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An experiment records stimulus and response for a random sample of
cases. The relationship between response and stimulus is thought to be
linear, the values of the slope and intercept varying by case. From such
data, we construct a consistent, asymptotically normal, nonparametric
estimator for the joint density of the slope and intercept. Our methodology
incorporates the radial projection-slice theorem for the Radon transform, a
technique for locally linear nonparametric regression and a tapered
Fourier inversion. Computationally, the new density estimator is more
feasible than competing nonparametric estimators, one of which is based
on moments and the other on minimum distance considerations.

1. Introduction. Consider the following experimental situation. For each
case in a certain population, it is possible, in principle, to measure a response
Y and a covariate X. These two measurements are thought to be linked
through a linear relation Y s A q BX. The values of the intercept A and the
slope B depend on the case and are unknown. Data are obtained by measur-

Ž .ing X, Y for each of n cases that are drawn at random from the population.
Ž .Thus, the data are in the form of independent pairs X, Y generated by the

Ž .model Y s A q BX, where A, B is a random vector independent of X. We
Ž .wish to estimate nonparametrically the joint density f of A, B andA, B

possibly also the marginal densities.
Random coefficient linear regression models such as the one just described

Ž .are discussed by Longford 1993 . They occur naturally in econometric sam-
w Ž .pling, particularly in studies of panel data cf. Raj and Ullah 1981 and

Ž .xNicholls and Pagan 1985 . In such contexts, Y and A may be vectors while
B and X may then be matrices. A simple parametric assumption is that A
and B are independent and Normally distributed, although of course the
assertion of independence may be relaxed. Close statistical cousins are the
random effects models of analysis of variance, in which, however, X is not
random. Analogous nonlinear random coefficient regression models arise in
analyzing patient response data from pharmaceutical trials. Here, for each
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Ž .patient, the measured response satisfies Y s g X, C , where X is the drug
dosage, g is a known function determined by pharmokinetic models and C is

w Ž .xa vector of coefficients that varies with patient cf. Liu 1994 . If the patients
form a random sample, then it is reasonable to regard C as a random
coefficient vector independent of X.

Ž .Nonparametric estimators for the density or distribution of A, B are a
recent development. To understand why, observe that the conditional density
of Y given X s x is

`
<1.1 f y x s f y y bx , b db.Ž . Ž .Ž . HY < X A , B

y`

This says that the conditional density of Y given X is a Radon transform of
w Ž .xthe density f cf. Deans 1983 . Thus, under tail assumptions on f , itA, B A, B

is possible mathematically to recover f as an inverse Radon transform ofA, B
f . While this observation helps to explain the nature of our problem, itY < X
does not directly yield a consistent estimator of f . We do not know fA, B Y < X
exactly, though it is estimable from our data. Unfortunately, the inverse
Radon transform is highly sensitive to perturbations of its argument and
lacks continuity in familiar metrics on conditional density estimators.

Problems of tomographic reconstruction have inspired effective algorithms
for numerical inversion of Radon transforms in situations where the function

Ž .that plays the role of f is measured accurately on a fine grid of x, yY < X
Ž . Ž .values. For example, see Devaney 1989 , Shepp and Kruskal 1979 and
Ž .Silverman, Jones, Wilson and Nychka 1990 , and additional references cited

there. Because the errors in estimating the conditional density f are not ofY < X
this nature, the tomographic algorithms are not directly applicable to our
problem.

Ž < . Ž < .Let f ? x and f be the characteristic functions of f ? x andY < X A, B Y < X
f , respectively. It follows from the model Y s A q BX thatA, B

<f t x s f t , tx .Ž . Ž .Y < X A , B

A variant of this identity, after changing variables to a particular polar-coor-
dinate system, is the basis for our nonparametric estimator of f . TheA, B
identity corresponds to the projection-slice theorem of Radon transform the-

Žory, which states: the one-dimensional Fourier transform in the radial
.variable of the Radon transform of a two-dimensional function is identical to

the two-dimensional Fourier transform of that function.
Before describing the methodology of this paper, we briefly review two

Ž .recent nonparametric methods for estimating the distribution of A, B . The
conditional moment method is suitable for the special case when A and B

Ž k . Ž k .are independent. Then, letting a s E A and b s E B ,k k

r
rr k<1.2 E Y X s a b X .Ž . Ž . Ý ryk kž /k

ks0
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This equation suggests a recursive procedure for estimating the moments of
A and B. First, note that a s b s 1. Use this fact, plus least-squares0 0

Ž . Ž .regression of Y on 1, X based on the data, plus 1.2 with r s 1, to deduce
estimates of a and b . Next, use the estimates just obtained, plus least-1 1

2 Ž 2 . Ž .squares regression of Y on 1, X, X , plus 1.2 with r s 2, to deduce
estimates of a and b . Continue in this fashion to estimate the first m2 2
moments of A and B, where m is much smaller than the sample size n. From
these moment estimators, we can devise consistent estimators for the
marginal cumulative distribution functions or densities of A and B. For

Ž .details of such an approach, see Beran and Hall 1992 . In numerical practice
this method suffers from round-off errors in estimation of the higher-order
moments. Moreover, extending the conditional moment approach to the case
where A and B are not independent seems impracticable.

Ž .The minimum distance method fits the empirical distribution of X, Y to
Ž .the joint distribution of X, Y that is determined by the random coefficient

regression model. More specifically, let F and F be the distributions ofA, B X
Ž . Ž .A, B and X, respectively. Let P F , F then denote the distribution ofA, B X

ˆ ˆŽ .X, Y under the model Y s A q BX. Let F and P be the empirical distribu-X
Ž .tions of X and X, Y , based on the data. Finally, let d be a distance that

metrizes weak convergence of distributions in R2. A minimum distance
ˆ Ž .estimator F for the distribution of A, B is thenA, B

ˆ ˆ ˆ1.3 F s arg inf d P , P F , F .Ž . Ž .A , B A , B X
FA , B

These minimum distance estimators are consistent in the sense of weak
convergence. They generalize readily to the case where A and B are not
univariate and even further to nonlinear random coefficient regression mod-
els. In principle, they also provide a starting point for constructing estimators

Ž .of the density f . For implementation of 1.3 , it is convenient to let d be anA, B
2 Ž .L -metric acting on characteristic functions. See Beran and Millar 1994 for

Ž .further details in the linear case and Liu 1994 for nonlinear extensions.
Unfortunately, numerical approximation of a discretized version of the mini-

ˆmum distance estimator F is often plagued by numerous relative minimaA, B
Ž .on the right-hand side of 1.3 . These relative minima, occurring as they do in

a space of high dimension, challenge simulated annealing, Nelder]Mead and
w Ž .xother standard minimization techniques cf. Liu 1994 .

Estimation techniques such as those just described implicitly require
Ž .assumptions that ensure the identifiability of the distribution of A, B . For

Ž .example, we may require that the distribution of A, B have compact
support and that the support of the distribution of X contain a cluster point.
Or, as in this paper and in parametric treatments of random coefficient
regression, we may require that f have full support, in which case noX
condition is needed on the support of f . That such assumptions cannot beA, B
avoided entirely is apparent from the conditions needed for existence of the

Ž .inverse to the Radon transform 1.1 .
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The search for a good, numerically feasible way of estimating the density
Ž .or distribution of A, B thus continues. Our methodology in this paper

is based on the following observation: with Q s arctan X and R s
Ž 2 .y1r2Y 1 q X s Y cos Q,

R s A , B ? cos Q , sin Q .Ž . Ž .
Therefore, if f denotes the characteristic function of R conditional on Q,R <Q

Ž .then the joint characteristic function f u, v of A and B is given byA, B

<1.4 f r cos u , r sin u s f r uŽ . Ž . Ž .A , B R <Q

Ž < .for y` - r - ` and ypr2 - u F pr2. Note that f ? y pr2 equals theR <Q

Ž < . Ž < . � Ž . 4complex conjugate of f ? pr2 , and that f r u s E exp irR N Q s u ,R <Q R <Q

so that estimating f is a problem of nonparametric regression. Further-R <Q

more, the conditional density of R given Q is precisely the Radon transform
Ž .of f , and so 1.4 is then precisely the projection-slice theorem.A, B

We may estimate f by any of several nonparametric methods}theR <Q

approach discussed in Section 2 is an adaptation of local linear regression.
Alternative approaches such as Nadaraya]Watson kernel estimation could be
employed and would produce very similar results. However, depending on the
method, the formula for the bias contribution to the estimator for the joint

Ždensity could be considerably more complex than that given here. In particu-
.lar, the formula is more complex in the case of Nadaraya]Watson methods .

Ž .Having obtained an estimator of f , 1.4 suggests an approximation toR <Q
ˆf by f , say. The latter Fourier transform may be inverted to produceA, B A, B

an approximation to the joint density f .A, B
The convergence rate of our estimator of f depends heavily on theA, B

behavior of the characteristic function f in the tails. This is to be ex-R <Q

pected, given similar results in more straightforward deconvolution problems
w Ž . Ž .xsee, e.g., Carroll and Hall 1988 and Fan 1991 , and is not an artifact of
our methodology or our mathematical analysis. One could expect, given the
work of Carroll and Hall and of Fan, that our methods would produce optimal
or near-optimal convergence rates. This topic will not be taken up in the
present paper, however.

Ž .Finally, we note that identity 1.4 has extensions to random coefficient
regression models with several covariates. Consider, for instance, the model

Ž . Ž .Y s A q BX q CX , where A, B, C is independent of X , X . Let R s1 2 1 2
Ž 2 .y1r2 Ž .Y 1 q X q X and let Q, F denote the standard polar coordinates of1 2

the unit vector

y1r2 y1r2 y1r22 2 2 2 2 2X 1 q X q X , X 1 q X q X , 1 q X q X .Ž . Ž . Ž .ž /1 1 2 2 1 2 1 2

Because the third component of this vector is positive, the range of Q is
w x w .0, pr2 while the range of F is 0, 2p . The joint characteristic function

Ž . Ž .c u, v, w of A, B, C is given byA, B,C

<1.5 c r cos u , r sin u cos w , r sin u sin w s c r u , fŽ . Ž . Ž .A , B , C R <Q , F
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for y` - r - `, 0 F u F pr2 and 0 F f - 2p . The characteristic function of
c may thus be recovered by estimating the conditional characteristicA, B, C

Ž . Ž .function of R given Q, F and then applying 1.5 . This paper does not
pursue the case of multiple covariates any further.

Sections 2 and 4 describe, in fuller detail, the new method and conditions
under which it yields consistent, asymptotically normal estimates for f .A, B
Numerical algorithms are the subject of Section 3. We find that the new
estimators are computationally feasible and more trustworthy numerically
than their predecessors, reviewed above. Section 5 contains proofs. On the
technical side, our use of local linear regression in a polar-coordinate context
has novel aspects.

2. Methodology.

Ž .2.1. Estimation of f . The observed data X , Y are assumed gener-R <Q i i
Ž .ated by the model Y s A q B X , 1 F i F n, where the pairs A , B arei i i i i i

Ž .independent and identically distributed as A, B , and are independent also
� 4of the independent and identically distributed design sequence X , . . . , X .1 n

Ž .We transform the observed data to pairs Q , R , where Q s arctan X andj j j j
Ž 2 .y1r2R s Y 1 q X .j j j

Let K , the kernel in our local linear regression, denote a function that isk

Ž xperiodic with period p , is even on ypr2, pr2 and has its mode in that
interval at u s 0. The kernel should be chosen so that increasing k makes

Ž .the mode more pronounced, and such that after normalization K convergesk

Ž .to the Dirac delta ‘‘comb’’ function centered at the origin as k ª `. In our
theoretical development we shall take

< <2.1 K u s K k 1 y cos u ,� 4Ž . Ž . Ž .k

where the nonnegative function K is supported on the positive half-line. In
this context, k ) 0 functions like the inverse of the square of a bandwidth.

Ž .We could multiply K by a normalizing constant C k , chosen to ensure thatk

Ž x Ž .K integrates to 1 on ypr2, pr2 , but then C k would cancel from thek

quantities that we consider or be incorporated into other constants. When
Ž . Ž . Ž .K u s exp yu the function at 2.1 is closely related to the density of the

Ž x Ž xvon Mises distribution, restricted here to ypr2, pr2 rather than yp , p .
Ž . Ž .The relationship is perhaps even closer if instead of 2.1 we define K u sk

w � < Ž . <4xK k 1 y cos 2u , for which straightforward analogs of our main results
also hold.

Ž xWrite u ] u for u y u if this quantity lies in the interval ypr2, pr2 ,1 2 1 2
Ž . Ž .and for u y u q p respectively, u y u y p if u y u F ypr2 ) pr2 .1 2 1 2 1 2

ŽThis definition of difference is the natural one for arithmetic on the interval
1 1Ž x .y p , p , mod p . Define2 2

n
k

s u s K u y Q u ] Q ,Ž . Ž . Ž .Ýk k j j
js1

u u s K u y Q s u y u ] Q s uŽ . Ž . Ž .� 4Ž . Ž .j k j 2 j 1
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and
n

v u s u u u u q h ,Ž . Ž . Ž .Ýj j l½ 5
ls1

where h G 0 denotes a ridge parameter. These will be the weights in our
periodic version of local linear regression. Similar weights in more conven-

Ž .tional settings have been discussed by Fan 1992, 1993 , for example. We
shall take h s 0, although identical results are obtainable in many other
cases; their proofs follow lines established in Hall, Marron, Neumann and

Ž .Titterington 1994 .
Our estimator of f isR <Q

n
ˆ <2.2 f r u s v u exp irR S u ,Ž . Ž . Ž . Ž .� 4ÝR <Q j j j

js1

Ž .where S u s "1 according as u ] Q equals u y Q or not, respectively, andj j j
w Ž .i denotes the square root of y1. The factor S u stems from the Mobius-like¨j

character of the conditional distribution of R, which tends in distribution to
"B according as u ª "pr2, respectively. This factor also ensures that all

ˆarithmetic is conducted strictly modulo p ; without it, f is not consistentR <Q

x Ž .for f . Our estimator of f u, v is, for u / 0,R <Q A, B

1r22 2ˆ ˆ ˆf u , v s f u , v ' f u q v sgn u N arctan vru .Ž . Ž . Ž . Ž .½ 5A , B R <Q

ˆ Ž .2.2. Density estimation. With f given by 2.2 , our estimator of theR <Q

joint density f of A and B isA, B

1r2y2 2 2ˆ ˆf a, b s 2p exp yiau y ibv f u , v w u q v du dvŽ . Ž . Ž . Ž . Ž .½ 5HHA , B A , B

pr2y2s 2p du exp yiar cos u y ibr sin uŽ . Ž .H H
ypr2

2.3Ž .

ˆ < < <=f r u w r r dr ,Ž . Ž .R <Q

Ž .where here and below unqualified integrals are over the entire real line. The
taper, or weight function, w is introduced to ensure integrability. In general,
one might allow w to depend on u as well as r, and to enjoy elliptical-like

Ž .contours in r, u space. A simplified approach would be to ask that w be
univariate and symmetric, and that for constants 0 - t - t - `, both of1 2

Ž .them diverging to ` with n and typically O 1 apart,

< <¡s 1, if u - t ,1~ < <w x xg 0, 1 , if u g t ,t ,Ž2.4 w uŽ . Ž . 1 2¢ < <s 0, if u ) t .2
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In practice, t and t would be functions of the data. For the purpose of the1 2
theory developed in Section 4 we shall, to simplify both our discussion and
the technicalities, take t s t s t , say, to be a deterministic function.1 2

Estimators of the marginal densities f and f are obtainable by invertingA B
ˆ ˆŽ . Ž .f u, 0 and f 0, v , respectively:A, B A, B

y1ˆ ˆ2.5a f a s 2p exp yiau f u N 0 w u du,Ž . Ž . Ž . Ž . Ž . Ž .HA R <Q

y1ˆ ˆ <2.5b f b s 2p exp yibv f v pr2 w v dv.Ž . Ž . Ž . Ž . Ž .Ž .HB R <Q

Alternatively, recognizing that f and f are the densities of R given Q s 0A B
< <and R given Q s pr2, respectively, one may estimate them using more

traditional kernel methods, not involving Fourier inversion.
Note particularly that, since w is symmetric, both the joint density estima-

w Ž .x w Ž .xtor defined at 2.3 and the marginal density estimators at 2.5 are
assuredly real valued. However, they generally take negative values over a
portion of their domains.

3. Numerical properties. The procedures discussed in Section 2 were
implemented on an SGI Challenge computer using the S-PLUS statistical

Ž . Ž .software package version 3.3 . See Becker, Chambers and Wilks 1988 . In
Ž .particular, we implemented the local linear regression algorithm at 2.2 to

compute estimates of the characteristic function f , and then tapered, andA, B
finally inverted this estimated function using a two-dimensional fast Fourier

Ž .transform FFT algorithm to obtain the bivariate density estimates for
Ž .A, B .

We carried out our computations over rectangular grid structures, and
found, as expected, that the choice of tapering function was of considerable
importance in numerical work. After some experimentation we decided upon
the following class of tapering functions:

1
w r s exp c 1 yŽ . 2½ 51 y rrrŽ .1

3.1Ž .
2 j` r

< <s exp yc , r - r ,Ý 1ž /½ 5r1js1

and s 0 otherwise, with obvious modifications in the event that elliptical-like
Ž .contours in u were desired. A typical plot of this function and its Fourier

Ž . Ž .transform is shown in Figure 1 a and b .
Some of the data-analytic difficulties associated with deconvolution may be

Ž < .alleviated by ad hoc modeling of the characteristic function f r u in the
tails, where it decreases to 0. We have not done that here, as it detracts
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Ž . Ž . Ž .FIG. 1. a Plot of the taper in 3.1 with circular contours, and r s 5, c s 4. b Fourier1
Ž .transform of the taper in a .

a little from our use of numerical examples to illustrate our theoretical
points}such modeling ideas are difficult to quantify using the asymptotic
development in this paper.

Ž .In our numerical work we used the same functional form for K ? ;k

specifically,

1
X3.2 K u s exp c 1 yŽ . Ž .k 2X½ 51 y u rh u� 4Ž .

< X < Ž . Ž . � Ž .41r2for u - h u , where h u s 2rk u . After some experimentation we
took

d1 y cos 2uŽ .
3.3 h u s c 1 q cŽ . Ž . 1 2ž /2

for positive constants c , c and d .1 2
Suppose now that we wish to use n points for the t-dimension and n1 2

points for the u-dimension in an FFT algorithm. If t and u are taken to range
over "T and "U, respectively, then the corresponding spacings will be
Dt s 2Trn and Du s 2Urn . Specifically then, suppose that estimates of1 1
Ž .f yT q j Dt, yU q k Du , for integers 1 F j F n and 1 F k F n , will be1 2

available to use in an FFT algorithm.
Discrete approximation to

21
3.4 f a, b s f t , u exp yita y iub dt duŽ . Ž . Ž . Ž .HHž /2p
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leads immediately to

f ya9 q j Da, yb9 q k DbŽ .
2 n n1 21 1 1 n n1 2f f Dt y q t , Du y q uÝ Ý ž / ž /ž /ž /2p Dt Du 2 2ts1 us1

y n r2 q j y n r2 q tŽ . Ž .Ž . Ž .1 1
=exp y2p i½ n1

3.5Ž .

y n r2 q k y n r2 q uŽ . Ž .Ž . Ž .2 2q ,5n2

where Da s prT and Db s prU, corresponding to ranges "a9 and "b9,
where a9 s n pr2T s prDt and b9 s n pr2U s prDu for the a and b1 2
dimensions, respectively. Using standard methods in order to appropriately

Ž .‘‘center’’ the transform, the expression 3.5 may be evaluated by means of the
two-dimensional FFT.

Figure 2 shows the results of our computations for a simulation based on
Ž .1000 data points X , Y and standard Cauchy X ’s. The distribution for thej j j

FIG. 2. Estimated density f using n s 1000 standard Cauchy-distributed X ’s and a mixtureA , B
Ž .distribution for A, B consisting, in equal proportions, of four bivariate normal distributions

Ž .having unit variances, zero covariances and means "2, "2 .
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Ž .A , B ’s here was chosen to be a mixture, in equal proportions, of fourj j
bivariate normal distributions having unit variances, zero covariances and

Ž . Ž . Ž .means given by the four vectors "2, " 2 . We used h u s 0.2 in 3.2 and
Ž .the taper function 3.1 with c s 4 and r s 5. We also employed n s 256,1 1

n s 256, T s 20 and U s 20, so that Dt s 0.156, Du s 0.156, Da s 0.157,2
Db s 0.157, A s 20.1 and B s 20.1. The total computing time required was
1.04 minutes. Figure 2 shows the resulting estimated bivariate density
function, which has four clearly distinguishable modes. Of course, the combi-

Ž .nation of the substantial sample size here and the optimal uniform spacing
in u makes this estimation problem relatively easy.

Our second simulation example involves a sample of size 200 and a normal
Ž .distribution with mean 0 and standard deviation 2 for the X ’s. The A , B ’sj j j

were chosen to be standard bivariate normal. The very light tails of the X ’s
and hence of the Q’s makes this estimation problem relatively difficult. The

Ž .estimated density for A, B shown in Figure 3 was produced using the
Ž .bandwidth function 3.3 with c s 0.25, c s 2 and d s 1 and the taper1 2

Ž .function 3.1 with c s 4 and r s 5. We also used n s 256, n s 256,1 1 2
T s 20 and U s 20 as before. The total computing time required was 28
seconds.

FIG. 3. Estimated density f using n s 200 normal X ’s with mean 0 and standard deviationA , B
Ž .2 and standard bivariate normal A, B ’s.
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Ž . Ž .Finally, Figure 4 a ] d provides the results of an analysis of some real
data. The data used here were Galton’s tabulation of the heights of 928 adult

Ž . Ž .children the Y ’s by averages of the heights of their two parents the X ’s , as
Ž .quoted in Stigler 1986 , Table 8.1, page 286. It might be thought that such

data could be modeled via a random coefficient regression. As these data are
recorded on a 1-inch grid, we used the interval midpoints for our X and Y
values as reasonable approximations for present purposes. Furthermore, we
standardized both our X and Y values prior to analysis, and also regressed

Žout Y on X so as to center the B distribution. These operations could be
. Ž . Ž .recommended quite generally . We chose the bandwidth in 3.2 to be h u s

0.7, in order to accommodate the fairly wide discrete spacing of the Q values
Ž .that occur for these data, and used the taper function 3.1 with c s 4 and

Ž .r s 10. Figure 4 a shows the resulting joint density estimate, while Figure1
Ž . Ž .4 b and c shows the marginal densities of A and B obtained by numerical

Ž .summation. Finally, Figure 4 d shows a cross section of the marginal of the
Ž . wFourier transform of the tapering function used. Figure 4 a and also com-

Ž . Ž . Ž .FIG. 4. a Density estimate for A, B in Galton’s data. b Marginal density for A.
Ž . Ž .c Marginal density for B. d Cross section of Fourier transform of taper used in analysis of
Galton’s data.
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Ž . Ž .xparison of Figure 4 c and d suggests that, for these data, B is degenerate
or nearly so. We therefore conclude that, for these data, B is essentially
constant, and that the random coefficient model fit to these data is in fact a

Ž . Žclassical regression with a convolved error distribution as estimated by our
. Ž .procedure given in Figure 4 b . It would seem that the population Galton

sampled was genetically homogeneous.

4. Theory. Before developing technical details we outline the form of our
main results. We shall show that the variance contribution to the mean-

ˆ Ž .squared error of f a, b consists of two multiplied components, represent-A, B
Ž .ing a the rate at which the design density, f , decreases to 0 in the upperX

Ž . wand lower tails, and b the rate at which the cutoff, t s t s t in the1 2
Ž .xnotation of 2.4 , diverges to `. Indeed, we may express the asymptotic

Ž 1qj .y1 3variance component as D nh t , where D ) 0 is a constant, depend-1 0 1
Ž .ing on the functions f and f but not on n; where h s h n ª 0 isX A, B 0 0

effectively a bandwidth, and is of the same size as ky1r2 ; where j G 0
depends on the tail properties of f , and is larger in cases where fX X

Ždecreases to 0 more rapidly in the tails resulting in poorer overall conver-
. Ž .gence rates in such cases ; and where t s t n is the taper cutoff.

By way of contrast, the bias contribution to the mean-squared error
derives essentially from two added terms, representing respectively the

Ž .bandwidth h and the cutoff t . The smoothness of the distribution of A, B ,0
entering through properties of the tails of the characteristic function f ,A, B
plays a significant role in determining the size of both contributions. Our
regularity conditions will involve selecting the smoothing parameter, k , and
imposing conditions on f , such that the contribution of h to the biasA, B 0
component is essentially h2 . However, alternative approaches are possible,0
and will be discussed in remarks following our main theorems. In the
discussion below we shall represent the taper component by tyh , where h ) 0
depends on the rate of decrease of the tails of f . Thus, the bias contribu-A, B

Ž 2 yh .2tion to the asymptotic mean-squared error is D h q D t , where D2 0 3 2
and D are constants; and so the overall asymptotic mean-squared error is3

y1 21qj 3 2 yh4.1 D nh t q D h q D t .Ž . Ž . Ž .1 0 2 0 3

Next, we present a little notation, as a prelude to describing details behind
Ž .the results discussed above. The smoothing parameter k s k u will be taken

Ž . Žto depend on u . Owing to the decrease typically in design density in u
1 1. Ž .space toward the ends of the interval II s y p , p , the amount of2 2

smoothing should be increased there if we are to achieve an effective balance
between bias and variance contributions to mean-squared error. That is, k
should be decreased toward the ends of II. This suggests defining k s
� Ž .4y2 Ž .2 h l u , h , say, where h s h n ) 0 tends to 0 as n ª `, does not0 0 0 0

depend on u and represents the appropriate bandwidth away from the ends
Ž . Žof II i.e., for most of II ; and the function l is virtually constant with

.respect to both u and h when u is not near the ends of II, and increases0
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wtoward the ends of II. The smoothing parameter k is naturally expressible in
Ž . � Ž .41r2this form since h s h u s 2rk u has many of the properties of band-

Ž . Ž . xwidth in a regular kernel estimator. In this notation, h u s h l u , h .0 0
There is a bewildering variety of possible choices for such a function l, and

we need to reduce them to a tractable and manageable array of useful
candidates. It turns out to be appropriate to choose k to be essentially

Ž .constant with respect to u if u lies within a distance of order h from the0
ends of II, but to be decreasing before reaching that point, as u approaches

Žan end of II. For the sake of brevity we do not present the argument that
.leads us to this specification. Even so, the possibilities for l are still very

numerous. To illustrate the effects of different rates of decrease of k at the
ends of II, we shall consider only those that decrease in a polynomial way.

Together these considerations lead us to propose that
y2

v4.2 k s 2 h l u h .� 4Ž . Ž .0 0
y1q« Ž . y«Here, n F h n F n for some « ) 0; the bounded, continuous function0

1 1yg 1Ž . Ž . Ž . Ž .l from II to 0, ` satisfies l u ; C p q u as u x y p , and l u ;1 2 2
1 1 1yg 2Ž .C p y u as u ­ p , for constants C , C ) 0 and 0 F g , g - ; and,2 1 2 1 22 2 2

for each u g II and d ) 0,
1 1 1p q u k d y p , if u g y p , 0 ,Ž . Ž2 2 2

vu d s
1 1 1½ p y p y u k d , if u g 0, p .� 4Ž . Ž .2 2 2

1Ž . wThese conditions on k will be referred to below as C1 . Note: if 0 - h - p ,2
vthen u h equals u if the latter is at least h away from the nearer of the two

1 1 1 1Ž .ends of the interval y p , p , and otherwise equals y p q h or p y h,2 2 2 2
xwhichever is the nearer to u .

Ž .Additionally we ask that K in 2.1 be bounded, nonnegative, Holder¨
w x wcontinuous, supported on 0, 1 and not identically 0 these conditions will be

Ž .x Ž .referred to below as C2 ; K be given by 2.1 ; for j, k G 0 satisfyingk

j q k F 3, and D , a ) 2,4 0
Ž .y a qjqk r2j k 02 24.3 ­r­ u ­r­ v f u , v F D 1 q u q v ;Ž . Ž . Ž . Ž . Ž .A , B 4

Ž . Ž . < <for a sequence of positive constants t s t n ­`, w r s 1 for r F t and
Ž . < < ww r s 0 for r ) t these conditions on w and t will be referred to below as

Ž .xC3 ; and X have a nondegenerate, uniformly continuous density f that isX
bounded away from 0 and ` on compacts, and satisfies

f x ; d a xya 1y1 , f yx ; d a xya 2y1Ž . Ž .X 1 1 X 2 2

was x ª `, where d , d , a , a ) 0 these conditions will be referred to below1 2 1 2
Ž xxas C4 .
These conditions on the distribution of X may be equivalently stated in

terms of the distribution of Q, in which case they ask that the density f of QQ
1 1Ž .be uniformly continuous, bounded away from 0 and ` on y p q « , p y «2 2

for all « ) 0, and satisfy
1 1a y1 a y11 2f p y u ; d a u , f y p q u ; d a uŽ . Ž .Q 1 1 Q 2 22 2

as u x0.
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Ž . jŽ .k Ž .Writing f for f , define f s ­r­ a ­r­ b f a, b andA, B jk

y1 32 < <b a, b s y 8p exp yiar cos u y ibr sin u r drŽ . Ž . Ž .H
pr2 2

= l u cos u f r cos u , r sin u�Ž . Ž .H 20
ypr2

qsin u f r cos u , r sin uŽ .02

q2 sin u cos u f r cos u , r sin u du ,4Ž .11

pr2y2
n a, b s y 2p du R exp yiar cos u y ibr sin u�Ž . Ž . Ž .H H

ypr2

< <=f r cos u , r sin u 1 y w r r dr .4 � 4Ž . Ž .
Put

c s K u2 u2 du K u2 du ,Ž . Ž .H H½ 5 ½ 5
g y a ' min g y a , g y a ,Ž .1 1 2 2

¡ gyaq2h , if a y g y 2 ) 0,0~ y1g h 'Ž . log h , if a y g y 2 s 0,1 0 0¢1, if a y g y 2 - 0,

¡ 3Žgya .q4h , if 3 a y g y 4 ) 0,Ž .0

y1~g h 'Ž . log h , if 3 a y g y 4 s 0,Ž .2 0 0¢1, if 3 a y g y 4 - 0.Ž .

We ask that the cutoff, t , not increase too rapidly, the rate of increase
satisfying the condition

y1 y24.4 nh g h g h t n ª 0.Ž . Ž . Ž . Ž . Ž .0 2 0 1 0

Ž . Ž . Ž . Ž .THEOREM 4.1. Assume conditions C1 on k , C2 on K, C3 on w, C4
Ž . Ž . Ž .on the design distribution, 4.3 on the distribution of A, B and 4.4 on t

Ž .y1 Ž . Ž y« .and h . Furthermore, assume nh t h s O n for some « ) 0. Then,0 0 0
2 ˆŽ . Ž .for each a, b g R , f a, b is asymptotically Normally distributed withA, B

mean

4.5 f a, b q h2 b a, b q n a, b q o h2Ž . Ž . Ž . Ž . Ž .A , B 0 0

and variance

y1 y124.6 r w r dr D a, b nh g h q o nh g h ,Ž . Ž . Ž . Ž . Ž . Ž . Ž .� 4H 5 0 1 0 0 1 0½ 5
Ž . Ž .where D a, b s D a, b; f , f , l ) 0 does not depend on n.5 5 A, B X
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Ž .THEOREM 4.2. Assume the conditions of Theorem 4.1, except for 4.4 . Let
2 � 4SS : R be a bounded, open set, and let XX s X , . . . , X denote the collection1 n

of design points. Then, as n ª `,

2ˆE f a, b y f a, b XX da dbŽ . Ž .� 4HH A , B A , B
SS

22s h b a, b q n a, b da dbŽ . Ž .� 4HH 0
SS

y12q r w r dr D a, b da db nh g hŽ . Ž . Ž . Ž .H HH 5 0 1 0½ 5 ½ 5
SS

2 y14 2q o h q n a, b da db q r w r dr nh g h .Ž . Ž . Ž . Ž .HH Hp 0 0 1 0½ 5
SS

Ž .REMARK 4.1 Generalization of the function l . Our conditions on l are
tailored to produce relatively simple results, so as to make the main issues
more transparent. They may be relaxed at the expense of more complex
conclusions. In particular, if in the definition of l it is asked only that

1g , g G 0, and not in addition that g , g - , then the formula for the1 2 1 2 2

asymptotic variance remains valid but that for the asymptotic bias generally
is not, since the function l2 is no longer integrable. More generally still, l

1could be regularly varying at " p in a more general sense, for example,2
1 1 yg 12Ž . < < Ž .with l p y d ; p y d L p y d as d x0, where the function L is a2 2 2

slowly varying function at the origin and is not necessarily asymptotically
constant as d ª 0.

w Ž .xREMARK 4.2 Conditions C4 . The assumption of simple regular varia-
tion of the tails of f may similarly be relaxed. Obviously, a slowly varyingX
function L may be incorporated into the prescription, so that the regular
variation is of a more general type. However, very different tail behavior}for
example, design distributions such as the Normal with exponentially decreas-

ˆing tails}may be considered. There the convergence rate of f to f mayA, B A, B
Žbe shown to be only logarithmic. Nevertheless, our numerical procedures will

not necessarily perform badly in such cases due to the typically good behavior
of f functions that arise in practice; compare, for example, our secondA, B

.simulation in Section 3.

Ž . Ž .REMARK 4.3 The constant D . In general, D in 4.6 depends on f and5 5 X
f in a highly complex way, and we shall not give a formula here. However,A, B
sufficient details will be provided in Section 5 to enable the interested reader
to construct a general formula.

w Ž .x Ž .REMARK 4.4 Example of calculation of n a, b . Since n a, b contributes
ˆsignificantly to the bias of f , it is instructive to study an example whichA, B

describes the possible size of this quantity. Let A s m q A9 and B s m qA B
B9, where m , m are arbitrary constants and A9, B9 are independent andA B
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identically distributed random variables with a symmetric ‘‘double gamma’’
Ž . Ž . Ž 2 .ya 3 r2distribution and characteristic functions f t s f t ' 1 q t ,A9 B 9

Ž . Ž .where a ) 1. Assume that ab / 0, put v s yarctan arb and take w r s 13
< < Ž . Ž .for r F t s t n and w r s 0 otherwise. We claim that

n a q m , b q m ; D t 1y2 a 3Ž .A B 6

Ž .y1 < <ya 3as t ª `, where D s 2p b cos v sin v cos v . To appreciate why,6
observe that

2p 2n a q m , b q mŽ .B B

`pr2 ya r2y1 32 4 2 2s y a cos u q b sin u du 1 q r q r sin u cos u rŽ . Ž .H H
ypr2 t

= ­r­ r sin r a cos u q b sin u dr� 4Ž . Ž .
pr2 y1

; t a cos u q b sin u sin t a cos u q b sin u� 4Ž . Ž .H
ypr2

ya r232 4 2 2= 1 q t q t sin u cos u duŽ .
y1ya1y2 a 33 < <; t sin v cos v b cos v x sin b cos v x dx� 4 � 4Ž . Ž .H

y1ya1y2 a 33 < <s t sin v cos v b cos v p .Ž .

Ž .REMARK 4.5 Optimal choice of h and t . Theorems 4.1 and 4.2 and0
Ž .Remark 4.4 verify 4.1 for mean-squared error, with j s 0 or a y g y 2

according as a y g y 2 - 0 or ) 0, respectively, and with h s 2a y 1 ) 1.3
Ž .Assuming for the sake of simplicity that D and D in 4.1 are of the same2 3

Ž .sign the contrary case may be treated similarly , we see that the optimal
Ž 1qj .y1 4 y2horders of h and t are those that minimize nh q h q t , and so are0 0 0

yh r�6qh Ž5qj .4 Ž . 2r�6qh Ž5qj .4 Ž .n for h and n for t . Empirical selection of the0
optimal h and t is beyond the scope of this paper, but is feasible in very0
large data sets.

5. Proofs.

PROOF OF THEOREM 4.1.
ˆ ˆ Ž .Step 1: Preliminaries. Recalling the definitions of f and f at 2.2R <Q A, B

Ž .and 2.3 , we see that

n
y2ˆ5.1 f a, b s 2p C a, b ,Ž . Ž . Ž . Ž .ÝA , B j

js1
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where

pr2
C a, b s v u du exp yiar cos u y ibr sin uŽ . Ž . Ž .H Hj j

ypr25.2Ž .
< <=exp irR S u w r r drŽ . Ž .� 4j j

pr2
s v u du cos r R S u y a cos u q b sin uŽ . Ž . Ž .� 4H Hj j j

ypr25.3Ž .
< <=w r r dr .Ž .

Write D , D , . . . for generic positive constants, differing from those ap-1 2
pearing in Section 4.

� 4Step 2: Conditional bias. Recall that XX s X , . . . , X , and observe that, by1 n
Ž . Ž .1.1 and 5.2 ,

pr2
<E C a, b XX s v u du exp yiar cos u y ibr sin uŽ . Ž . Ž .� 4 H Hj j

ypr2

< <= f rS u cos Q , rS u sin Q w r r dr .Ž . Ž . Ž .� 4A , B j j j j

Furthermore,

pr222p f a, b s du exp yiar cos u y ibr sin uŽ . Ž . Ž .H HA , B
ypr2

< <=f r cos u , r sin u r dr ,Ž .A , B

Ž .and so, by 5.1 ,

2 ˆ <2p E f a, b XX y f a, bŽ . Ž . Ž .� 4A , B A , B

n
2<s E C a, b XX y 2p f a, bŽ . Ž . Ž .� 4Ý j A , B

js1

< <s exp yiar cos u y ibr sin u w r r drŽ . Ž .H5.4Ž .
n

pr2
= v u f rS u cos Q , rS u sin QŽ . Ž . Ž .� 4ÝH j A , B j j j j

ypr2 js1

yf r cos u , r sin u du q r a, b ,Ž . Ž .A , B 1

Ž . Ž .2 Ž .where r a, b ' 2p n a, b .1
Let cs denote either cosine or sine, and observe that

S u cs Q s cs u y u ] QŽ . � 4Ž .j j j

2 21 < <s cs u y u ] Q cs9u q u ] Q cs0 u q o u ] QŽ . Ž . ž /j j j2

5.5Ž .



R. BERAN, A. FEUERVERGER AND P. HALL2586

< <as u ] Q ª 0. Therefore,j

f rS u cos Q , rS u sin QŽ . Ž .� 4j j j j

s f r cos u , r sin uŽ .
q r u ] Q sin u f r cos u , r sin u� Ž .Ž .j 10

ycos u f r cos u , r sin u 4Ž .015.6Ž .
21 2y r u ] Q cos u f r cos u , r sin u� Ž .Ž .j 202

qsin u f r cos u , r sin uŽ .02

q2 sin u cos u f r cos u , r sin u q r u ,4Ž . Ž .11 2 j

Ž .where, by 4.3 ,

Ž .y a q3 r23 02< <5.7 r u F D r u ] Q 1 q r .Ž . Ž . Ž .Ž .2 j 1 j

Ž .Since we have assumed h s 0 in the definition of the weights v u , thenj
Ž . Ž .Ž .Ý v u ' 1. Furthermore, Ý v u u ] Q ' 0. It follows from these results,j j j

Ž . Ž . Ž .5.4 , 5.6 and 5.7 that

2 ˆ2p E f a, b N XX y f a, bŽ . Ž . Ž .� 4A , B A , B

1 3< <s exp yiar cos u y ibr sin u w r r drŽ . Ž .H2

n
pr2 2

= v u u ] Q cos u f r cos u , r sin u�Ž . Ž .Ž .ÝH j j 20½ 5ypr2 js1

5.8Ž .

qsin u f r cos u , r sin uŽ .02

q2 sin u cos u f r cos u , r sin u du4Ž .11

q r a, b q r a, b ,Ž . Ž .1 2

where

n
pr2 3< <5.9 r a, b F D v u u ] Q du .Ž . Ž . Ž .ÝH2 2 j jž /ypr2 js1

Ž . Ž .By elementary algebra from the definitions of u u and v u ,j j

n
2 2 2v u u ] Q s s u y s u s u s u s u y s u .Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž . � 4 � 4Ý j j 2 1 3 0 2 1

js1

Ž .Since s u equals a sum of independent, bounded random variables, stan-k
Ž .dard methods, using Bernstein’s inequality to bound large deviations of s uk

on a fine grid and employing the assumed Holder continuity of K to fill in¨
the gaps between grid points, may be used to prove that, uniformly on II '

1 1 kq1Ž . Ž . � Ž .4 Ž . Ž .y p , p , s u s E s u q o nh . Furthermore, with h s h u sk k p2 2
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Ž .1r22rk and f denoting the density of Q, we have, for k s 0 and 2,Q

ky1 < <n E s u ; E K k 1 y cos u y Q u y Q� 4Ž . � 4Ž . Ž .ž /k j j

2 ky1; K h u y v u y v f v dv� 4Ž . Ž . Ž .H Q

; hkq1 f u K u2 uk du s e hkq1 f u ,Ž . Ž . Ž .HQ k Q

Ž 2 . k � Ž .4 Ž 2 .where e ' HK u u du; while, for k s 1, E s u s o nh .k k
Recall from the paragraph preceding Theorem 4.1 that we defined c s

1 1Ž .e re . Therefore, uniformly on II ' y p q « , p y « for any « ) 0,2 0 « 2 2
n

2y2T u ' h u v u u ] Q s c q o 1 .Ž . Ž . Ž . Ž .Ž .Ý j j p
js1

Ž .Furthermore, arguments of Hall, Marron, Neumann and Titterington 1994
Ž . Ž .may be used to show that T u s O 1 uniformly in u g II and, similarly,p

n
y3 3< <h u v u u ] Q s O 1Ž . Ž . Ž .Ý j j p

js1

Ž . Ž .uniformly in u g II. It now follows from 5.8 and 5.9 that

ˆ 2 25.10 E f a, b N XX y f a, b s h b a, b q n a, b q o h .Ž . Ž . Ž . Ž . Ž .� 4 Ž .A , B A , B 0 p 0

Ž . Ž 2 .This establishes an analog of the formula at 4.5 , with o h there replaced0
Ž 2 .by o h here and the expression giving the conditional asymptotic mean ofp 0

ˆ Ž .f a, b .A, B
Ž .Step 3: Conditional variance. Observe from 5.1 that

n
y4ˆvar f a, b N XX s 2p var C a, b N XX ,Ž . Ž . Ž .� 4� 4 Ý j

js1

Ž .where, in view of 5.3 and in the case k s 1,

var C a, b N XXŽ .� 4j

pr2 pr2
s v u v u du duŽ . Ž .H H j 1 j 2 1 2

ypr2 ypr25.11Ž .
= V Q , u , u , r , r y U Q , u , u , r , r� 4Ž . Ž .HH k j 1 2 1 2 j 1 2 1 2

< <=w r w r r r dr dr ,Ž . Ž .1 2 1 2 1 2

with

V Q , u , u , r ,r ' E cos r RS u y a cos u q b sin u� 4Ž . Ž . Ž .Ž1 1 2 1 2 1 1 1 1

=cos r RS u y a cos u q b sin u Q ,� 4Ž . Ž . .2 2 2 2

2

U Q , u , u , r , r ' E cos r RS u y a cos u q b sin u Q ,� 4Ž . Ž . Ž .Ž .Ł1 2 1 2 k k k k
ks1
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Ž Ž .. Ž Ž ..and R, Q, S u denoting a generic version of R , Q , S u . After a littlej j j
Ž .manipulation it may be shown that 5.11 continues to hold with k s 2 and

<V Q , u , u , r , r ' R f r q r Q exp ij ,Ž . Ž .� 4Ž .2 1 2 1 2 R <Q 1 2

Ž . Ž .Ž .where j s y h q h and h s r S u a cos u q b sin u . Therefore,1 2 k k k k k

var C a, b N XXŽ .� 4j

pr2 pr2
s v u v u du du V Q , u , u , r , rŽ . Ž . Ž .H H HHj 1 j 2 1 2 3 j 1 2 1 2

ypr2 ypr2
5.12Ž .

< <=w r y r w r r y r r dr dr y J ,Ž . Ž . Ž .1 2 2 1 2 2 1 2 j

where

<V Q , u , u , r , r ' R f r Q exp yir z q ir z y z ,� 4Ž . Ž .Ž .3 1 2 1 2 R <Q 1 1 1 2 1 2

z s S u a cos u q b sin uŽ . Ž .k k k k

and
pr2

<J s v u du R f r Q exp yirS u a cos u q b sin uŽ . Ž . Ž .� 4Ž .H Hj j R <Q j jž ypr2

2

< <=w r r dr .Ž . /
Ž .In view of the Taylor expansion at 5.5 ,

< < < <S u cs u y cs Q F u ] Q .Ž .j k k j k j

Ž .Ž . Ž .Therefore, writing z s S u a cos u q b sin u for k s 1, 2 and z sk j j k k k 3 j
a cos Q q b sin Q , we havej j

< < < < < < < < < <exp yirz y exp yirz F r z y z F r a q b u ] Q .Ž .Ž . Ž .k j 3 j k j 3 j k j

Ž .Hence, by 5.12 , defining

<V Q , r ' R f r Q exp yir zŽ . Ž .� 4Ž .4 j 1 R <Q 1 j 1 3 j

and

pr2 pr2
I s v u v u du duŽ . Ž .H Hj j 1 j 2 1 2

ypr2 ypr2

< <= V Q , r w r y r w r r y r r dr drŽ . Ž . Ž .Ž .HH 4 j 1 1 2 2 1 2 2 1 2

2
pr2

<s v u du R f r Q exp yir zŽ . Ž .� 4Ž .H HHj R <Q 1 j 1 3 j½ 5ypr2

< <=w r y r w r r y r r dr dr ,Ž . Ž . Ž .1 2 2 1 2 2 1 2
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we have

<var C a, b XX y I q J F LŽ .� 4j j j j

pr2
< < < < < <' 3 a q b u ] Q v u duŽ . Ž .H j j½ 5ypr2

=
pr2

< < < < <v u du f r Q 1 q r drŽ . Ž .Ž .H Hj R <Q j½ 5½ 5ypr2

5.13Ž .

= < < 2w r r q r dr .Ž . Ž .H½ 5
n � Ž .4 Ž .Now, Ý I s 1 q o 1 V n , wherejs1 j p

2n
pr22V n ' 2p w r r dr v u duŽ . Ž . Ž .ÝH H j½ 5 ½ 5ypr2js1

<=f a cos Q q b sin Q QŽ .R <Q j j j

and
22n n

pr2ya r202< <J F D r 1 q r dr v u duŽ . Ž .Ý ÝH Hj 3 j½ 5 ½ 5ypr2js1 js1

s o V n ,� 4Ž .p

n
ya r202< < < < < <L F 3 a q b D 1 q r 1 q r drŽ . Ž . Ž .Ý Hj 3½ 5

js1

< < 2= w r r q r drŽ . Ž .H½ 5
n

pr2 pr2
< <= v u du u ] Q v u duŽ . Ž .Ý H Hj j j½ 5 ½ 5ypr2 ypr2js1

s o V n .� 4Ž .p

Ž .Therefore, by 5.13 ,
n

<5.14 var C a, b XX s 1 q o 1 V n .Ž . Ž . Ž . Ž .� 4 � 4Ý j p
js1

vNext we introduce further notation. Recall the definition of u d in Sec-
vtion 4, and for a s a put u (d s u e d s u d . For a - a put1 2 1 2

1 1
vu d , if y p - u F p y d ,2 2

u (d s 1 1 1½ y p q d , if p y d - u - p ,2 2 2

the same definition giving u e d if a ) a ; for a ) a define1 2 1 2

1 1
vu d , if y p q d - u F p ,2 2

u (d s 1 1 1½ p y d , if y p - u - y p q d ,2 2 2
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Žthe same definition giving u e d if a - a . This notation is a periodic1 2
vversion of the notation, designed to make appropriate allowance for the

.periodicity of the ] notation. For 0 F v F 1 and j s 1, 2, define
a j2 k y1q v s K u u 1 n v y 1 n v u du;� 4Ž . Ž . Ž .Hk j

for y1 F v F 1 define
v

a y12 k 1q v s K u u u y v du,Ž . Ž . Ž .Hk3
y1

1 a y12 k 2q v s K u u u y v du;Ž . Ž . Ž .Hk4
v

for all a , a define1 2

1 1y1q p q u d , if u g y p q d , 0 ,� 4Ž . Žk1 2 2
q u , d sŽ .k 1 1y1½ q p y u d , if u g 0, p y d ;� 4Ž . Žk 2 2 2

for a s a define1 2

1 1¡q v q c rc q v , if y p - u ' y p q d vŽ . Ž . Ž .k3 2 1 k4 2 2

1~ F y p q d ,q u , d sŽ . 2k
1 1 1¢ c rc q v q q v , if p y d - u ' p q d v F p ;Ž . Ž . Ž .1 2 k3 k4 2 2 2

Ž . Ž .for a - a define q u , d s q v if1 2 k k3
1 1 1 1 1u ' " p q d v g y p , y p q d j p y d , p ;Ž Ž .2 2 2 2 2

Ž . Ž .for a ) a define q u , d s q v for the same range of values of u ; and1 2 k k4
Ž . Ž . Ž . Ž .2generally define V u , d ' q d , u q u , d y q u , d .2 0 1

Ž . Ž . Ž . Ž .2 Ž .1r2Observe that Ý u u s s u s u y s u . With h s 2rk and argu-j 0 2 1
Ž .ing as in Hall, Marron, Neumann, and Titterington 1994 , we may show that

n
2 k kq1s u s K u ] Q rh u ] Q q o nh f u ( hŽ . Ž .� 4� 4Ž . Ž .Ýk j j p Q

js1

2 k kq1s nE K u ] Q rh u ] Q q o nh f u ( h� 4Ž . Ž . Ž .� 4ž / p Q

s nhkq1 K u2 uk f u ] hu du q o nhkq1 f u ( hŽ . Ž . Ž .� 4H Q p Q

s nhkq1 f u ( h q u , h q o nhkq1 f u ( h .Ž . Ž . Ž .� 4Q k p Q

Therefore,
n

3 kq1u u s nh f u ( h V u , h q o nh f u ( h .Ž . Ž . Ž . Ž .� 4Ý j Q p Q
js1

Similarly it may be shown that, for a constant D ) 0,4
n

3u u G D 1 q o 1 nh f u e h ,Ž . Ž . Ž .� 4Ý j 4 p Q
js1
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the remainder terms in both relations being of the stated orders uniformly in
u g II. These results lead to

2n
pr2

v u du f a cos Q q b sin Q N QŽ . Ž .Ý H j R <Q j j j½ 5ypr2js15.15Ž .
pr2 y1y1s 1 q o 1 D a, b n hf u e h du ,� 4Ž . Ž . Ž .� 4 Hp 5 Q

ypr2

Ž . Ž . Ž .where h s h u and D a, b s D a, b; K, f ) 0 does not depend on n.5 5
Ž . Ž .In view of conditions C1 and C4 ,

pr2 y1 y15.16 hf u e h du ; D h g h� 4Ž . Ž . Ž .H Q 7 0 0
ypr2

Ž . Ž . Ž .as n ª `. Results 5.14 ] 5.16 establish an analog of 4.6 , in which the
ˆ Ž .left-hand side is the conditional asymptotic variance of f a, b , and on theA, B

Ž . Ž .right-hand side, o 1 is replaced by o 1 .p
Ž . Ž . � Ž . 4Step 4: Asymptotic normality. Put F a, b ' C a, b y E C a, b N XX . Inj

Ž .view of 5.1 the fourth-order Liapounov condition for deriving conditional
ˆasymptotic Normality of the estimator f isA, B

n 24 y1 35.17 E F a, b XX nh g h t ª 0Ž . Ž . Ž . Ž .� 4Ý ½ 5j 0 1 0
js1

Ž . Ž .in probability. Using 5.3 for F a, b and arguing as in Step 3, we may showj
that

4
pr24 7E F a, b XX F D v u du tŽ . Ž .H½ 5j 8 j½ 5ypr2

and
4n y3pr2 pr2y3 ˆv u du F D 1 q o 1 n f u e h duŽ . Ž . Ž .� 4 � 4Ý H Hj 9 p Q½ 5ypr2 ypr2js1

F D 1 q o 1 ny3 hy3 g h .Ž . Ž .� 410 p 0 2 0

Ž . Ž .It follows that 5.17 is implied by 4.4 .
Step 5: Conclusion. Combining the results of Steps 1]3, we see that,

ˆconditional on XX , f is asymptotically Normally distributed with bias andA, B
Ž . Ž . Ž .variance given by 4.5 and 4.6 , respectively, provided that the o . . .

Ž .remainder terms there are altered to o . . . . Since the dominant terms inp
Ž . Ž .4.5 and 4.6 are nonrandom and, in particular, do not depend on X , . . . , X ,1 n

ˆthe unconditional distribution of f is asymptotically Normal with meanA, B
Ž . Ž .and variance given by 4.5 and 4.6 . This completes the proof of Theorem 4.1.

I

The proof of Theorem 4.2 is based on a relatively minor modification of
Steps 2 and 3 in the proof of Theorem 4.1, and so is not given here.
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