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MEASURE-INVARIANT SETS!

By JuLius R. BLuM AND PraMoD K. PATHAK
The University of New Mexico

Let 4 be a probability measure on (2, &), where &2 is the real line
and <Z the family of Borel sets on £2. A measurable set ‘4’ is called p-
invariant if p(4 + 0) = p(A) YO, —oco < 6 < co. Let (x) denote the
family of all g-invariant sets. Let S(z) denote the set where the charac-
teristic function of x# vanishes. In this paper we establish the following
results concerning p-invariant sets. (i) Suppose S(z) n [S(e) ® S(p)] is
compact. Then A is p-invariant implies (4) = 0,1, 1. (ii) Fourier series
representations are developed to study p-invariant sets. (iii) Dependence
of .97 (p % v) on 7(p) and % (v) is examined and representations for sz x v-
invariant sets are derived. (iv) Dependence of .%(x) on S(y) is carefully
examined. (v) A conjecture that &/(p) C ¥ (v) implies that g is a factor
of v is shown to be false.

1. Preliminaries. The main object of this paper is to present some results
which we have recently obtained concerning measure-invariant sets for a trans-
lation parameter family of probability measures. Although our results have
their origin in statistics, they are purely measure theoretic in nature. For reasons
of simplicity, unless stated otherwise, we restrict our attention to probability
measures on the real line.

The study of measure-invariant sets was initiated by Basu and Ghosh (1969).
They proved a number of interesting results concerning these sets and posed a
number of unsolved problems. Later Pathak and Rickert (1971) solved some
of these problems. The problems that remain are most interesting and perhaps
more difficult. We present a systematic account of these problems and solve
some of them.

Let ¢ be a probability measure (p.m.) on (%, &%), where &2 is the real line
and <# the family of Borel sets on .27. A4 measurable set A is called measure-
invariant (p-invariant) if (A4 + 0) = p(A4) V0, —co < 6 < co. In terms of
convolutions it is easily seen that A4 is yx invariant iff (/, — p) » g2 = 0, where
1, is the indicator function of 4, p = p(A) and VBe <&, ji(B) = p(—B). We
denote by .(y) the family of all p-invariant sets. A p-invariant set ‘4’ is called
“nontrivial” if 0 < p(A4) < 1. The p.m, p is called weakly complete (incomplete)
if it does not (does) possess a nontrivial p-invariant set.

One of the interesting problems concerning p-invariant sets is to investigate
conditions under which a given p.m. p is weakly incomplete. The problem is
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far from being solved satisfactorily. Basu and Ghosh (1969) and Pathak and
Rickert (1971) have obtained a number of necessary conditions and sufficient
conditions for the existence of nontrivial g-invariant sets. We examine these
conditions here and strengthen some of their results. .

Let ¢ and v be two given p.m.’s. It is then of interest to know if there exists
any relationship among the families .o7(y), %7(v) and o7z  v). We study this
problem and obtain explicit expressions for p  v-invariant sets in certain special
cases.

Suppose that # is the uniform p.m. on [0, 1]. Basu and Ghosh showed that
7(p), in this case, consists entirely of sets that are periodic of period one. If
v is any p.m. then it is easily seen that .o/{y) C .%/(p »v). In a personal com-
munication, D. Basu wondered if the converse relation is also valid, i.e. if every
v with .o7(p) C 7(v) is decomposable with x as a factor (see also Ann. Math.
Statist. 40 (1969) 173-174). We show that this is not true.

2. Existence of p-invariant sets. One of the interesting problems concerning -
invariant sets is to find conditions under which a given p.m. x# admits nontrivial
p-invariant sets. A satisfactory solution of this problem seems to depend on
certain structural properties of the set S(u) = {r: fi(f) = 0} where the charac-
teristic function of x vanishes, and involves the use of many interesting analo-
gous results from harmonic analysis. It might therefore be worthwhile to first
state some useful from harmonic analysis that will be used later in our work.

Let % be a family of functions in L,. Define S(7") = {r: f(f) = 0 Vfe &},
a(F)={p:pel,and ¢ xf=0forall fe &F }and f(.7") = {e(tx): 1€ S(F7)},
where f(f) = § e(—tx) f(x) dx and e(tx) = exp(itx). The set a(.%") of functions
has been studied extensively in harmonic analysis (see Rudin (1962) pages 158-
159 and 184-185). The set S(.%") is called an S-set if a(.%") is the weak*-closed
subspace spanned by 5(.%"). (Note that in general the former is only a subset
of a(~7)). It is known that if the boundary of §(5") is a countable set then
S(.&") is an S-set. (The general problem of finding necessary and sufficient con-
ditions for an arbitrary closed set to be an S-set is very difficult. For a thorough
discussion of these and other related results we refer the reader to Rudin (1962).)
The following lemma is now immediate.

LemMA 2.1. Let fe L, S(f) = {t: f(r) = 0} and B(f) = {e(tx): te S(f)}. Let
¢ € L, and suppose that S(f) is an S-set. Then ¢ x f = 0 iff ¢ belongs to the weak*-
closed subspace spanned by B(f).

The lemma simply means that if ¢ x f = 0 and if S(f) is an S-set, then ¢ is
the weak*-limit of trigonometric polynomials of the kind }; a,e(¢,x), where each
t;€ S(f). The lemma plays an important role in the study of y-invariant sets.

Before we state our results concerning g-invariant sets it is worthwhile to briefly
describe the results obtained previously. Let # be a p.m. Let S(¢) be the set
where the characteristic function of ¢ vanishes. Suppose that S(y) is finite. In
this case Basu and Ghosh showed that p is weakly complete. Later Pathak and
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Rickert showed that if S(p) is compact then also p is weakly complete. The
following unpublished result is due to Basu and Blum. Let X be a random
variable with p.m. p and suppose that S(p) = {+=, +2x, ---}. Then a set 4
is p-invariant iff 4 is essentially periodic of period 1. Further the fractional
part (X) of X has the uniform distribution over [0, 1] and the p.m. g is neces-
sarily absolutely continuous. Results which we have obtained are generally of
a negative nature. They furnish structural conditions on S(z) under which the
p.m. x does not admit nontrivial g-invariant sets.

THEOREM 2.1. Let pp be a p.m. Let S = {t: fi(t) = 0} be an S-set and suppose
that S N (S@ S) = K, where K is a compact S-set. Then A is p-invariant implies
#(A) =0, Lorl.

Proor. Consider the p.m. p and let 4 be a p-invariant set with p(4) = p. If
(¢ is not absolutely continuous, we convolve x with an absolutely continuous p.m.
v with S(v) = @. It then follows from a result of Basu and Ghosh that 4 is
¢ * v-invariant with g x v(4) = p(A4). Further S(z * v) = S(zz). We therefore
may and do assume without loss of generality that x is absolutely continuous.
Let dp/dx = f. Tt is easily seen that (I, — p) » f = 0, where f(x) = f(—x) Vx.
So (I, — p) belongs to the weak*-closed subspace spanned by j( f)=B8(f) =
{e(tx): te S(f)}). A little consideration will now show that (1 — 2p)l, + p* =
(I, — p)(I, — p) belongs to the weak*-closed subspace spanned by B = {e(tx):
teS® S}. Consequently (1 — 2p)l, belongs to the weak*-closed subspace
spanned by {e(sx): re K U {0}}. (Note this last assertion assumes that K is an
S-set.) Since K U {0} is compact, it follows from a theorem of Pathak and
Rickert that (1 — 2p)I, is essentially a constant. This implies p = 0, 4 or 1. []

To demonstrate that the above theorem cannot be improved any further, let
us consider the following example. Let p be the p.m. which assigns probability
} to each of the points x = +1. Then f(f) = cos(#/2) so that S = {+m,
+3r,...}and S® S = {0, +x, +2x, ---} so that SN (SDS) = @. It can
be easily seen that this p.m. does indeed possess yp-invariant sets of measures
0, , and 1. The set 4 = |J=, (2n, 2n + 1] is, for example, a p-invariant set
with px(A4) = 1.

In order to obtain other results similar to that of the preceding theorem it is
necessary to develop Fourier series type results for p-invariant sets. We were
unable to find such results in the literature. Aside from their application to
our work, it is hoped that these results will be found interesting in their own
right.

3. Fourier series for y-invariant sets. Throughout this section we work with a
given fe L' and assume that S(f) is a discrete set; such an S(f) is automatically
an S-set. We derive here Fourier series for functions in a(f) = {¢: ¢ € L, and
o« f=0}. We first establish a number of lemmas that are needed for this
development.
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Lemma 3.1. Letfe L,. Letuc S(f) and consider B = {e(tx): t € S(f)} U {e(ux)}.
Then the weak*-closed subspace spanned by B is given by W(B) = {¢: ¢ = ¢ +
ce(ux): ¢ € a(f), |c| < oo}.

Proor. This is immediate on noting that if {¢, = ¢, + cne(ux'): n=1}is a
w*-convergent sequence in W(B). Then lim § ¢, f(x) dx = limec, f(u) exists so
that lim ¢, = c exists. Hence {¢,: n = 1} converges in weak*-sense to some
p e L,. Thus w*-lim [¢,(x) + c,e(ux)] = ¢(x) + ce(ux). []

LemMA 3.2. Let pea(f). Let u be a given real number. Then ¢ admits the
following unique representation

¢(x) = ¢i(x) + c(u)e(ux)
where ¢, belongs to the weak*-closed subspace spanned by {e(tx): te S(f) n {u}'}.

Proor. In view of the preceding lemma, it suffices to prove the uniqueness
of the representation. Since the set S(f) is discrete, e(ux) does not belong to
the weak*-subspace spanned by {e(zx): t e S(f) n {u}’}. The uniqueness of the
representation follows from this observation. []

The following definition is thus unambiguous.

DeriNITION. The coefficient ¢(u) of e(ux), in the preceding representation of
¢(x) is called the Fourier coefficient of ¢. In the sequel we denote it by @(u).
If ¢ € a(f) then ¢(u) = O for u not in S(f). Although the above definition tells
us what ¢(u) is, it does not provide us a way of actually calculating it. The
following lemma does.

LemMA 3.3. Let ge L' be such that G(u) = 1 and S(g) D S(f) N {u}. Then
¢ * 9(0) = § ¢(x)g(x) dx = ¢(u).
Proor. It is clear that ¢ admits the representation
P(x) = @4(x) + P(u)e(ux)
where ¢, € a(g).
The lemma is now immediate. []

LeMMA 3.4. Let ¢ € a(f) and suppose that $(u) = OVue S(f). Then o = Oa.e.

Proor. For each ue S(f) let g(+, u) e L, with S(g(+, u)) = S(f) n {u}'. Since
S(f) is discrete, S(f) n {u}’ is a closed set. Consequently such a g(-, u) exists.
By Lemma 3.2 we can write ¢(x) = ¢,(x) 4+ @(u)e(ux) = ¢,(x), where ¢ (x) be-
longs to the weak*-closed subspace of 5(g(-, #)) = {e(tx): t € S(g)}. Consequently
o *g(s,u) = @, * g(+, u) = 0. Thus ¢ € a(G), where G = {g(+, u): ue S} U {f}.
Since S(G) = @, it follows that a(G) = 0so ¢ = 0 a.e. []

We thus have established the following uniqueness lemma.

LemMAa 3.5. Let fe L, and ¢ € a(f). Then ¢ is the only member of a(f) with
Fourier coefficients {¢(u): uec S(f)}. We formally write o(x) = 3, s P(1)e(ux).

LemMA 3.6. Let ¢ € a(f) and suppose that there exists a sequence of trigonometric
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functions {¥ c,(u)e(ux): n = 1}, where the sum 3, runs over finitely many u € S(f),
which converges in the weak*-sense to ¢. Then ¥Yu € S(f), we have lim c,(u) = ¢(u).

Proor. Let g e L, be such that §(u) = 1 and S(g9) D S(f) n {#}’. Then
lim, c,(#) = lim c,(u) § e(ux)g(x) dx '
= lim [§ {Ziesi ea(e(0)}G(x) dx] = § o(x)F(x) dx = ¢(u)
by Lemma 3.3. []
LemMa 3.7. LetfeL,. Let o ca(f). Let{u,u,, ---,u,}CS. Let geL, be

real valued and nonnegative, §(0) = 1, 8(9) = (—¢, €)', where ¢ > 0 is chosen so that
Vi, 1 £k <n,S(f) C[S(9) Du] U {u}. Then

Lol = § le(x)l'g(x) dx .

PrOOF. Let ¢(x) = ¢(x) — X7 @(u,)e(u,x) and suppose g € L, has the prop-
erties described in the lemma. Then

0 < §I¢(0)Pg(x) dx = § |e(x)[g(x) dx + T [f(u)]* § G(x) dx
— 1 @) § e(u,x)p(x)g(x) dx
— 21 G(ue) § e(—u,x)p(x)g(x) dx
4 Zier Bu)P(ur) § e((u; — u,)x)g(x) dx
= § [p()I’F(x) dx + 27 |@(ue)|* — 2 27 |@(u)[*
= § le()Ig(x) dx — X7 ¢(u)l* -
Consequently

211l = § le(x)[’g(x) dx . 0
COROLLARY.

2ol = [llefl-T -
We now use the above results to prove the following theorem.

THEOREM 3.1. Let pr be a pm. Let S = {t: fi(t) = 0} and S D S be discrete
setsand S N (S®S) = @. Suppose that for each u,v,weS, the equation 2v =
u + wimpliesu = v = w. Then A is p-invariant implies p(A) = 0 or 1.

ProOF. Let 4 be p-invariant with x(4) = p, 0 < p < 1. We assume without
loss of generality that p is absolutely continuous with density f. Then A is p-
invariant iff (I, — p) € a(f~) = a(f), where f~(x) = f(—x) Yx. Since S(f) =
S(f~) = S, it follows that (I, — p) is in the weak*-closed subspace of 5(f) =
{e(tx): re S}. LetveS. Then 2v¢S. Therefore there is a suitable g € L, such
that §(2v) = 1 and §(r) = O for |t — 2v| > & where d is chosen so that (2v — 4,
2v + 6) does not include any elements of S or (S&® S) n {2v}’. Since 2v ¢ S, it
is easily seen that I,(2v) = 0 so that from Lemma 3.3

0 =§L,(x0g(x)dx = (1 — p)7* § L(x)(Ly(x) — p)g(x) dx .

Now let {37, .5 ¢, (#)e(ux): n = 1} be a sequence of trigonometric polynomials
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which converges in the weak*-sense to (/, — p). Then the above equation
yields
0 = lim, .. § ,()(Dyes €, (W)e(ux)g(x) dx
= 1lim,_. Jlues Ca(8) § L(x)e(ux)g(x) dx .

Now for each u, S(g(x)e(ux)) = (2v — u — 6, 2v — u + 0)’. Furtheraw e S also
belongs to (2v —u — d,2v —u + 0) iff 2v — 06 <u+ w<2v 4 6. Since
u+ weS®S, it follows from our construction that 2v = u 4+ w. Now by our
hypothesis it follows that ¥ = v = w. Consequently if u = v, S(g(x)e(ux)) D
S(f) v {0} and if u = v, S(g(x)e(ux)) D S(f) n {v}~. This implies from Lemma
3.3 that § /,(x)e(ux)g(x) dx = 0 if u % v and = I,(v) if ¥ = v. On substituting
these values in the earlier equation we get

0 = lim, .., ¢,(v)1,(v) = [L (V)]
by Lemma 3.6.
Consequently 1,(v) = 0 Vv e S so that (/, — p) = Oa.e. Consequentlyp =0
or 1. This is a contradiction. Hence 4 is a trivial set. []
A method similar to the above can be used to prove the following stronger
result.

THEOREM 3.2. Let y be the given p.m. Let S = {t: ji(t) = 0} be discrete and
the limit points of (S@® S) form a compact set. Let K be a compact set such that
SNS®ScK and for eachve S N K’ and for each u, wesS, the equation 2v =
u + wimpliesu = v = w. Then A is p-invariant implies p(A) = 0 or 1.

The two preceding theorems have some interesting applications. Roughly
speaking they assert that if there are large or uneven gaps in the elements of the
set S(x) of a p.m. x then p possesses no nontrivial py-invariant sets. We consider
several illustrative examples.

ExaMPLE 1. Let p be a p.m. on [0, 27] with density

cos cos 3"x
f(x) = const. [Z;’;l __ZTnx — 2= 7"—] :

Thus S(z) = {+3": n=1,2, ...}. Itis easily seen that S(x) satisfies the hypo-
theses of Theorem 3.1. Consequently it has no nontrivial p-invariant sets.

EXAMPLE 2. Let y be a p.m. with density f(x) = |x| if |x| < 1 and = O other-
wise. It can be shown that the characteristic function of yp vanishes at ¢ iff
t = tan (#/2). These zeroes are of the form r = 2nr + ¢,, where ¢, goes mono-
tonically to +x as n approaches +oo. It can be shown that these zeroes satisfy
the hypotheses of Theorem 3.2. So p does not have any nontrivial g-invariant
sets. It is perhaps worthwhile mentioning here that more generally if the p.m.
¢ has a density of the form f(x) =g, + @, x + -+- + a,x*,0<x<1land =0
otherwise, similar techniques can be used to show that these p.m.’s have no
nontrivial p-invariant sets.
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4. Convolution and measure-invariant sets. Let x, and p, be given probability
measures. Basu and Ghosh showed that every p-invariant set A4 is also g, -
invariant, and g, * py(A4) = p,(A). In this section we study the structural prop-
perties of y, x p1,-invariant sets. Although it is easy to see that .o7{y,) U 7 (p,) C
2y * 1), we do not yet know the exact relationship between .o7(y, ), and
7(p,) and o7(1,) in general situations. There are, however, a variety of cases in
which we can obtain an explicit structure for p, * p,-invariant sets. These special
cases are the object of our study here. We need the following preliminary results
for this purpose.

LemMma 4.1. Let p,, - - -, p, be k positive real numbers. For every g e L, define
A;9(x) = g(x + p;) — 9(x). Let 7/ denote the family of all functions of the form
h=g,+ 9,+ --- + 9., where g, is such that A,g, = 0a.e., 1 < i< k. The set
7 is weak*-closed and an h e U iff A|A, ... Ay (k) =0 a.e.

Proor. This is based on induction. The lemma is evident for kK = 1. Now
suppose that the lemma holds for (k — 1) so that A/A,--- A,_,g =0 a.e. iff
g=06 + -+ + g,_, where A;g;, =0 ae., I <i<(k—1). Now let geL,
and suppose that A/A, ... A,g =0 a.e. By induction it follows that A, g =
gy(x) + - -+ + g4_,(x) where g;e L,and A;g, =0 ae., 1 <j< (k—1). Con-
sequently g(x 4 p,) = g(x) + g,(x) + - -+ + g,_,(x) so that

9() = [X7a 9(x 4+ rp))(N + 1) = Z§5Y by (%) 5 say,
where h;e L, and A;h; = 0 a.e.

It is casy tosee that || S, g(x + ) /(N + Dl < |[g]l.and | S0 by y(x)]l <
[g:(x) + -+ + g4-1,(X)||l- Consequently there exists a subsequence {N,} such
that 33, g(x + rp,)/(N, + 1) and {37 h; y (x)} are w*-convergent. Clearly
the sequence {3Ys, g(x + rp,)/(N, + 1)} converges to a function #, which sat-
isfies A, #, = 0 a.e. and, by our induction hypothesis, 3 %=1 4, x,(¥) to a function
of the form #,(x) + Ay(x) 4+ - -+ + h,_,(x), where A;h; = 0 a.e. Hence g(x) =
hy(x) 4 « -+ h_y(x) + hy(x). That the set Z of elements g e L, which satisfy
AA,--- A, g =0a.e. is weak*-closed is easy to see. []

A similar technique can be used to establish the following corollary.

CoROLLARY. Let p,, ---, p, be k positive real numbers and q,, - - -, q, be k real
numbers. For every g e L, define A.*(9) = 9(x + p,)e(—p,q,) — 9(x). Let 7~
denote the family of all functions of the form:

h(x) = e(q:X)9 + - -+ + e(q,X)g,
where g, € L., is such that A(g,) = g/(x + p;) — 9:(x) =0 a.e. The set 77 is
weak*-closed and an he V iff Aj*A* ... A *(h) = 0 a.e.

LemMMA 4.2. Let A and B be two Lebesgue measurable sets of positive Lebesgue
measure and suppose that A (0, p,] and B C (0, p,] where p, and p, are such that
Pi/py is irrational. Let A* = |J=, (A ® mp,) and B* = =, (B @ np,). Then the
set A* N B* has positive Lebesgue measure.
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Proor. Let 1 denote Lebesgue measure. Since A(A4) > 0 and A(B) > 0, it
follows that there exist intervals I and J such the A(4 n I) > (3)A(I) and
ABNnJ)>(3)(J). We may assume that A(I) = 2(J) =d > 0. Consequently
there is a ‘@’ such that 7 4 6 = J. Also there exist integers m and n such that
|mp, — np, — 0] < df4 so that

A+ mp) 0 (4 np)) = A + mp, — npy) 0 J) > (3d}4)

Now
A(A* n B¥)
Z (4 4 mpy) 0 (B + np,))
= (AN I+ mp)n (BnJ+ npy))
= A1+ mp) 0 (J + npy)) — A(A' 0 T+ mp) U (B' 0T + npy)
= A(I 4 mp,)) 0 (J + npy)) — A((A" 0 I+ mp,) — A(B' 0 J + npy))
> 37"_ AT+ mp) — A + npy) 4+ A(A 0 I+ mp)) + A(B 0 J + np,)
>%d_2d+3zd+'%d>0. 0
DErFINITION. Let p,, -- -, p, be k positive real numbers. We say that the set
{p:: 1 < i < k}is rationally independent if for every set of integers {m,: 0 < i < k}
the sum m, + m,p, + --- m,p, is never zero unless m, = m, = ... = m, = 0.

LemMMA 4.3. Let g,, -+, g, be ‘K’ L. -functions. Let g; be periodic of period
Pis 1 £ i < k. Suppose that the set {p,: 1 < i < k} is rationally independent.
Then the essential range (e.r.) of h = g, + --- + g, is given as follows.

er.(h) =er.(9,)Der.(9,)D .- De.r.(g,) .

Proor. It is easy to see that e.r. (k) C e.r. (g,) ® --- @e.r.(g,). To prove
the converse we assume for simplicity that k = 2. It now suffices to show that
ifaece.r.(g,) and bee.r.(g,), thena + bee.r. (g, + g,). Let 0, be an open set
containing a and 0,, an open set containing 5. Then (g,"*0,)) > 0 and
A(9,7%(0y)) > 0. It is clear that g,7%(0;) is a periodic set of period p; (i = 1, 2).
Consequently by Lemma 4.2, 2(g,7%(0,) n g,7(0,)) > 0. It can now be seen that
this implies that (@ 4 ) is in the essential range of g, + g,. [J

Lemma 4.4. Let feL, and S(f) c U4, H;, where ¥j, 1 <j<k, H;=
{9, + 2n=/p,: n =0, =1, ...} and p,, ---, p, are k positive real numbers and
9, * - -, g, real numbers. Letg e L, be such that g xf = 0. Theng = ¢, + --- + g,,
where e(—q;x)g,(x) is almost everywhere a periodic function of period p;.

Proor. It is clear that g is in weak*-subspace spanned by {e(zx): re U H}.
The lemma now follows easily from the corollary in Lemma 4.1. ]

It is perhaps worth mentioning at this point that the results we have developed
in this and the preceding section have close connections with properties of mean
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periodic and almost periodic functions. In a subsequent paper, we intend to
study the connection between some of our results and the general tools of har-
monic analysis.

We now use the preceding results to obtain the structure of p-invariant sets
in several cases.

THEOREM 4.1. Let p,, ---, p, be k pm.’s. Let p=pyx---xpu,. Let
S(p;) < {9; + 2nzfp;: n =0, £1, ...}, 1 < j < k. Then every p-invariant set A
admits the following representation:

IA(x) =c+ e(qlx)gl(x) + oo+ e(qu)gk(x)

where ¢ = p(A) and the g, is almost everywhere a periodic function of period p;,
1<j<k

Proor. We assume without loss of generality that 4 is absolutely continuous
with dpjdx = g. If 4 is a p-invariant set with p(A4) = ¢ then (I, — ¢)x f =0,
where f(x) = f(—x) Vx. So (I, — c) belongs to a(f) = a(f). By Lemma 2.1,
(I, — ¢) is, therefore, in the weak*-closed subspace spanned by B(f)=
{e(tx): te U, H,}, where H; = {q; + 2nz/p;: n = 0, 1, .- .}. The result of
the theorem now follows from Lemma 4.4. [J

ReEMARK. The above theorem furnishes, at least in some special cases, the
precise structure of p-invariant sets when y is the convolution of several mea-
sures. It now follows that if g = g, » --- * g, then .°7(y) can be expected to
be a much bigger family than |J .%7(y;). The following example illustrates this
point.

ExampLE. Let a be a positive irrational number. Let y, be the uniform
p-m. on [0, 1], #,, the uniform p.m. on [0, 1/a] and g, the uniform p.m. on
[0, 1/(1 4 a)]. It is easily seen that .%/{(y,) consists entirely of sets periodic of
period 1, .%7(y,) consists of sets periodic of period (1/a) and .%7{y,) consists of
sets periodic of period 1/(1 + a). Now consider the set 4 whose indicator func-
tion is given by I,(x) = {x) + {ax) — {(1 + a)x), where {y) =y — [y], [¥]
being the greatest integer less than y. It follows from Theorem 4.1. that 4 is
p-invariant, where p = g, » py x pg. It is also easily seen that 7, is not a peri-
odic function and so is not p;-invariant for any i = 1, 2, 3. This show that .>/(y)
is strictly bigger than [J3_, %(r,).

An interesting problem is therefore to ask when A(p, * py % -+ x p) =

b A(w;). Tt seems very difficult to provide a satisfactory solution to this
problem in a completely general setting. As the following theorem shows there
are, nonetheless, special situations in which this does indeed happen.

THEOREM 4.2. Let p;, - -+, p,be k p.m.’s. Let pp = py* -+ p,. Let S(p;) C
{2nz/p;: n = x1, 2, ---}, 1 < j < k, and suppose the numbers {p;: 1 < j < k}
are rationally independent. Then A(y) = U¥t., A(p,)-

PrOOF. Let A be a p-invariant set. It follows from Theorem 4.1. that 7,
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admits the representation I, = g, + --- + g,, Where g, is essentially periodic of
period p,. Since {p;: 1 < j < k} is rationally independent, it follows from
Lemma 4.3 that e.r. (I,) = e.r. (9,)® --- @e.r.(g,). Hence I, = g, for some
j. It is now easily seen that this last equality implies that 4 must be y;-invariant
so A e o (p;). Thus o7 (p) = Uk, A(y;). O

5. Almost p-invariant and S-sets. In an earlier paper Pathak and Rickert (1971)
noted that the existence of p-invariant sets depends more on the structural prop-
erties of S(x), the set where the characteristic function of 4 vanishes, rather than
the p.m. p itself. In this section, we explore the dependence of .o7(x) on S(y).
We have mentioned in Section 2 some of the main results that have been obtained
in this direction. Some related results that are known are as follows. Let g,
and g, be two absolutely continuous p.m.’s with S(z,) = S(p,). Then Rickert
and Pathak showed that .o7{y,) = 9(y,) and 4 € ;) implies p,(A) = py(A).
Now suppose that g, is an absolutely continuous p.m. and g, is any p.m. In
this case they showed that .o7(p)) c %(y,). If g, and g, are any two p.m.’s,
we do not yet know the exact relationsphip between .2/(y,) and ~7(p,). As an
attempt in this direction we establish a few results in some special cases. We
first state and prove an unpublished result noted by Basu and Blum.

LEMMA 5.1. Let y be a p.m. withS(x) D {en:n = +1, +2, ...} wherec > 0.
Then p is absolutely continuous.

Proor. Without loss of generality we let ¢ = 1. Define for each Borel set
B C [0, 27), p*(B) = Y=, p(B + 2kz). Then p* is p.m. on [0, 27). Further
A*(n) = fi(n) =0Vn = +1, +2, .... Thus p* is the uniform p.m. on [0, 2x).
The absolute continuity of x now easily follows from that of p*. []

An immediate consequence of the preceding lemma is the following theorem.

THEOREM 5.1. Let p be a p.m. with S(p) = {en: n = £1, +2, ---}. Then p
possesses invariant sets of all sizes and a set A is p-invariant iff A is essentially
periodic of period 2z /c.

Proor. Let v be the uniform p.m. on [0, 27/c). It follows from a lemma of
Basu and Ghosh ((1969) Lemma 5, page 163) that v possesses invariant sets of
all sizes and a set A4 is v-invariant iff 4 is essentially periodic of period 2z/c.
Now if p is any p.m. with S(z) = {ecn:n = +1, £2, ...}, it follows from
Lemma 5.1 that p is absolutely continuous. Also S(x) = S(v). Thus from our
remark at the beginning of this section, it follows that >7{(x) = o/(v). [

To obtain results similar to that of the preceding theorem in cases where the
underlying measure y is not necessarily absolutely continuous we have found
it necessary to introduce the following definitions and terms. We say that a set
A is almost p-invariant if there is a p, 0 < p < 1, such that u(A4 + 0) = p for
almost (2)0, where 4 denotes the Lebesgue measure. For a given p.m. g, we
denote by <Z(y), the family of all almost p-invariant sets. If p is an absolutely
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continuous p.m. then the notion of almost p-invariance coincides with p-
invariance and .%7(y) = <#(p). It is easily seen that a set B is almost p-
invariant with y(B + 0) = pa.e. iff (I, — p) x g = 0 a.e., where  is such that
for each Borel set A4, i(A) = p(—A4). With respect to almost p-invariance
we have

LEMMA 5.2. Let y, and p, be two p.m.’s and suppose that B € <B(p,) N ZB(1,)-
Then p1,(B 4 0) = py(B + 0) a.e.

Proor. Let p(B + 0) = p, a.e. Then (I, — p,) = 7, = 0 so that (I, — p,) *
fy * fl, » A = 0 where 2 is any absolutely continuous p.m. Hence p, = p, =
fy % fiy x A(B). [

Lemma 5.3. Let p, and p, be two p.m.’s with S(p,) = S(¢,) = S and suppose
that S is an S-set. Then B(u,) = ZB(1y).

Proor. Let 2 be an absolutely continuous p.m. with (1) = @. Then g, = 2
(f =1,2) is an absolutely continuous p.m. Also S(g * 2) = S(p, * 1) = S. So
(e, 2) = 7(p, « ). Now let B be an almost y,-invariant set with (B + 0) = p
a.e. Then (I; — p) » /1, = Oa.e.sothat (I — p) » 5, * A = 0. Thus Be 7 (p, * ) =
Z(py x A). Consequently (I — p) * fi, A = 0. Since S(1) = @, B(2) = {0}.
This implies (I, — p) * /i, = 0 a.e. []

CoRrROLLARY 1. If the p.m. p,, in the lemma, is absolutely continuous then
) = B (pm).

The above results will now be used to study the nature of p-invariant sets in
terms of structural properties of sets where characteristic functions of given
p-m.’s vanish. Unless stated otherwise we denote the set of nonzero integers
by Z.

THEOREM 5.2. Let p be a p.m. with S(p) = Z 0 {nZ)', where n is a positive
integer. Let A be a p-invariant set. Then p(A) = k/n for some k, 0 < k < n.

Proor. Let 4 be p-invariant with p(A4) = p. It is easily seen that S(p) =
MV H;, where H; ={j +nk:k=0,+1,...}, 1<j<(n—1). It now
follows as in the proof of Theorem 4.1 that 4 admits the representation:

L(x) = p + e(x)gu(x) + - - - + e((n — 1)x)g,_,(x) ,

where the g, is a periodic function of period 2z /n.

It is now elementary to see that } 5! I,(x 4 2jz/n) = np a.e. Since the left
side of the above equation equals k, 0 < k < n, it follows that p = k/n,
0kgn 0

REMARKS. Any further strengthening of the above theorem without any added
restrictions on the set S(y) does not seem possible. For example if ¢ is a p.m. which
assigns probability 1/n to each of the points of the set E = {2kx: 0 < k < n} then
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S(¢) = Z n {nZ}~. It can be seen that this x does indeed possess p-invariant sets
of all sizes k/n, 0 < k < n.

It is easy to see that the set S(x) considered in the above theorem can be
written as a union of cosets of the subgroup nZ as S(x) = (nZ + 1} U --- U
{nZ + (n — 1)}. The next theorem is perhaps more interesting than the pre-
ceding one; it asserts that if S(y) is the union of a fewer number of cosets of
{nZ} than those in Theorem 5.2 then 4 is weakly complete.

THEOREM 5.3. Let n be a prime number. Let p be a p.m. and suppose that for
some k, 1 <k <(n—1), S(g) C Zn{nZy 0 {nZ + kY. Then p is weakly
complete.

ProOF. We assume without loss of generality that S(x) C Z n {nZ}) n
{nZ + 1}, and set z, = e(2n/n). Let A be a p-invariant set with p(4) = p. It
follows from Theorem 4.1 that 4 admits the following representation:

L(x) = p + e(2X)9,(x) + -+ + e((n — 1)x)g,4(x)

where the g, is a periodic function of period (2x/n).
This representation now yields that

(B = Z)E = 2%) - (E = 2" ) (x) = p(1 — 2) - -+ (1 — z7)
=np/(l — z,) a.e.

where ‘E” denotes the following increment operator Ef(x) = f(x + 2x/n). Sim-
plification of the above equation yields

T(x + 2(n — 2)z/n) + (1 4 z)[,(x + 2(n — 3)z/n) + - ..
+ A+ 20+ o 4 2" (x) = np/(1 — z,) a.e.
Consequently there exist x and y, y # x + 2x/n, such that
2t (L 2o+ oo + 2L (x + 2(n — 2 — k)x/n)
—L(y +2(n — 2 — k)z/n)] = 0.

So z, is a root of a polynomial of degree (n — 2) with integral coefficient. This is

impossible since z, is a root of the irreducible polynomial P(z) = 1 4 z 4 ... 4
z*~ of degree (n — 1). (see, e.g. Herstein (1964) page 122). Hence n(A) =
p=0orl. []

The following corollaries can be established in a similar manner.

CorOLLARY 1. Let p be a p.m. with S(z) C Z. Suppose for some n > 1,
S(p) N {nZ} consists of finitely many elements. Then A is p-invariant implies
w(A) =kfn, 0 < k < n.

COROLLARY 2. Let n be a prime number. Let yt be a p.m. with S(p) C Z. Sup-
pose that for some k, 1 <k < (n— 1), S(z) 0 [{nZ} U {nZ + k}] consists of
finitely many elements. Then p is weakly complete.

It seems to us that the preceding approach to Theorem 5.3 can be particularly
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useful in a variety of situations, when S(¢) C Z, in deciding if a given p.m. p
is weakly complete. For example let ¢ be a p.m. which assigns probability p,
to {k}, 0 < k <n, X p, = 1. Further suppose that P(z) = }; p,z* is an irre-
ducible polynomial. It can then be shown in a similar fashion that if P(z) has
a root z, with |z,| # 1, then p is weakly complete (this last condition holds if
Po F Pa)-

In view of Theorem 5.3 and its corollaries it is perhaps tempting to conjecture
that if a p.m. x is weakly incomplete then S(z) U {0} must contain either a closed
subgroup of the form c¢Z for some ¢ > 0 or a set of the form ¢Z n {cuZ}’ for
some n > 1. Although closed subgroups and their cosets do seem to play an
important role in weak incompleteness of p.m.’s, we cannot settle the above
conjecture at the present time.

6. A conjecture. If 4 is the uniform p.m. on [0, 1] then .%7(¢) consists of all
sets that are periodic of period one. It is easily seen that if v is a decom-
posable p.m. with yx as a factor then .%7{¢) C 7(v). Now letv be a given p.m.
with .7(¢) € .%7(v). Ina personal communication D. Basu raised the following
question concerning the p.m. v: is every such v a decomposable p.m. with p as
a factor? We show here that this is not true in general. Consider the p.m. v
whose density function is given as follows:

1 i

fix)y=1 if n4 ;;;;1’2—k§x<n+2;:=02k, n=1,2,...

=0 elsewhere.

It is easily seen that S(v) D {2n7:n = +1, +2, - - -} so A(v) contains all periodic
sets of period one. It can be shown that the p.m. v does not admit a decompo-
sition of the form v = x % y with 7 a finite signed measure.
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