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TWO DIMENSIONAL SEMI-STABLE MARKOV PROCESSES

By Sun-WaH Ki1u
Hong Kong Polytechnic

A Markov Process is called semi-stable if it is invariant under certain
dilation of time and space. The particular case of semi-stable continuous
branching Markov Processes is studied.

1. Introduction. One-dimensional continuous branching processes are identi-
cal with the class of limits of discrete branching processes as shown in J.
Lamperti [7]. Further, in [3], he also showed that limits of such processes are
necessarily semi-stable ({x,} is semi-stable in the sense of [3] means that the
random variables {x,} and {x,,} have the same distribution except for a dilation
of scale of state space). In that sense, limits of discrete branching processes
with one type are essentially characterized. It is very plausible that the results
of [7] can be extended to higher dimensions which would essentially characterize
multitype Galton Watson branching processes. If that is the case, then the limit
is necessarily semi-stable by [3]. A systematic study of semi-stable Markov
processes on the nonnegative real line and their characterization was obtained
in [10]. The main result was extended to higher dimensions by the author [1].

In this paper, semi-stable continuous branching Markov processes in R* are
characterized by using Watanabe’s result [13]. The generalization to R is
routine. It turns out that there is no semi-stable continuous branching process
of order less than 1, while all of them are direct products of independent
processes. In the case of order 1, the components themselves are diffusion
processes with generator cx(d’f/dx*). The only one-dimensional semi-stable con-
tinuous branching Markov process of order greater than 1 has generator of the
form

_ oo _ _ df —2—-1/a _d._f_
Bfx) = ex §5 [ flx + 3) — () — 60) 5L [y dy + ax )
where & ¢ C}(R*), £&(x) = x for |x| < 8, B some positive number and

d — —caﬁ-‘/" +c S;o E(}’) —2-1/a dy .

This is a time-change of a stable process as pointed out in [14].

It is also interesting to note that one-dimensional semi-stable continuous
branching processes of order 1 have exp[4/(1 + B + t4)] as their Laplace trans-
form for some B while those of order a > 1 have exp{4/[1 + B4"*]*} as their
Laplace transform. These were obtained in [7].
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Let D be the positive quadrant of R* with A as the point of infinity. Then
D u {A} is compact.

DEFINITION. A Markov process {x,} on D U {A} having A as a trap is called
a continuous branching process having p, as a transition function if

(a) For x, yeD, t =0, {p,} satisfies for each EC D, p,(x + y,E) =
$opu(x, E — u)p,(y, du); and
(b) There exists + > 0 and x € D, x # (0, 0) such that

Pdx,(0,0) < 1.
A continuous branching process (C.B.P) is called semi-stable of order « > 0 if
(0) P, E) = py(a®x, a*E) forall a > 0.

Further, a C.B.P. on D U {A} is called regular if E, ,(e-**t) and E,(e~**)
are right differentiable in ¢ at = 0. Throughout the following discussion, {x,}
will be a semi-stable regular C.B.P. of order a. By a theorem due to S.
Watanabe [11], any regular C.B.P. is characterized by its generator, %, on
C,}(D) where Cy*(D) is the set of all functions whose nth partials are continuous
and vanish at A and C® = (N C,". Let &, §, € C,=(D) be any two functions so
that &,(x) = x;, £,(x) = x, on some neighborhood U of the originﬁ Then ‘the
process is completely characterized by

— g Of 2, Of of
Sf(x) = Bi’x, 7 + B, XzaTzz + (ax, + bxz)%:
(1) + (cx;, + dx,) aa){ — (7%, + Ox)f(x)

5 §[ S+ ) = ) — 60) 2L | ey

5 [ S+ ) = f) = 60)

a{ J i@,

where x = (x, x,), f€ C}(D), r, 0, b, ¢ = 0, and {,, {, are nonnegative measures
on D satisfying '
(2 §o (O + y)8@y) + So On + yZ’}Cg(dy) + G+ -U)< .

From the integral, it is obvious that we can assume that the measures have
zero mass at the origin. In addition, if {x,} is semi-stable, we can conclude more
through the following theorem:

MAIN THEOREM 1. If a = 1, then the generator % of {x,} on C(D) has the
form

2 2
f(x) = Bi’x, giz + ‘Bz2xz*a—f—2 .
X4 ox,
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If « + 1, then a > 1 and o7 has the form
Mf(x) =X S? [f(xl + )i Xz) — f(xl, xz) — ‘Sl(}’n 0) _g_]yl—(l/a)-a d}’l
1

+ ax i [f(xl, %2+ y2) — f(% x3) — (0, yy) %{—]y/ dy,

+ax1 f + dx, af

ax,
where
a= —C,apfV* 4 C, §5 &u(p, O)y-=-2dy and
d= —Cyap* 4 C, {3 &,(0, y)y-V=-2dy with

{x:|x| £ B} c U, x = (x,, x,). Further, in either case, it is the direct product of
two semi-stable C.B.P. on R* of the same order a.

2. Proof of the theorem. Before proving the theorem, we need some obser-
vations and a lemma. Let T, and p, be the semi-group and transition function
of {x,}. For fe C}D), define f, e C(D) by f,(x) = f(ax), a > 0. By calcu-
lation, we have
3) f(x) = aSf,-o(a%x) forall a > 0.

Similarly, we have

“4) ﬁ_jar‘)‘c;: = a- % e and
(5) a;{‘c‘i‘z" = a-% ;_Z; o
LEMMA 1. Forall s > 0, E C D, E measurable, i = 1, 2,
(6) C(E) = s*+2{(s°E) .
Proor. It is enough to prove that
) Ci(lrs 1] % [ 1]) = s ([s%ry, 5°15] % [s°r5, 5°7,])

where r, V. r; > 0. Let x = (x;, x,) so that x;, x, > 0, 4 = [r, r,] x [r,, 1], x ¢
A+ xwhere A + x =[r, + x;, 1, + %] X [y + X, 7, + X,], s > 0 fixed. Con-
sider a sequence of functions f* € C(D) so that f* = 0 on some neighborhood
of x disjoint from 4 4 x, f~=1 on 4 + x, f decreases to y,,,. Then it is
obvious that

X)) = X §p (% + P)aldy) + X2 §5 ["(x + )Cu(dy)

which converges monotonically to x,{,(4) + x,{;(4). On the other hand,
SSfa(sx) = L o f*(x + 57 YD) + X (o f"(x + 579)Cx(dy)]
converges to

sy §p Xave(X + 579)C@Y) + X3 $p AaralX + 5799)C(dY)]
= s"*o[x,§,(s°A) + x,{y(s*4)] -
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Letting x, — 0, we have
s1+ucl(saA) — CI(A) .

Thus, by the unique extension of the measure, we have {,(E) = s'+*{,(s°E) for
all measurable sets £ C D. Hence we also have {(E) = s'+*{,(s*E), which
completes the proof of the lemma.

ProoF oF MAIN THEOREM 1. First we want to prove that there are only two
interesting cases. Let f e C}(D) be a function such that

e +y) =y +yd forall yeV,
where V is a neighborhood of the origin, r = (r, r), r > 0 fixed. Then
SAf(x) = 281 + 2Br + r §, (v + y)(& + L)@y) and

S (-a(s7F) = 2B’5"70r + 2B%'70r + 571 § f-a(s®r + y)(& + Co)(@))
= 257r(B," + By’) + r § fr + u)(& + Co)(@u) .

Since these are equal, we must have either
B+ Bi=0 or a=1.

We handle the case @ = 1 first and proceed to prove that {, 4 §, = 0, using
the condition (2). For any 0 < a < b, let

Wla, b] = [0, b] x [0, 8] — [0, @) x [0, a) ;
W(a, b] = [0, 5] x [0, 6] — [0, a] x [0, a] ;
Wla, b] = [0, b) x [0, &) — [0, a) x [0, a); and
W (a, b) = [0, b) x [0, b) — [0, a] x [0, a] .
It is easy to verify that fora >0, s > 0,i= 1,2,
C(W]a, b]) = s**+e{(W[s*a, s°b]), so that
L(Wla, b]) = C(W(a, b)) .
Letting & > a > 0, and\s,” = b/a, 5, = a/b, it is obvious that
D — {0} = Uz, Ws*a, 5,b) U Ui, Ws,"a, 5,5°0] .

But {,(W[a, b)) = 5+ C,(Ws;“a, 5,°8]).

Then if (D — {0}) > 0, we would have {(W[s;*a, 5;'b]) > 0 for all i, j because
each one is simply a scalar multiple of the other. Now if we choose b > a > 0
so that W]a, b] c U, we will have for ali=1,2, ...

W(s,"a, s,"b] C U.
The given condition on {, and {, requires that

Vv (}’12 + yz)Cl(dy) < o0,
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But
So (" + 12)8u(dy) = ZiZo Swinyzia,syzini(8:7°a)’Cy(dy)
= 2o 8"@(sy) ™ Cu(W]a, 8])
= Lz @C(W[a, b)) (¢=1)
= o0
which is a contradiction. So we must have {,(D — {0}) = 0.
Similarly, we must have {,(D — {0}) = 0. This would imply that the generator
is of the form

2 2
f(x) = B’y ﬂ; + ‘Bzzxz-a—‘é + (ax; + bx,) ﬂ‘ + (cx; + dx,) _3[_'_
0x, dx, 0x, ax,
— (rx, + ox)f(x) .

Next we are going to prove that all terms involving first and zero derivatives
vanish. To see this, consider fe C/}(D) so that f(x) = 1 for all x in a neighbor-
hood of 1 = (1, 1). Then we have

Hf(1) = —(@r +9) and
$ 7 -a(5%1) = s¥(—y — 0) .
Equating them, we must have y = ¢ = 0.

The proof of a = b = 0 goes similarly by choosing an f so that ¢°f/ox,* = 0
and 9f/ox, = 0 at a point, but df/ox, = 0. This sort of proof also shows that
¢ =d = 0. Therefore, we arrive at the conclusion that

2 2
f(x) = :Blle-aa—x‘lf—z + ‘Bzzxz%f—z s when a=1.

2

Next, we are going to handle the case where @ = 1. This would mean that
B.* + B = 0. The generator then can be expressed as

(@ -+ bx) 2L+ (e 4 d) JL — (px+ ox)f()
+ 5§ S+ ) — ) — 600 LD [ cay)
+ 5 5o Sl + ) = ) — 600 L | tya

If we consider an fe C*(D) such that the first partial derivatives vanish at a
point but not the function itself, and use our observation, we can conclude that
Sf(x) = — (X% + x,0)f(x) + (x1 + X5) §p [fx + y) — f()](E + E:)dy)

and
5.7 -a(5x) = S[—(rs*x; + 05°X,)f(x)
+ 5% + x3) 5 [f(x 4 y) — f)IE + Co)(dsy)] -
Because of the fact that they are equal and the integrals match up by Lemma
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1, we must have
(rx: + 0x;)f(x) = s™*(rx, + 0x,)f(x)
which holds only if y = 6 = 0.
Next, we consider a function which has 9f/ox, = 0 but 9f/ox, + 0. Using
similar arguments, we have

(ex 4 ) 2Lt 5 [ f6x + ) = 1) = &0) 5 |t
= s, §o [ Sl ) — ) — i)~ L[ sy + s(ex, + a) L
That gives
(1 = 9)ex, + dx) 2L = x5, 600 25 — & 2L ey
Thus

(1 — s)(exy + dxy) = x, §p [€2(y) — €a(s7p)s™*]Ca(dY) -
By the very fact that the right-hand side does not depend on x,, we conclude
that ¢ = 0 and

(8) d=_1

1—s

§o [6:(2) — &a(57y)s™*18x(dy) for s+ 1.
Similar arguments will lead to the conclusion that b = 0 and for s = 1

L5 [60) — &(y)s1tdy) -

J

(9) a =

The next characterization of {, and {, depends very much on the fact that

§o O1® + y2)8i(dy) < o0, and
Cu(E) = sl (seA) forall Ac D.

The first step is to prove that {; concentrates on the x-axis of D. To prove
this, let k > 0, I — R*, and define

Vi) = {(x1, x5) €D :x,e1, x, = kx,}.

It is obvious that
Cz(Vk(I)) = sl+aci(Vk(sa1)) for s > 0.

In particular, for s* = a/b,

{(x1, x5) € D (x4, X3) # (0, 0), x, = kx,}

= UZ -« Vi((s“a, 5*°b]) , b>a>0,
= Hk . :
Hence, {,(H,) > 0 iff {,(V,((5*‘a, s*b])) > 0 where s* =a/b, i =1,2,...,0,
—1, —2, .... Forany k > 0, choose b > a > 0 so that V,(a, b].C U. Thus

§ (0 + 9G(@) Z S (§ s7aly(dy) over V,((s<'a,s<B])  where s = afb
= Lo s¥a(s) 7" Cu(Vi((as 8]))
= Xl (57 ety (Vi((a, 8])) -
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The last quantity is infinite if {,(V,((a, 6])) > 0. But the first quantity is finite,
so we have
&(Vi(a,8]) =0 or C(H,) =0.

Take a sequence, k,, which converges monotonically to zero. Then we have
LD — R* x {0}) < X7 &(H,,) =0.

Therefore, {, has to concentrate on the set R* x {0}.

Similarly, {, has to concentrate on {0} x R*. If {; and {, are zero measures,
then the problem is uninteresting, for it corresponds to a trivial process. We
thus examine the case where {, is not a zero measure.

For the time being, let us consider {; as a measure on R* with zero mass at
the origin. Let

9(x) = §y([x, o0)) forall x>0,

then g(x) is a non-increasing function on R* and, in fact, is monotone, hence
differentiable almost everywhere. Let # > 0 be a point at which g'(u) exists.
Now,
9(x) = §y([x, o0)) = s ([s°x, o0)) = s'+2g(s°x) .
Hence,
9'(u) = s'**ag’(su) forall s >0.

Therefore, by choosing s* properly, we see that g’(x) exists for all x > 0. By
the fundamental theorem of calculus, we have
9(y) — 9(x) = {2 g'(¢) dt forall x,y > 0.
Letting y — oo, we have —g(x) = {2 ¢'(¢) dt. But g’(x) = x~¥=-2g'(1) and
Cu[x, ) = {7 —g'() dt = —g'(1) (T x~ 0" dx .
By the condition (2), we have
I = SU()’l2 + yz)C1(dy) < o
where U lies within the unit circle, and
1= {5 0"C(dy)
= B yi(—g'(My, YN dy, for some 8 >0
= —g/(1) by dy,.
If we assume that ¢’(1) 0, then the last integral is finite iff « > 1. The argu-
ment holds also for {, which concentrates on the positive y-axis. Therefore,

we have proved that if @ = 1, then {; and {, must concentrate on the x- and y-
axes, respectively, with

£:(0, dx) = Cyx~2- W= dx and
€i(dx, 0) = Cyx~Wm-2dx

for some C, and C, nonnegative and a > 1.
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Substituting {, and ¢, into (8) and (9), we have
C
1—s
G
1 —=s

d= 15 [£:(0, y) — &40, sy)s~e]y~ V0~ dy and

a =

& [El(y’ 0) - 51(5a s O)S‘“]y-(lla)—2 dy .

Recalling the fact that {,(x) = x, for x € U, a neighborhood of the origin, and
letting 8 be a number so that £,(0, y) = y for all y < 8, we get, assuming s > 1:
d = 2SO (S [60, ) — &0, syt dy

+ Vg [64(0, 3) — £4(0, s2p)s=e]y~¥~* dy}
% s {Sf;/s“ 52(0’ y)y'”/“"2 dy + S‘;’ EZ(O’ y)y—(l/a)—z dy

1
- S‘?/sa S'“Ez(O, S“y)y-(lla)—z dy}

= LG ()l — (BT L2 7 0 )y dy
- lc_2 -7 64(0, y)y= s dy
= G 4 G55 &0, y)y- Ot dy .
Similarly. ¢ = —aC, Y 4+ C, {5 &(y, 0)y-W=2dy where
&(y,0) = y for all y < B. Therefore, the generator has the desired form and is
proved.

We would like to conclude that in both cases the process is, in fact, a direct
product of two processes on R* of the same order. Let us note that % can be
regarded as the sum of two operators; each contains C;*(R*) as domain and each
one is the generator of a process in R*. Let % = o7 + % so that %7 only
involves x;. Consider two processes {y,} and {z,}, both of which are semi-stable
continuous branching process on R* of order @ with generator %] and .,
respectively. Then (y,, z,) will be a semi-stable C.B.P. on D of order a with
generator 7 *. If f, and f, are twice differentiable functions on R* which
vanish at infinity, then

(fr + [0 X2) = filx1) - folxa) € CX(D)
(71 - [)(X) = fulx:) S22 fo%2) + fo(x2) 1 filx) -
(S - f)(x) = LA [i(a)fulxe) + S fu(xi) fo(xs)

= fo(x) 1 fi(%) + fi(x2) 25 fulx) -

Hence, &' * = % and, by the uniqueness part of Watanabe’s theorem, {x,} has
to be equal to (y,, z,). That is, {x,} is the direct product of two semi-stable
C.B.P. on R*. This completes the proof of the theorem.

and

However,
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