(¢) = F(1)| = sup (1 = F(0))| £,(6) ~ A1)

< tsggllﬁnu) — F(t)| = (1= F(£))|A,(¢) - ACD)||

(2.24) R B
F,(t) = F(t) — (1 = F(t))(A,(¢) — A(2))|

< sup
teD
- 2 -
< sup|A,(¢) = A(t)| = o(1) sup|A,(¢) — A(2)|
teD teD

for large n, where D can be any possibly random set in [0, 75 ]. Therefore

1(1 — F(ry))sup|A,(t) — A(t)| < sup|E,(¢) — F(t)]
(2'25) teD teD i
< 2sup|A,(¢) — A(2)]
teD

for all large n and D C [0, 7;]. We note that the strong consistency of A, (1)
(not depending on the assumption) implies
(2.26) min{Y,(Z;): §;=1,1<i <n} > = as.

Thus we can employ the Taylor expansion on log(1 — 1/(Y,(Z))) for every
1 <j < n and show

- A ;dN,
(2.27) sup A, (¢) = A,(¢)] < sup [
teD teD "0

Y2

for large n and D C [0, 74].
We first show (2.2) implies (2.1). Suppose (2.2) holds. From (A.3) in Ap-
pendix A, we have
dN,
2

I

» dN,
= 0(1)-/‘0 m a.s.

_o9y —p) [T d Nn/n
=0()n"'(1-H(7, -)) e )O #

(2.28)

=0(n"??) as.
Since (A.4) in Lemma A.2 implies P([/# dN, /Y,> # 0 i.0.) = 0, it follows from
(2.27) and (2.28) that

dN, .
ve =0(n"*?) as.

(2.29) sup [4,(1) = A,(0)] = [

t<Tp
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Now (2.1) follows from (2.25) and Proposition 2.4(ii). The necessity is implied
in the following proof.

It suffices to show (2.3) is true if (2.2) does not hold. Now assume (2.2) does
not hold. Again, by the Taylor expansion and Lemma A.2, we have

n®s,
)) = limnsup Y (Z) =0 a.s.

lim sup ( —npﬁnlog(l —

n

for 0 < p < 1/2. Now we can carry out a proof similar to the proof of part (iii)
of Proposition 2.4 to show

limsupnp|/~\n(frH) - A(TH)| = limsup sup np|/~Xn(t) - A(t)| =® a.s.
t<X*

n n

Then (2.3) follows from (2.25) with D = [0, X*] and {7g4}. The proof is
complete. O

PROOF OF PROPOSITION 2.3. Similarly to (2.27) and (2.28), we can show

sup|A,(¢) — A, (0)]

t<t,

o(1) [+ 2
(2.30) ( )fo Y?
= 0(D)n~ (1= H(t, =) *H
= o(1)n~2(log ) /?[(1=H(t,-))* " P V1] as,
because n*(1 — H(¢, — )) — o for some 0 < A < 1. Replace A, by A in (2.24).

Then (2.5) follows from (2.30) and Proposition 2.4(3). In view of (2.29) and
2p > @Bp/2 A1/2)for 0 <p < 1/2,(2.6) can be shown similarly. O

3. Weak convergence. The following theorem presents sufficient and
necessary conditions for the weak convergence of F, — F.

THEOREM 3.1. Suppose F(ry) <1 and 0 <p < 1/2. Then:

@
(3.1) sup | F,(¢) = F(t)| = Op(n ")

t<Ty

if and only if
(1 - G)dF)""

(3.2) h?ls;:p 1=G() < oo
(ii)
(3.3) sup |B,(t) — F(t)| = 0p(n ")

t<Ty
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if and only if

(1 -G)dF) "
(34) R TS B

With 1y replaced by X in (3.1) and (3.3), the above assertions still hold.

Applying the above theorem, we can determine the exact order of the weak
uniform convergence of F, — F.

COROLLARY 3.2. Suppose F(ty) < 1,0 <p <1/2 and

U -Gan)Tt (1= G) dF)
(35) 0< hfilg,lf 1= G(0) < h?lizp 1= G(t)

Assume t,, is such that n'"?(1 — H(t, —)) = O(1) or n"?Y,(¢,) = 0,(1). Then

n? R
(3.6) lim limP| — < sup|F,(t) — F(t)| <mn?| = 1.
m

m—ew n t<t,
In particular, (3.6) holds with t, = 7.

Consider the uniform convergence of ﬁ'n — F on [0, ¢,], where ¢, is chosen
such that Y,(¢,) ~ n* for some 0 < A < 1. From the above corollary, we know
that sup, _ tﬂIFA'n(t) — F(t)| may converge at the same order as sup, _ THllf'n(t) -
F(#)| does, depending on the heaviness of the censoring near r; measured by
the size of p. Thus we may conclude that modifying the product-limit
estimator by truncating it up to the n*th largest observation, regardless of
the censoring near 75, may not provide a more stable estimator in the sense
of the rate of uniform convergence. Hence it is important to determine how
heavy the censoring is near 7.

The above theorems suggest a natural approach to estimating p from the
data and then determining the rate of convergence. Since [{(1 — G) dF is the
distribution function of the uncensored observations, it can be estimated by
its empirical distribution N,(¢)/n. Because (1 — G(¢))/(1 — H(¢)) —» 1/(1 —
F(ry)) > 0as t - 74, 1 — G(¢) in condition (3.5) can be replaced by 1 — H(¢%).
Therefore (3.5) can be rewritten as

—x < liminf(log(l ~H(t)) - (1 —p)log(ftTH(l -G dF))

t—> Ty

< o,

< lim sup (log(l —H(t)) - (1 —p)log(/tTH(l - G) dF)

t—> T
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The above boundedness condition determines a unique p. By the empirical
approximation given (A.3), we can show

P T H(t-)

nM<Y, (t)<n’2

—1‘—)0 a.s.

and

(N, (75) — N,(t))/n
(1 — G) dF

sup

nM<Y, (8)<nt2

—1‘—>0 a.s.

for any p < A; < A, < 1 under condition (3.5). Thus (3.5) implies, with proba-
bility 1,

— o < liminf inf  (log(Y,(¢)/n)

n ph<Y,()<n’

—(1 = p)log((N,(7g) — N,(t))/n))
< lim sup sup  (log(Y,(¢)/n)

n nM<Y, (t)<n’

(3.7)

—(1 = p)log((N,(5) = N,(2))/n)) < =,

which also determines a unique p. Therefore p can be consistently estimated.
For example, we can choose to consider a simple one-dimensional linear
regression problem with observations:

(log(j/n),log((Nn(Z(n)) - Nn(z(n,j)))/n)), nM<j<n’,

where p < A; <Ay, <1 and {Z;: 1 <j < n} are the ordered {Z;: 1 <j < n}.
Consider log(j/n) as the covariate and log((N,(Z,) — N,(Z, _,))/n) as the
response in the linear regression model without intercept. Let p be the
estimated p via, for example, the least squares method. If (3.5) holds, then

1 1
1-p 1-p
Loneje nAzlog(j/n)log([Nn(Z(n,) - Nn(Z(n—j))]/n) 1

Y2 < prs(log(j/n))? S 1-p
i < j< wulog(i/n) O(1)
T <y e(log(j/n))’

( 1 )
=0 a.s.
log n

Then clearly |p — p| = O(1/log n) a.s. and n~P is a consistent estimator of
the rate of uniform convergence of F, — F over [0, 75 ]. The properties of this
type of estimator remain to be studied.

a.s. by (3.7)
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Although there might not be an optimal way to determine appropriate A,
and A, in the above estimation, it is different from the seemingly same
problem of finding an appropriate A in truncating the product-limit estima-
tor up to the n*th largest observation. Modifying the product-limit estimator
by disregarding it near 75 may lose information and may still not provide
better inference about F due to the aforementioned reason. We propose to
estimate the rate of convergence and hence utilize the information of the
observations near 7.

_ Parallel to Proposition 2.3, we also present a weak approximation of
F, — F by an average of iid random variables.

ProPOSITION 3.3. Suppose F(ry) <1 and (3.2) holds for some 0 <p <
1/2. Then we have

sup

S o A O N P )‘
(3.8) t=ty B0 =F) n izzl ( 1-H(Z ~) A

= 0p(n12((1 = H(t, —))*" V27 v 1)(log n)?),
where t, = 1y is such that n*(1 — H(¢t, —)) — » for some 0 < A < 1. Fur-
thermore,

. 1-F n 6,1, _,
O e I T A(”)‘

sup
(3 9) <7y

= OP((n71/2 v n73p/2)(10g n)z)

The following proposition shows that under certain proper conditions
n?(F (1) — F(ry)) converges to a stable distribution.

PROPOSITION 3.4. Suppose F(rg) <1 and 0 <p < 1/2. Then

(Jr*(1 - G) dF)'™”

3.10 0< i

(3.10) 11— G(t)

implies

(3.11) np(F‘n(TH) - F(TH)) - indistribution,

where & denotes a stable distribution.

REMARK. The above proposition can be presented in a slightly more
general fashion involving a slowly varying function. Namely, (3.11) is equiva-
lent to

TH 1/1-p 1
ft(l—G)dF~(1—G(t))/( )L(l_—G(t)),
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where L is a slowly varying function at . We note that when p = 1/(1 + a)
< 1/2 and the upper and lower limits in (2.4) are equal in Corollary 2.2,
n?(F,(ry) — F(7)) converges to a stable law.

We now proceed to investigate the asymptotic distribution of F’n(t) for ¢
near 75 when the censoring near 7 is relatively moderate. Specifically, we
are interested in the case when both F and G have positive left-continuous
density at ¢ = 7;. We can see that (3.4) is satisfied for all p < 1/2 in this
case. Thus we expect F,(75) converges to F(ry) at a rate faster than n™? for
all p < 1/2. In Theorem 3.6, we shall not only show the rate of convergence
is (log n/n)'/? but also prove its asymptotic normality. The following proposi-
tion presents a slightly more general result.

ProPoSITION 3.5. Suppose F(ry) < 1 and
[/7(1 - G)dF

(3.12) lim ; =0
S (1= G(O) [ dF/(1 - G)

Let t, be such that
dF L
1-G

(3.13) n(1 - G(tn))ZfOt"
and

n(F(ry) = F(1,))
J(1=G) " dF

Then
1/2

- (F(t) = F(ry)) > N(0,1),

(3.14) [ dF/(1- G)

where N(0, 1) is the standard normal distribution and t!, is such that

J&(1 - G) tdF

(3.15) lim inf — >
n [(1-G)  dF

and

(5.16) n(F(ra) = F(5,))

im —
wJe(1-G) LdF
In particular, (3.14) holds for t, = 7y and ¢, = t,,.

REMARK. Equation (3.12) implies

. dF 1
(3.17) fol—GzL(l—G(t))’
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where L(:) is a slowly varying function [see, e.g., Feller (1966)]. It is also easy
to show that (1.8) is a special case of (3.12). Since (3.13) implies ¢, = 74, we
know

Jor dF/(1 - G)

JrdHy(1-H) (1= FCm))

Thus (3.14) can also be presented as
1/2

- (B.(t)) = F(ry)) - N(0, 1)

(1= F(t,)) g dH,/(1 ~ H)’
for ¢, satisfying (3.15) and (3.16).

Using the above proposition, we can prove the conjecture by Gill (1993)
mentioned in Section 1.

THEOREM 3.6. Suppose F(ry) < 1. Let f(1y) and g(ry) be the positive
left-continuous density functions of F(¢) and G(&) at t = 75, respectively.
Then

2g(ty)n v ,
(3.18) Fomlog n (F.(t,) — F(1y)) = N(0,1)
H
for all t,, such that
log n \'/2
(3.19) t, =1y +o0 < 7y.
n

In particular, (3.18) holds with t, = 75 — n~ /2 and t, = 7.

Hence we conclude that when both F and G have positive left-continuous
densities at 75, both F,(75) and the modified estimator F (r; —n~'/?)
converge to F(ry) at the same rate (log n/n)/? with the same limiting
normal distribution. It is interesting to see that in this case it is not
necessary to modify the estimator F, (7).

ExampLE. Recall the example given in Section 2 following Proposition 2.3.
We know that when p =1/(8+ 1) < 1/2, Proposition 3.4 applies. When
B = 1, it becomes an example of Theorem 3.6.

Proposition 3.5 and Theorem 3.6 contain an important application to the
inference about F(¢) with ¢ near 75. Normally, the confidence interval for
F(¢) at a fixed t < 75 is built based on the fact that n'/%(F (¢) — F(¢)) —
N(@,(1 — F(t))%0%(t)), where o%(t) = [{ dH,/(1 — H)? [see (1.6)]. So o %(¢) is
naturally estimated by the Greenwood formula:

62(t) = jotndNn(s)/(Yn(s)Yn(s +)),
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which is basically the empirical analogue of o 2(¢). Then the level 100 X (1 —
a)% confidence interval for F(¢) is given by

(F.(t) = 2(a/2)n 12(1 = F,(2))6 (1),
E,(t) +2(a/2)n"2(1 = E,(t))5(t)),

where z(:) is the upper quantile of the standard normal distribution. How-
ever, when ¢ is close to 74, the normal approximation tends to be less
accurate if o(ry) = . This is indeed the case when F(ry) <1 and both F
and G have positive left-continuous densities at ¢ = 7. Thus the aforemen-
tioned confidence interval for F(¢) with ¢ near r; may be invalid. Theorem
3.6 provides theoretical justification for a confidence interval for F(ry) as

() - Z(g)

. 1/2
fo(tg)log n
2n§n(TH) ’

(3.20)

Fura) ”( 2) 218, (1)

2
f (TH)logn) v )

where fAn(frH) and g,(ry) are estimators of f(r;) and g(ry), respectively.
Since F(¢) and G(¢) can be consistently estimated for ¢ < 7, f(15) and g(7y)
can also be consistently estimated by the assumption of the left continuity of
f and g at t = 5. Thus the confidence interval given in (3.20) is valid.

We see from the above corollaries that the asymptotic behavior of F (t) at
the endpoint ¢ = 7 is drastically different under different conditions. Under
the strongest condition (1.8), F () — F(r;;) converges to the normal distri-
bution at the order of n~!/2. In Theorem 3.6, the censoring near 7, is
relatively moderate and the rate of convergence is Op((log n/n)'/?). When
the censoring near 7; tends to be heavier [e.g., condition (3.6)], F. (r;) — F(ry)
converges at a slower rate (n™” with p < 1/2).

To prove the above results, we shall first prove the following proposition.

PropoSITION 3.7. Suppose F(ry) <1 and 0 <p <1/2. Then, for any
> 0:

(1) equation (3.2) implies

1n 1 {Z; <t
n(t)_A(t)_;_Z(%

= 0p(n~2((1 = H(t, —))* """ v 1)(log n)?),

sup
(3.21) t<t,

o)
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where t, —> 7y is such that n™(1 — H(t, — )) — © for some XA > 0. Further-
more,

sup |A,(¢) — A() - li &—Am
(3.22) e n ;o H(Z, -)

= 0p((n™2 v n=32/2)(log n)*);

(i)
(3.23) sup A, (t) = A(¢)| = Op(n™?)
t<Tpy
if and only if (3.2) holds;
(iii)
(3.24) sup [A,(¢) — A(¢)| = op(n?)
t<Tp

if and only if (3.4) holds. With Ty replaced by X in (3.23) and (3.24), the
above assertions still hold.

ProOOF. The proof is along the lines of the proof of Proposition 2.4.
(i) Suppose (3.2) holds. To show (3.21), recall the expression of An(t) —
A(#) in (2.11). We only need to show
-n(l-H)

sup — f Y(1-H) dN,

(3.25) t=t,
_ OP(nfl/z[(l ~ H(t, _))(Sp—l)/z(l—p) v 1](log n)2)
In view of (2.12), it suffices to show

ftn dNn/n’
o (1-H)*”

_ OP(((I — H(t, _))(31)71)/2(1*17) )(log n)3/2)

To this end, we realize that (3.2) implies
fTH dH, .
s (1—H)Y""P(~log(1 - H))*”

for any 0 < & < 7. Since —log(1 — H(¢, —)) = O(log n), similarly to (2.12),
we can write

t, dNn/n B t
/0 (1 - H)"? _fo (1-H)*?

=o(1)[:"(

dH,
1 - H)"Y""P(~log(1 — H))"*
<[ = H(t, =) VP v 1 (<log(1 - H(2,)))?

= O([(l _ H(tn _))(3p—1)/2(1—p) ](log n)3/2)
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Thus (3.21) holds. Then (3.22) follows from (B.4) and (3.21) with ¢, = 7,.
(i) Assume (3.2) holds. The above proof can also be carried out to show

-n(l—-H)

/ Y,(1-H) Op((n71/2Vn73p/2)(logn)2)_

sup

t<T,

dH, | =

By Lemma B.3 and the martingale property of 7,(¢), 0 < ¢ < 75, we can write

/m—>0

uniformly over n when m — «. Thus sup, _, (1/n)X7_1,()l = Op(n"?). Now
recall the expression of A (¢) — A(¢) in (2.14). We have

>m| <nPE|—

(3.26) P(np sup Z n;(7x)

t<Ty

1 n
; ; ”Vh‘(t)

(3.27) sup |A,(¢) = A(t)| = Op(n7).

t<T,

To show (3.27) for ¢ > 7,, it suffices to show n?(A(ry) — A(7,)) = O(1) in view
of (B.4) in Lemma B.2. Now write

n?(A(rg) = A(7,))

TH

dH,(t)
(Hy(7m) — Hy(£))" "
= O0()n?(Hy(ry) — H1(Tn))

= 0(1)n?(1 - H(z,))”" " = 0(1).

(3.28) =0(1)n P/ by condition (3.2)

Thus we have proved that (3.2) implies (3.23). On the other hand, suppose
(3.23) holds with 75 replaced by X;*. By (2.16) we know

3.29 sup ~— =0p(n7"),
( ) 1<i<n Yn(Zi) P( )
which, by (A.3), is equivalent to
sup = Op(n'7P).

l<i<n 1_H(Z )

This is equivalent to (B.2) [see, e.g., Chow and Teicher (1988)], which is also
equivalent to (3.2) by Lemma B.2.
(iii) The proof is similar to part (ii). We omit the details. O
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We now apply Proposition 3.7 to prove Theorem 3.1.

ProOF OF THEOREM 3.1. Similarly to the proof of Theorem 2.1, the proof of

this theorem essentially depends on the Taylor expansion and Proposition
3.7.

(i) Assume (3.2) holds. In view of (2.25), to show that (3.2) implies (3.1), it
is enough to show

(3.30) sup |A,(t) — A,(t)| = Op(n 27 (log n)?)

t<Tp
by Proposition 3.7. With condition (3.2), one can mimic (2.28) and prove
[i»dN, /Y,2 = Op(n~2P(log n)*). Hence (3.30) follows from (B.4) in Lemma

B.2 and the inequality in (2.29). On the other hand, if (3.1) holds with 75
replaced by X, we have

sup |A,(t) = A(2)| = Op(n7P),
t<X¥

which entails

1
max (—Silog(l - Y.(Z) )) = 0p(n7?).

This is equivalent to (3.29). Hence (3.2) follows.
(ii) The proof is similar to part (i) and is omitted. O

PROOF OF COROLLARY 3.2. We shall only consider ¢, such that n' ?(1 —
H(t,)) is bounded. Similar arguments can be applied for ¢, satisfying
nPY,(t) = Op(1). Now assume n' ?(1 — H(t,)) is bounded. Choose M large
enough in the definition of 7, in (A.1). Then ¢, > 7, for all large n. From

Theorem 3.1, (2.24) and (3.30), we know it suffices to prove that (3.5) implies

N n-?
(3.31) lim limP(sup|An(t) —A(t)] = ) = 1.
m—x n m

t<,

Now observe that

1 n'p
lin}linfnP 1= H(Z, o) > - )
m 1/Q-p) T

— o whenm — ®



1074 K. CHEN AND S.-H. LO

by (3.5), and that

nl=p

61I(Z >,
li P L
1mnsupn 1= H(Z, -) o

< limsupnP(8,=1,Z, > 7,)

n

= limsupn/TH(l - G)dF
< O0(1)limsupn(1l - H(Tn))l/(lfp) < o

uniformly for all m. We have

5.1 nl=p
( =) — o when m — .

1-H(Z, -) m

lim infnP

Therefore

liminfP 5iI(zv<7} n'~?
imin su s >

n isf 1-H(Z; —) m
611{Z1$"n} n'"?

1-p
1-H(Z,-) ~ m

> liminf
n

|

6.1, _. nl=p
>1- exp(—liminfnP( L#h=r) ))

1-H(Z,-) m
— 1 when m — .
It then follows from (A.3) that

6ilig,<ry N7
lin;ian ilf Yn(‘éi)” > o — 1 when m — oo.

Similarly to (2.16), we also have

supm < 2suplA,(t) — A(t)]
i<n Yn(ZL) B t<m, " ‘

Then (3.31) follows. O
PROOF OF PROPOSITION 3.3. By (3.30), we can replace A, by An in (2.24)

and the order is Op(n"2”(log n)?). Hence (3.8) and (3.9) follow from part (i) of
Proposition 3.7. O

PrOOF OF PROPOSITION 3.4. We first see that (3.10) is equivalent to

5
(3.32) 0 < lim x¥/-P)p :

— — A > < oo,
e 1= H(z, =) M) >x] <=
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Observe that the random variable 8,/(1 — H(Z; — )) — A(7y) is unbounded
above but bounded below. So we know that (3.32) implies

n
nP 1Y)

z T(iZi—)_A(TH) -, in distribution,

where 9, is a certain stable distribution [see, e.g., Feller (1966)]. Observe
that (3.11) implies (3.2). So representation (3.9) is valid. Now (3.11) holds with
9 = (1 — F(14))2,, which is also stable. The proof is complete. O

ProoF oF ProOPOSITION 3.5. Observe (3.12) and the definition of ¢, in
(3.13). We know n//"(1 — G)dF — 0. Therefore nP(Z, >t,, 8, =1) -0,
which implies P(N,(r;) — N,(¢,) # 0) — 0. We then conclude P(F (t,) #
F () — 0. Thus, if ¢, > t,, we have P(F.(¢,) # F (¢,)) = 0, which clearly

implies
)1/2)

We next show that the above equality still holds for ¢, <¢,. If ¢/, <¢,,

N 1, dF
Fn(tn)_Fn(tn)=0P ;j;) 1-@G

‘, oyt aH
t, -
E ft; dN,/(n(1 - H)) - £dH1/(1—H)) Szim
(1, dF
“’(E 0 1—G)
by (3.15). So
ty 1., dF 2
ft; dNn/(n(l—H)):"P((Zfo 1—G) )
since

w A O(F F L dF |77
= t) — t) = t)—F(t)) = — |
|, T = M) A8 = O(F(t) —F(8) =o| | [" 7=
by (8.16). Now observe that (3.13) implies 1 — H(¢, — ) > n~* for some 0 <
A < 1, so we can use the empirical approximation in Lemma A.1 to show

ty 1/2
|A,(8) = A ()] = 0] [ N, /(n(1 - H))) - (%/ ld_FG) :

Hence, by the Taylor expansion, we have

A A 1, dF \Y2
B (t,) — B, (t,)] = 0p ;fo - fras=t.
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Therefore, to show (3.14), it suffices to show

n Ve

Again by employing the Taylor expansion in an analogous fashion to (2.24),
we know that it suffices to show

(3.33)

1/2
(fot"dHl/(l _ H)Q) (An(tn) - A(tn)) - N(O’ 1),

Jrdm /(1 - H)Z/]t”dF/(l ~-G) - 1/(1 - F(ry))".
0 0

Recall the expression of A (¢) — A(¢) in (2.14). For the last two terms in
(2.14), we notice that N,(¢) is a counting process with compensator

fOtYn dA = fOtYn dH, /(1 — H)

and write

1 . (Y, —n(1=H)Ly - -
E(_/tn( ( )) (Y,>n(1-H)/2} dNn
n

0 Y,(1-H)

i/tn (Y, —n(1- H))I(Y,,>n(1—H)/2)

2 dHl)
0 (1-H)

n

= E(lftn (Y, = n(A = H)) Ly, > a2
n

: Yo (dNn—YndA))

(3.34) ,
ift"E (Yn —-n(l- H)) I{Y,,>n(1fH)/2)
n*Jo Y,(1-H)’

_0(1) n, dH, _O(1) . dF
~=r ), (1-H)® n? J (1-G)*
o(1) _ l ¢, dF
nZ(l _ G(tn))z - 0(1)71'/;) 1-G°

dH,
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where the last equality is due to the definition of ¢, in (3.13). So we know

l/'tn (Yn —n(1 - H))I{Yn>n(17H)/2)
nJo Y (1-H)

dN,

1/‘% (Yn -n(1l- H))I{Y,L>n(17H)/2}
nJo (1-H)?

1, dF \Y/?
|2 [1=g) |
From condition (3.13), we have 1 — H(¢, —)>n""* for some 0 < A < 1.
Therefore, by (A.3), we know that, with probability 1,

. Y, () 1
G —HE)) 2

dH,

for all large n. Therefore, with probability 1,

L ., (Yn - n(1- H))I{Yn> n(l—H)/2)

nlo Y,(1-H) dn,
1 ., (Yn —n(l- H))I(Yn>(1fH)/2)
__f 2 dH,
n’o (1-H)
1 Y —n(l—-H 1 Y —n(l—-H
=_ftn( nY (_ )) dNn__j‘tn n ( _ )dHl
n-’o n(]‘ H) n-’o (1—H)

for all large n. The right-hand side is exactly the last two terms of (2.14).
Hence, to show (3.33), it suffices to show

. dH, -1/2
(3.35) (njom) El n(t,) = N(0,1)

by the expression of An — A in (2.14). To this end, we check the Lindeberg
condition. Set

dH
sf=n/t”—1 5
o (1-H)
and write
1 ., dH, 1, dF \Y?
[ o [0 g
n’0 (1 —H) n’o 1-G

dr

- o(1)(1 - G(tn))fot"m — o(1).
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Hence, for any ¢ > 0,
dH,

(3.36) P(fozl“"m >

for all large n. Now observe that s,(1 — G(¢,)) - 1/(1 — F(7y)) and define

t, =inf{t: e(1 — G()/2 <1 - G(t,)}). Then 1/(1 — H(Z,))) > es, implies

n
Z, > t, for large n. So we can write, for large n,

1 n

2

3z ZlE(TIi () Lo, o5,3)
n =

es,| =0

-1
< ftnilz E(nlz(tn)l(a JI1-H(Z)] > es ;) by (3.36)
0 (1 _H) 1 1 °n

b, dH, |7 311z <0y |\
So(l)(fom E 1-H(Z,) Lo, -z > es,)

o ¢, dH, 71E 611(fn<Z1£tn) ?
< (1)(/0 (1—H)2) ( 1-H(Z,) )
J{»dH, /(1 - H)’

<O am, 0 —Hy

by the definition of , and the slow variation of [{ dF /(1 — G) with respect to
(1 - G@) ! [see (3.17)]. Thus the Lindeberg condition holds and (3.33)
follows from the central limit theorem. O

ProOOF OF THEOREM 3.6. Observe

[0~ G)dF ~ () &(7u) (7~ )°/2

and

dF
—a " —f(7g)log(ry — t) /8(7y)

ft
ol
when ¢ — 7. To check condition (3.12), we write

(1 — G)dF

(- 6) o

(1-G(t)) [odF/(1-G)

when ¢ — 7. Let ¢, satisfy (3.13). It is easy to show
(3.37) g —t, ~ (3f(7y)&(7g)nlogn)
Clearly,

_ 0
—log(7y — ¢) o

1/2

2 t, dF
n(F(ry) — F(t,)) /fo T 0
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Hence Proposition 3.5 can be applied with ¢, satisfying (3.37). It can be easily
checked that a ¢/, satisfying (3.19) also satisfies (3.15) and (3.16). The proof is
complete. O

APPENDIX A

The empirical approximation in the following lemma is the key to the
proofs of the main results. We show a complete proof for explicitness. More
delicate results may be found in Shorack and Wellner (1986).

LEMMA A.1. Let t, be such that (1 — H(¢t, — )n* — © for some 0 < A < 1
and define

(A1) 7, =sup{t:1— H(t —) > Mn?" 1},
where 0 <p <1 and M > 0. Then
Y, (¢)/n— (1 —-H(t—))
o (A=H(@E =)
(A.2) - O(n—l/z(log n)l/z)
Y,(t)/n—(1—H(t—)) ‘ L
(Y,(t)/n)"* o

In particular, (A.2) holds with t, replaced by T,.

i<t

t<t

n

Proor. Applying the Bernstein inequality, we have

P(|Y,(t)/n —H(t-)|>x) < 2exp(— o(x + H(t _r)w(cl “H( _))))

for any x > 0. Let x = (rH(t — X1 — H(t — ))log n/n)'/? for some large but
fixed r > 0. Since (log n/n) = o(n"") for 0 < A < 1, we know x < H(¢ — X1 —
H(t —)) for all ¢ < ¢, and large n. So for ¢ < ¢, and large n,

2eXp(_ 2(x + H(t —)(1 - H(¢ —))))

nrH(t —)(1 — H(t —))logn/n
4H(t —)(1 - H(t -))

< 2exp(— ) =2n7T/%,

So we have, for large n,

Y.(t)/n — (1~ H(t -)) >(rlogn)“ <on-r/t
(1-H(t )" )

n
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for all ¢ < ¢,. Similarly,

n

Y,(t +)/n — (1 — H(t)) . (rlogn )1/2) gt
(1 H(t)"” -

for all ¢ < ¢, and large n. Choose 0 = s, <s; <sy < -+ <s, =t, such that
H(s; —)—H(s;,_y) <1/nforalll<i <t, Bya Bonferroni type of inequal-
ity and the Borel-Cantelli lemma, we can show

Y,(s;)/n — (1 — H(s; _))

(1-H(s; —))"
log n \ /2 Y (s. n—(1-H(s.
ol o

This can be extended to [0,#,] by the monotonicity of the Y, (¢) and 1 —
H(¢ — ). The proof is complete. O

0<i<n

We note that (A.2) implies

not<t,

—1‘=0 a.s.

for all 0 < p < 1 and ¢, given in the above lemma. Hence n?Y,(¢,) — 0 a.s.
and n'"?P(1 — H(¢, — )) — 0 imply each other.

LEMMA A.2. Suppose F(r;) <1 and 0 <p < 1/2. If (2.2) holds, then

(A4) P(N,(ty) — N,(7,) # 0i.0.) = 0;
otherwise,

A5 li nro

(A.5) 1mnsup Y (Z) © q.s

Proor. Let 0 <p < 1/2. Recall the fact that, for 1 <r < 2 and iid ran-
dom variables {£,, n > 1}, E(|£,)” < « is equivalent to |£ |/nY/" > 0 as.,
which is also equivalent to max{| ¢, i < n}/nY” — 0 a.s., and that E|¢&,|"
is equivalent to lim sup,| &,|/nY/ " = = a.s. [see, e.g., Chow and Teicher (1988)].
Assume (2.2) holds. Since

( 8 )1/<1—P> u 1

= F <
1 - H(Z,) o (1-F)Y' P -Gy e

= o0
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we know

5.
limmax{ ————— . i<n)/n'™?=0 aus.
n {(1_H(Zi_)) }/
Therefore, with 7, defined in (A.1), we can write

1
— limmax{81, ., ,, i < n}
n

<1immax{M i<n} nl™? =0 a.s
= Hmma (T h(z, ) -

Since N,(74) — N,(7,) is the number of uncensored observations that are
larger than 7, among the first n observations, (A.4) holds by the above
equality. On the other hand, suppose (2.2) does not hold, then

o

n

R - H(Z, )

a.s.
Again by the definition of 7,, we have
(A.6) P(s,=1,Z,> 7, i.0.) = 1.

It follows from (A.3) that Y, (r,)/(n(1 — H(7, — ))) — 1 a.s. Therefore we can
write

i nPs B n*s, I
im su > limsup ——1, .,
s P Y(Z) T Y () e
5,
> lim sup

I
n nlfp(l _ H(Tn _)) {Z,27,}
> M limsup§,I; ..,
=M a.s.
by (A.6). Letting M — «, (A.5) follows. The proof is complete. O

The following lemma may be viewed as an adapted Feller-Chung lemma
[see Chow and Teicher (1988)].

LEmmA A.3. Let B,, A,, n > 1, be two sequences of events adapted to an
increasing filtration {%,}. If P(A, N B, |%,_1) = cP(A, |%,_,) a.s. for some
¢ > 0, then

(A7) P(A, NnB,i.0)=>=cP(A,io0.).
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Proor. For n > 1, we can write

A0 cans)
k

=n

o k-1
= Y Pl(A,nB,) N(ANnB) | +P(A,NB,)
k=n+1 j=n
oo k-1
> ) P|B,NnA, NAS| +P(B,NA,)
k=n+1 j=n

* P(B,NnA,Nk A%

P
e P(AcNAZIAY)

e A+ =5y P4

J=n

E(P(A, N B, |F_)Ini14e) = k1
> inf (P(4, 0 Bl %) npein) Y Pla, Aﬁ)
kzn+1 E(P(Ak|%efl)lﬂ_’§;,}A§) k=n+1 Jj=n
P(A, mBn)P A
o k-1 *
>c ), PlA,NAS +CP(An)=CP(UAj)-
k=n+1 Jj=n Jj=n

Letting n —» », P(U;_,(A, N B,) - P(A, N B, io0) and P(U;_,A,) —
P(A, i.0.), and (A.7) follows. O

We state the Kronecker lemma with a slight extension in the following
lemma. The proof is in spirit the same as the proof of the Kronecker lemma
[see Chow and Teicher (1988)]. We omit the details.

LEmMMA A.4 (Kronecker lemma). Let b, be a sequence of increasing posi-
tive numbers such that b, = © as n — ». Let a,(t) be a sequence of func-
tions defined on A such that sup,.4IX7_,a(¢t)/b)]— 0 as n — «. Then
sup, ¢ 41X7_1a,(DI/b, = 0 asn — «.

LEMMA A.5. Suppose F(ry) <1 and (2.2) holds for some 0 <p <1/2.
Then

-0 a.s.

i "Ij(t)

j=1

(A.8) n?~! sup

t<Ty

where n; is defined in (1.4).
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ProOF. Recall the definition of 7,(¢). We shall first prove

E( Y 22 (n)
n=1

Since Em;(¢) = 0 and E(n,(t))* = [((1 — H) *>dH, for all j> 1 and ¢ < 7y,
for 0 < p < 1/2 we can write

E( Y ne nm))
n=1

2

< oo,

Z n?r~2Eni(t,)

n=1

2p—2/‘ »_ dH,
o (1-H)?

|
|[\’]8

1 (1-2p)/(1-p)
— 1 2p—2
-0 £t § ||
T dH
A9 J 1
(A.9) x [P s
Tj—l(l H)
dH,
-o0(1 e
( )nzlf 1(1 H)l/(lfp)

w dH,
- 0(1)_/;) (1 _ H)l/(l—P)

— 0(1)(1 - F(TH))fTHu —G) PP GF < =,

Since, for any n > 1, {n,(¢),7; 0 <t < 74} is a martingale, where
O-{Z-I(Z‘St)’ SII{Z'St)’ J = 172"--},

therefore {7 j» ! (7, A t),5;;0 <t < 1y} is also a martingale for any n > 1.
By Doob’s 1nequahty and (A.9), we have

2

X7 (A t)
j=n

E| sup

t<Tty

S4E( _i “Ini(7) )

(A.10)

2

=]

< 4E( 2 J7 ()
j=1

< oo

for all n > 1. Clearly, the second term in (A.10) converges to 0 when n — .

Therefore sup, ., X7 ,J" "m(r; A )] = 0 in probability when n — . Since

1 A t), j =1, are 1ndependent mean 0 random variables, we can see that

{sup,_, X5, j? "1, A t),F,; n > 1}is an L? reverse submartingale, where
G = o{(Z;, 8;); jZn}.

J2 5
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It then converges almost surely by the martingale convergence theorem and
the limit is 0. So by Lemma A4 [with b, = n' 7 and a,(¢) = n,(1, A ¢)], we
have

sup n?! =o0(1) as.
t<Ty

n
X (A t)
j=1

A calculation similar to (A.9) shows

= Z NT dHl 6n
p=1pgf( [T " + 1 < o,
L (f (1-H)" 1-H(Z, ~) ‘Z"”"}) )

Tn

Again using the Kronecker lemma, we have

n 6 *VZ. dH]_
nP~1 Z(—JIT_ o+ |7 T——= | =0(1) as.
j=1 1_H(Zj_) w= ffj (1_H)2
Now write
n?~ ' sup | Y ()
t<Ty j:l

+ n?"1 sup
t<Tp

i (7 A t)

Jj=1

<n? ! sup
t<Ty

i (m(¢) = m(7; A t))‘

j=1
5. vz, dH

. S

1-H(Z;—) "% J, (1-H)

n
<o(l) +nP 1t Y
j=1

=o0(1) as.
The proof is complete. O
APPENDIX B

LemmA B.1. Suppose F(rg) <1 and (3.2) holds for some 0 <p <1/2.
Then

dH
(B.1) lim xp( [ ) _o,
0 —

where 0 < ¢ < p2/(1 — p).
ProOF. Let 0 < & < p?/(1 — p). Set

. dH, 1/1-p—e
T (/0 (1 —H)Z)
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and let ¢ — 7. It is enough to show x(1 — H(¢ — )) = 0. Observe that
. dH ¢ dH,
Lo m( -y [yt
(- H =) [ = o [
¢ dH,
0(1)f A-p)X1+p+e)
0 (H1(TH) — H\(¢))

= o(1)(p% - (1 - p)e) ' /Hy(74)
=o(1).

Then (B.1) is proved. O

LEMMA B.2. Suppose F(7;) < 1 and 0 < p < 1/2. Then (3.2) is equivalent
to each of the following three assertions:

6,

(B.2) hl;l_)sllpxp m >l r| < oo,
(B.3) lim sup xP(|n(75)| > x'77) < o
and

(B.4) limsupP(N(7,) # N,(75)) > 0 when M — =,

where M is given in the definition of 7, in (A.1). Similarly, (3.4) is equivalent
to each of the following three assertions:

o1
. i s yler) =
(B.5) ;an}oxP 1 H(z, ) x 0,
(B.6) lim xP(|n;(7y)| > x'"7) =0
and
(B.7) limP(N,(7,) # N,(7)) = 0.

PrROOF. Set x = (1 —H(t — ))& P or (1 — H(t))"/* P in (B.2) and
let ¢t = 7. It is easy to see (3.2) and (B.2) are equivalent. Recall the definition
of n; in (1.4). We know (B.3) is equivalent to
—-p

(B.8) limsupxP|é <

x— ®©

dHl) X
H)*

1 Z
1(1—H(Z1—) _fo (1
and

. Zy dH,
(B.9) hmsupxP((l - Bl)j; (1— > x

x— ® )

=P | < oo,
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Since
N aH, (1-H(t)) ' >0 ast
— - -0 ast— 1y,
0 (1—H)? g

the equivalence between (B.2) and (B.8) is established. On the other hand,
(3.2) implies (B.9) by Lemma B.1. Therefore (B.3) is equivalent to each of (B.2)
and (3.2). It remains to show the equivalence between (B.4) and (B.2). Notice
that (B.2) is equivalent to

1

li pl—— 1
1mnsupn ( 1= H(Z D)
which, by the definition of 7, in (A.1), is equivalent to (B.4).

The equivalence between (3.4), (B.5), (B.6) and (B.7) can be shown in an
analogous fashion. We omit the details. O

> Mnlp) — 0 when M — o,

LEMMA B.3. Suppose F(1;) <1 and 0 < p < 1/2. Then (3.2) implies

1 n
(B.10) E|~ ¥ m(r)| = 0(n7);
i=1
and, likewise, (3.4) implies
17 ~
(B.11) E|~ ¥ m(r)| = o(n ).
i-1

ProoF. Suppose (3.2) holds. By Lemma B.2, we know (B.3) holds. Thus we
can adopt a standard approach to calculate

1 n
E|— Z 1 (7x)
ni_1

1
<—EKE
n

.; (ni(TH)I<|ni<rH>| <n'7P} T E(ni(TH) Lo < nl*"}))

2
+-E
n

n
Z ni(TH)I(l‘I“(TH)l > nl=ry
i=1

IA

1 1/2
(;E(nlz(TH)I{m(m)k n‘P})) + 2EImy (74 ) Ly ey 1)

1/

2
" +2,/;ll,pP(|n1(TH)|>t)dt

< (2 (e | > ) a

1/2 .
< 0(1) Lmtrpeiaem g o o) [ tVa-»dy
- nJ’i nl-p

<O0(n’?).
So (B.10) follows. The rest of the proof can be done similarly. We omit the
details. O
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