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CONVERGENCE RATES FOR THE ISOTROPE
DISCREPANCY!

BY WINFRIED STUTE

University of Bochum

For each sequence of independent and identically distributed Rk-valued
random variables, £ = 3, with distribution p defined on some probability
space (Q, &, P), let

Dn(w, #) = supc |ua®(C) — u(C)| , neN,weQ,
be the so-called isotrope discrepancy (at stage n), where z,® denotes the nth
empirical distribution pertaining to » and where the supremum is taken
over the class of all convex measurable sets C R, It is proved that almost
everywhere and in the mean Dy(s+) converges to zero as n—%(+1 (up to a
logarithmic factor), provided 4 is absolutely continuous with a bounded
density function of compact support.

1. Introduction and main results. The main purpose of the present paper is
to derive various results on the asymptotic behavior of the isotrope discrepancy.
To begin with, let ® = {X;};.y be an infinite sequence of points in [0, 1], k € N.
Then w is said to be “uniformly distributed” iff for each k-dimensional interval

Q
. 1
hmn—»oo 7 Z?=1 XQ(XZ) = S[O,l]]‘ XQ(X) dl(x)

where 3,, A c R*, denotes the indicator function of 4 and integration is taken
w.r.t. k-dimensional Lebesgue-measure 4. Using the well-known convergence
theorem of Pdlya-Cantelli it is easy to establish that the above convergence is
uniform over the class of all intervals Q, i.e., if one defines

’ 1 n
D/(@) = 5upo |- Tty 2g(%) — S () (%)
then D,/(0) — 0 as n — co. Now, if one puts

D, (w) = sup,

- Do) = Sooa 26(%) dA(R)|

where the supremum is taken over all C ¢ &3, the class of all convex measurable
subsets of R* (including the empty set), it was shown by E. Hlawka (1961) that
even in this case D,(w) — 0 as n — co. In accordance with S. K. Zaremba (1970)
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708 WINFRIED STUTE

the number D, ()[D,’(w)] will be henceforth called the isotrope [extreme] dis-
crepancy of o (at stage n) and can obviously be regarded as describing the im-
perfection of the equidistribution of the first n points of @ over [0, 1]*.

Next, let {f,},.n be a sequence of independent identically distributed (i.i.d.)
R*-valued random variables defined on some p-(= probability) space (Q, .7, P)
with distribution g. Then, if p,° = /) (epymr + * - + &) HEN, 0eQ,
denotes the empirical distribution pertaining to fi(®), - - -, f,(w), one is led to
define the (generalized) extreme and isotrope discrepance of w as

D,/(@) = D,/(w, p1) = supq |¢1,"(Q) — p(Q)]  and

D,(w) = D,(o, pr) = sup, |¢,°(C) — p(C)|, respectively.
As to the limit behavior of D,’(w) it was shown by Richter (1974) and Wichura
(1973) that under no restrictions on g

1) limsup,_, n¥(2 log log n)~*D '(v) < 1 for P-almost all weQ

which is best possible according to the ordinary L.I.LL. For a comprehensive
account on these and similar results, see Niederreiter (1973).

Now it is natural to ask whether one could replace D,/(w) in (1) by the isotrope
discrepancy D, (). Fork = 2the answer is positive if = Z/[0, 1], the uniform
distribution over [0, 1], as it was shown by W. Philipp (1973). On the other
hand (cf. Ranga Rao (1962), page 680),

PweQ: lim,_ D, (0) =0}) =0,
if p =28 the uniform distribution over $* = {(x,, x,) € R*: x* + x;? = 1},
i.e., concerning (1) the answer is far from being positive in this case. Thus for
dimension k > 2 the rate of almost sure convergence of D, may heavily depend
on p. On the other hand, as was shown in Stute (1976), Theorem 1.4, for every
distribution g fulfilling the following condition
(++) ¢ <L Qb for some p, eca, (R, ) * i=1,.k,
one obtains the Glivenko-Cantelli result

P({oeQ: lim, . D (0) =0}) = 1.
Now, if one imposes some additional conditions on g, it is possible to derive the
following result on the rate of almost sure convergence of D,.

THEOREM 1.1. Let {f,},.x be a sequence of i.i.d. R*-valued random variables,
k =z 3, defined on some p-space (Q, Z, P) with distribution u = Pf,"*. Suppose
that there exist nonatomic p1, € ca, (R, &), i = 1, ..., k, such that

(2) v Qi =v

and

(3) | d—# =R<K 0.
dv o,v

2 Here and in what follows ca,(R¥, <#)) denotes the space of all finite nonnegative Borel
measures on <.
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Then for P-almost all w € Q
o pier=o (%))

Using the same techniques as in Stute (1974), Theorem 1.10, it is easy to see
that (3) cannot be dispensed with in general.

On the other hand, considering only sequences {f,},. With absolutely con-
tinuous distribution y, (4) can be remarkably improved in the following way.

THEOREM 1.2. Under the general assumptions of Theorem 1.1, but with k = 4,
suppose that p has a Lebesgue-density function f such that

() ‘ ez = R < 00
and
®)] [ has compact support.
Then for P-almost all v € Q

log n\2% (k+1)
6 D =0 (== .
©) (@) = 0 (B

In particular (6) extends a recent result of M. Zuker (1974), Theorem V.5.b,
which states that for each ¢ > 0 n***++9D (w) — 0 for P-almost all we Q.
Theorem 1.10 in Stute (1974) provides an example that (5) is essential in order
to ensure (6).

The following theorem shows that (6) cannot be improved very much in the
case p = Z/[0, 1]¥, the uniform distribution over [0, 1]*.

THEOREM 1.3. Let {f,},y be a sequence of i.i.d. Rt-valued random variables,
k = 2, with common distribution p = 7/[0, 11*. Then for P-almost all w € Q

n¥*+0(log n)*k-V/*+VD (w) is bounded away from zero as n— oo .

Combining this.result with Theorem 1.2 it follows in the case ¢ = Z/[0, 17,
k = 4, that for P-almost all w € Q, D,(o) tends to zero at a rate of n=%*+ (up
to a logarithmic factor), while the uniform L.I.L. (1) with D,/ replaced by D,
yields the precise rate of convergence inthe case k = 1,2. The question whether
the same holds for k = 3 still awaits an answer, whereas the answer is negative
in the case k > 4 as it might be easily derived from Theorem 1.3. On the other
hand, it would be interesting to know how to construct explicitly arbitrarily
long sequences w of points in [0, 1]* such that D,(w) tends to zero as n=%®*+v,
Finally it is still an open problem whether there exists a p-distribution p fulfilling
(2) and (3) such that P-almost everywhere D, tends to zero at the prescribed
order of n=¥*. Concerning the speed of the so-called mean Glivenko-Cantelli
convergence the same methods of proof will yield the following result.

THEOREM 1.4. For each sequence {f,},. of i.i.d. R*-valued random variables
with distribution p defined on some p-space (Q, &, P)

Ep(a,D,(+)) is bounded as n— oo,
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where a, = (n/log n)V*, if k = 3 and if p fulfills (2) and (3) of Theorem 1.1, and
a, = (nflog n)¥ "+ if k > 4 and if p fulfills (3') and (5) of Theorem 1.2.

Furthermore, if ¢ = Z/[0, 1]*, k = 2, one obtains that
n®*+1(log n)k-V/E+VE (D, (+)) is bounded away from zero as n— oo .

In particular Theorem 1.4 extends Stute (1974), Theorem 1.9, where it is shown
with different methods, that under the hypotheses of Theorem 1.1
Ep(D,(+)) = O(n~"4+) .

REMARK. As to the case k = 2 (k = 3 resp.) it should be noted that under
the assumptions of Theorem 1.1 (Theorem 1.2 resp.) the same methods of proof
apply in order to show that P-almost everywhere and in the mean

nt(log n)~iD,(+) is bounded as n— oo .

2. Proof of Theorem 1.1. The proof of (4) is mainly based on techniques
developed in Stute (1976) to derive a Glivenko-Cantelli theorem for the class of
all convex measurable sets in R*. In addition we will apply the following strong
version of Kolmogorov’s upper exponential bound, which may be proved in
essentially the same way as in Loéve (1963), page 255.

LemMmaA 2.1. Let{g,},c be a sequence of independent real-valued random variables
defined on some p-space (Q, &, P) satisfying, for each n € N, the following conditions:
Supwen lgn(w)l é 1 ’ Ep(gn) = O ’ 0-752 = Ep(gnz) > O .

Let v} = Yi»_ 0. Then for every e > 0 and all t € [0, 7,]
P(Uj=i 0 € Q: Tis, 0:(0) = 7,¢)) < exp[—te + (#2)(1 + (22,)70)]
In order to apply the techniques of Stute (1976), for each measurable space
(X, &) let (II(7"), <) be the class of all finite partitions of X into SZ-sets,

directed by refinement. Then for each indexed subset {z*: s e I} of II(.%") and
every Ce 7 let

Co=W(EC ry=UJ{Ber: Bn C=* ¢}
C:=VC )= U {Ber:BcCC}.
As an immediate consequence 7° < r‘ implies
CscCtltcCcClcCe.

"In the sequel we will consider partitions = € II(<%,) of the following type: let
—co <t <, < -+ L t; < oo bei+ 1(i = 0)distinct points on the real line.
Put

Iy = (—oc0, 4],
I, = (4., 4] j=1,.i
Ly = (£ 00) s

andrn={l; X --- X1I;105j, i+ 1forallr=1, ..., k}
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Partitions 7 of the above type will be called partitions of type .5 ,(i). In order
to make the proof of (4) more transparent the main arguments will be shown
separately in Lemmas 2.5-2.8. In this context Lemmas 2.2-2.4 will be very
useful.

LemMa 2.2. Let © ¢ TI(<B,) be of type F (i), k = 2. Then for each C e %,
which is contained in some R*~* X I;, je{0, 1, «.., i + 1}, there exists C' ¢ &,_,
such that
(7) V(C,m) = V(C" X I;, ).

Proor. Let p: R¥ — R** be defined for all x = (x;, - - -, x;) € R* by

PX) = (X 05 Xym) -
With C” = co(V(C, n)) (where co(H) means the convex hull of H C R*) one
obtains
€ = co(p(V(C, 1)) X I;) = co(p(V(C, m))) X I .
Put C’ = co(p(V(C, x))). Then, in order to prove (7), it suffices to show that
V(C, m) = V(C", x).
First, by definition of C”, each Be = with B C C is contained in C”, i.e.,
V(C, =) c V(C", ).

To prove the converse inclusion let B e = with B C C” be given. Since by defini-
tion V(C, r) is contained in C it follows from the convexity of C that C” c C
whence B c C. This shows V(C”, ) c V(C, =) and completes the proof of
Lemma 2.2. [J

To state the next lemma for each = € II(<Z)) let
Z (=) = {V(C, n): Ce &4} and F(r) = {W(C,n): Ce &4} -
LEMMA 2.3. Suppose that = € Il(<5,), k = 1, is of type F (i), i = 0. Then
P S @+ DM and || S (2R
Proor. Since the assertion is obvious for k = 1, we may assume w.l.o.g. that
k = 2. As before let p: R* — R*~! be defined for all x = (x,, - - -, x;) € R* by

p(X) = (X3 -+ +» X,_;). By assumption there exist pairwise disjoint intervals I,
j=0,1,...,i+ 1, such that

‘

r={ x - xIL;;:0<j,<i+ 1 forall r=1,...,k}.

Let

a={l;; X - X1I;, 0<j,<i+ 1 forall r=1,...,k—1}.

Then for each je{0,1, ---,i + 1} and every C e &, with C C R¥"* X I; one
obtains

®) pW(C, 7)) = W(p(C), 7) .
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Indeed, for each B e # one has that
BnplC)+ @ ifandonlyif (BXI;)NnC=+= Q.
In the case of V(C, =) apply Lemma 2.2 to obtain C’ ¢ &,_, such that
V(C,m) =WV(C X I, ).
Since for each Be #
Bcp(C xI)=C ifandonlyif BX I, c C' X I;,
one obtains
©) p(C, 1)) = p(V(C" X I, m))
=WV, ).
Thus, if one defines T}, and T, for each C e &, by
Ty(W(C, 7)) = (p(W(C N (R* X I}), 7)))jm,...ia
Ty(V(C, @) = (p(V(C N (R X 1)), T)))jm... i
then, by (8) and (9), one obtains natural injections

Ty H(r) — [Iity Z (%)

and

and
T, : 7(z) — [ty 7(%) .

Since by definition 7 is of type .5 ,_,(i) the assertion of Lemma 2.3 follows now
by induction on k. []

To state the next lemma let p, be an arbitrary probability measure on 2.
Suppose that ,({x}) = 0 for each x ¢ R. Then, for each n e N, there exist 2" — 1
distinct points '

—o0 < tn,o < tn,l < 0 <L tn,z"—z < oo

such that
#1(—00’ tn,O] =2 ’

#l(tn,j’ t'n,j+1] =2, ] = O’ <, 20— 3,
and

(2, qngs 00) = 277,

Let 7" € II(<5,) be the corresponding partition of type .5 (2" — 2). Then it
is easy to see that the points 7, ; may be chosen so that

A L forall neN.
Put v = ®7_, #, and
" ={Ber": BN C+#* @ + B— C}, Ce &, .

LeMMA 2.4. In the above notation there exists finite ¢,' > O (depending only on
k) such that

(10) SUPgeg, V(U 7o) < ¢/27m.
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Proor. Put K = (¢, t, )" Since V(1) = 2", I e 7", and V'(K°) < 2k2~"
it obviously suffices to show the existence of some real number ¢,’, which depends
only on k, such that

SUPge o, ccx [T = ¢,/ 2mkn
For this, put
I'E(tn,i’ tn,i+l]’ ]:O’ ’27‘*— 3 and

J

J={0,1,...,2% — 3}k,
For each j = (j,, - - -, j,) € J and every h = (h,, - - -, &) € {0, 1}* let
NG b) = {peN: (i + p(=1)" -+ i + p(—1)*¥) € J} .
Put
Jo={(p -+ ju)eJ:j,2{0,2* — 3} forall r=1, ...,k}.

Since |J — J| < 2k(2" — 2)*~%, it remains to show that for some constant c,”
and every convex measurable subset C of K

7" < &' (2" — 2)*,
where #" ={I=1; x -+ x I; ens™: (ji, -5 ju) €1} -

Indeed, for each I = Ijl X o0 X Ijk er,”and allh = (hy, -, k)€ {0, 1}, pe
N(, h), let

Ly =T pymr X +++ x I; .,k suppose furthermore that for every he
{0, 1}* there exists p, € N(j, h) with I, , n C =+ @. Choose any x,e/, , N C
and put § = {x,: he {0, 1}*}. Since S ¢ C it follows from the convexity of C
that co(S) < C, whence, by I C co(S), one obtains I ¢ C, a contradiction to
ITew,". Thus the above argument shows that one can find h, = (&, - -, k) €
{0, 1}* such that I, , < C°for all p e N(j, h;). Let p, be the uniquely determined
element of N(j, h,) with

.iI = (]1 + PI(—I)hl, c "jk + pl(_l)hk) el — Jl

and define F: #,° — J — J, by F(I) = j,, I e #,°. Then it follows from the defini-
tion of F that for each

h e {0, 1}* and every jeJ —J, |[[Ie#,*: FI)=jh,=h}| < 1.
y

This implies that |7,"| < 2¥2k(2" — 2)*~* and completes the proof of Lemma
2.4. [ '

To simplify the arguments in the following lemmas we may and do assume
w.l.o.g. that the marginal components of v in (2) are all equal to y,. If not
replace v by v = @k, (4, + -+ + ), which is possible since ||dv/dp||,; < 1,
whence ||dy/di||.,; = R’ < co. Dividing through by z,(R) > 0 if necessary we
may assume w.l.o.g. ¢,(R) = 1. In what follows k will be an arbitrary fixed
integer = 2.
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Before stating the next lemmas we need some additional notations. For every
Ae Z, put ¢¥(A) = p(A)(1 — p(A)). Foreach n = 3 let
z(n) = (logloglog n - log, e/(k — 1)) and
T(n) = {(log n — log log n) log, e/k>
where log, x, x > 0, denotes the logarithm of x w.r.t. base 2 and (x), xe R,
means the greatest integer m < x.

Finally let = € II(<)), ne N, denote the finite partition of type & (2" — 2)
obtained from y, as before, and let n, be such that inf, ., =(n) = 1.

LeEMMA 2.5. For each n = n, let A, be defined by
Ay = Usep oo {0 € Q1 |p,2(A) — p(A)] = 4n~V*(log n)*} .
Then under the hypotheses of Theorem 1.1
(11) P(lim sup,,_., 4,) = 0.
Proor. For each n > n, and every A e 7 (z*™) let
A(A) = {0 e Q: |1, 2(4) — p(A)] = 4n~¥(log n)"
= {0 € Q: | Xiziza) 1a(fi(@)) — p(A))| = 4n*~V*(log m)*} .
Apply Lemma 2.1 with ¢ = g(A)(log n)* to obtain for each 4e Z(z*™) with
a(A) >0
(12) P(A4,(4)) = 2 exp[—4nt~/(log n)i+VE + (log n)(1 + 3)/2]
< 2nexp[—4nt=VE(log n)t+V/F] .

Since the left-hand side of the first inequality is equal to zero if g(4) = 0 it
follows that P(4,) < |7 (z°™)| - 2n exp[—4nt-V¥(log n)+V/*].
Apply Lemma 2.3 and the definition of z(n) to obtain

I%(n.r(m)l < 22e(n)ztk=1leln) < 2% loglogn (log n)zum
which together with (12) implies that
P(4,) < 2n(log n)*™ exp[—4nt~V¢(log n)t+**] = O(n~?) .
The assertion now follows from the first Borel-Cantelli lemma. []

Besides the lemma just proved, the following statement will be crucial for the
proof of Theorem 1.1. First put 6 = k(3 — 1/k)/(k — 1) = 0. Then

(13) (k — 1)1 —9) = k[2
and )
(14) (k — 1)olk =% — 1/k.

For each n > n, let D(C, s) and E,(C, r, s5) be defined for all r > 0 by
D(C,s) = C_* — C_*,
E(Cr, ) = {0eQ: |(1,° — p)D(C, 5)| = rn-bsiaives,
CeGpus=tn)+1,.-.,T(n).
Put E,(r) = Ul 41 Ucee, Ea(C, 1, 5). Then one obtains
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LEMMA 2.6. Under the hypotheses of Theorem 1.1 for all sufficiently larger > 0
(15) P(lim sup,,_,, £,(r)) = 0.
Proor. For each n > n, let m e N be such that 2™ < n < 2™+, Put
Fpii(Co 1, 8) = Ungjmamn {0 € Q2 [ X1 (t00,0(fi@)) — #(D(C; 9)))]
= r2(mbAaghpk-nei—i}

CeEp s=12™ + 1, .-, T2™). Then 2™ < n < 2™+ implies that, for all
s=rt(n)+ 1, ..., T(n), E,(C,1,5) C F,,(C,r,s), whence

(16) E(r) C Fpu(r)

where F,.(r) = Ulfam's Ucee, Fnia(Co 15 9)-
Thus to prove (15) it suffices to show according to the first Borel-Cantelli
lemma that

(17) Yimzmg P(Fnia(r)) < 0o, where m, ischosen such that 2™ = n,.

To this extent, let m = m,, Ce &, and 7(2™) < s < T(2™*) be given. We will
apply Lemma 2.1 with

t = a(D(C, s5))s22%/* = ¢(D(C, 5))st2k-D1=0s
in order to obtain an upper bound for P(F,,,(C, r, 5)), which is possible since
t £ a(D(C, s))T(2m+1)E2F7@™hi2 < 6(D(C, 5))2m+D/2,
So by Lemma 2.1
(18) P(F,.(C, 1, 5)) < 2exp[—r2-2s2%-12  3u(D(C, 5))s2*/4] .
In order to find an upper bound for
A, = supse,, 1(D(C; 5))
we remark that by (2), (3), and Lemma 2.4 for some finite ¢,
A, < supge,, #(C.071 — C*7Y) < Re,/27¢70 .
Put ¢ = 2Rc,’ and let r, > O be defined by the equality —5 = —r,2-% 4 3c/4.
Then, by (18), for all r = ry P(F,,.+(C, 1, 5)) < 2 exp[—5s2%-1°].
On the other hand, it follows from Lemma 2.3 that for each s there exist at
most 242%™ sets of the form D(C, s5), C ¢ &,. Thus
P(F,,\(r)) < 2 ST, exp[— s2-27]
(19) < 2 Z TG exp[— 20 hrem]
< 2 yramed | exp[—s2'* log log 2™]
= O(exp[—r7(2™)2"~* log log 2"]) = O(m~?) .
This proves (17) and completes the proof of Lemma 2.6. []

The proof of the next lemma is, except for details, the same as that given for
Lemma 2.6 and will be omitted.
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LemMMA 2.7. For each n = n, and r > 0 let G, (r) be defined by
Gu(r) = Usewr, (0 € Q: [1,2(C,7 — C7) — (€7 — €7
= rntT(n)p2k-0Tm8Y

Then under the hypotheses of Theorem 1.1 for all sufficiently large » > 0

(20) P(lim sup, _,, G,(r)) = 0.

We are now in the position to give the proof of Theorem 1.1. Put
A, = limsup, ., 4, ,
E, = limsup,_,, E,(r),
G, = limsup,_, G,(7) ,

where r > 0is chosen large enough in order to ensure (15) and (20). Let H, =

Ay 0 Ef n Gy. Then by (11), (15), and (20) P(H,) = 1. Thus, in order to show
(4), it suffices to prove the following
LemMMA 2.8. Suppose that k = 3; then in the above notation for each w € H,
1) D,(w) = O((log n[n)"*) .
Proor. For each o € H, and every n = n, let

ei(n) = e(n, @) = SUPge, |, (C_7®) — p(CT)]

&) = ety ) = Ty WPoer, 1D 9) — 1(D(C, )

e(n) = (1, 0) = SUPgeq, [1,4(C,TW — CTW) — p(C,7® — C_TW)|
and

c(n) = cy(n, @) = SUPgeq, |11, (C — CT™) — p(C — CT™)] .
Then
(22) D,(0) < ¢(n) + cx(n) + cy(n) .
Since by (3) and (10)

SUPgee, p(C, 7™ — C_T™) < Re,2-7™
one obtains
SUPgeg, Ma"(C — CT™) < supge, (,°(CL7™ — C_T™) < ¢y(n) + Re,/277™,
whence ¢,(n) < ¢(n) + 2Rc,/277™ ,
Next let n, = n, be chosen so large that for each n = n,
¢,(n) < 4(log n/n)*,
€4() < 1T py PRVSIEI < AT(m)h TG 2600

and
¢cy(n) < rn~¥T(n)#2%-07™35 < r(log njn)/* .

Since ¢ > 0iff ¥ > 3 it follows from (22) that

(23) D,(w) £ 4+ r+ 4Rc/)(log n/n)E  (rn=iT(n)t 31w 20k-1ed)
= O((log n/n)V* 4+ n=3T(n)}2*-12T™) = O((log n/n)"¥) .

This proves (21) and completes the proof of Theorem 1.1. []
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3. Proof of Theorem 1.2. The main arguments are nearly the same as those
applied in proving Theorem 1.1. To begin with, let k be an arbitrary fixed
integer = 2.

Concerning the validity of (4) the proof of Theorem 1.1 heavily depended,
for each n e N, on the existence of finite & ,-approximating systems 2(z") and
#(n") (cf. Lemma 2.3 and Lemma 2.4). Now, as it may be clear from the
arguments in the preceding chapter, it is possible to improve (4) if one could
replace 77 (z")and % (z") by & ,-approximating systems with smaller cardinality.
The following two lemmas will go in this direction. First let K = [a, b, a,be Z,
be an arbitrary large cube with #(K°) = 0. Foreach Ce €, n K = {Ce &,
C c K} and every ¢ > 0 let

C={xeR:Kx)nC+ @} and C ={xeR: K(x)cC}

denote the outer and inner (convex) e-parallel sets, respectively, where K,(x) =
{y e R*: ||y — x|| < ¢} means the solid sphere with center x and radius ¢ w.r.t.
the Euclidean norm.

The next lemma plays the same role for (6) as Lemma 2.3 for (4).

LeMMA 3.1. For eachn e N there exist finite subfamilies 7" and 27™ of <%, N K
such that for each C € €, N K there exist V*(C) e 7™ and W™(C) e 7™ with

(24) V(C) c V**(C) c C c W*(C) c W(C),
(25) WH(C) — PHC)  C*™ — Cya.
Furthermore for some finite L > 0

max (|77, | 77)) < 28

As will be clear soon, ™" and 27™ play the same role for Theorem 1.2 as
#(z") and %7 (z") for Theorem 1.1.

Proor. For the proof of the above statement we will follow the proof of
Dudley (1974), Theorem 4.1, in order to obtain for each 0 < ¢ < 7/4 a finite
subfamily 97, of <%, n K such that for each C € &, N K there exists W(C, ¢) ¢ 7,
with

(26) Cc W(C,e) cC.
Furthermore for some finite L, > 0,

(27) |7, < exp(—L,e**"1Ine).
Let

W™(C) = Moy W(C, 277),  V*C) = U, W(Cy-ry 2°7),  neN.
Then, if one puts
7= {V(C): Ce €, N K}, "= {W~C): Ce &, N K},

(24) and (25) immediately follow from (26) and the inclusion (C,)* C C, ¢ > 0.
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On the other hand, since
Sy  r2rkmD Lo an | Qrk-D/2 < 4pQnk-n/E
it follows from (27) that for some L > 0,
max (|77, | 77) < 28R 0

ForeachCe @, nKandne N put C,» = W*(C)and C_" = V*(C). Letv denote
the uniform distribution over K.

LeEMMA 3.2. There exists ¢,/ > 0 (depending only on k) such that

SUPgeq,nx M(Ci" — C") = c)'2" .

Proor. For each n > 4 divide [a, b] into pairwise disjoint intervals of equal

length ¢(n) = 2-". As in the preceding chapter let z" € II(<%,) denote the cor-

responding partition of type .5 (2" — 2). We are going to show that for each
Cez,nkK

(28) C™ — C,y T2 U o -

Indeed, for each x e C: — C,,, let 4, denote the uniquely determined element

of z#=* with x € 4,. In particular
4, nCw —C,,.+ D .

Suppose now that 4, ¢ C¢™ — C,,,, which is possible only for bounded 4,.
Let y be the midpoint of 4,. Since y¢ C,,, and K, ,,(y) C 4, there exists z¢
K. .,(y) — C for which, by convexity of C, one can find « € K,,,,,(2) — C*™. But
Kyny(2) C A, so that ue A, — C*™, a contradiction to our assumption. Thus
(A4, — C™) u (4, n C,,) + @, whence (28) holds true.

The assertion follows now from (28) and Lemma 2.4 with ¢,”” = 16¢,’. []

The proof of the next statement is, except for details, the same as that given
for Lemma 2.5. For each n > 3 let z(n) and T(n) redefined as

7(n) = {(2 logloglog n - log, e)/(k — 1)} and
T(n) = {2(log n — log log n) log, e/(k + 1)) .
Put
Ay = Userem {0 e Q: |p,(4) — p(A)| Z 4(log nfn)V =}, n = ny;
then

‘

LemMmA 3.3. Under the hypotheses of Theorem 1.2
(29) P(lim sup, . 4,) = 0.

The next lemma plays the same role for Theorem 1.2 as Lemma 2.6 does for
Theorem 1.1.
To begin with, for each k = 3 let

6= (k—3)2k —1)=0.
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Then (k — 1)(1 — 8)/2 = (k 4+ 1)/4 and (k — 1)d/(k + 1) — % = =2/(k + 1).
For each n > n, let E,(C, r, 5) be defined for all r > 0 by
E(C,r,5) = {0eQ: |1, D(C, 5)) — w(D(C, 5))| = rn-tst2*-s02}
Ce&,NK; s=t(n)+1,...,T(n).
Put
En(r) = Z'=(,;'szn)+l UCe?kﬂK En(c’ r, S) 5

then one obtains

LeEMMA 3.4. Under the hypotheses of Theorem 1.2 for all sufficiently large r > 0
(30) P(lim sup,,_., E,(r)) = 0.

PRrOOF. As in the proof of Lemma 2.6 it will be sufficient to show that for
all large r > 0

ngmo p(Fm+1(r)) < o,
where

Fr(r) = Ul%omn Ucee,nx Fpir(Cs 15 5)
and

Foii(Co 1, 8) = Usgjzam{o e Q| XiL (Xoe,o(fi(@) — wUD(C, )|

r2(’m+1)/2s{2((k—1)36—1)/2}

CeZ, NnK; s=t@")+1, ..., TQ™").

vl

To show 3,2, P(Fpi.(r)) < oo, apply Lemma 2.1 for each Ce &, N K and
every s such that z(2™) < s < T(2™*") with

t = g‘(D(C, s))s%2<k+1)s/4 — a(D(C, s))sizm—ml—a)s/z

to obtain an upper bound for P(F,,(C,r, s)). Since by definition of T(2"+')
t < a(D(C, 5))2™*7, it follows from Lemma 2.1 that

P(Fi(C 1, 5)) < 2 exp[—r2-4s2%-0e/2 4 34(D(C, 5))s2*+02/4] .
Since by (5) and Lemma 3.2
A, = supgey, ok H(D(C, 5)) < Re,/'27077,

the above considerations show that we may apply the techniques of Lemma 2.6
in order to show P(F,,,,(r)) = O(m=?), provided r = r,, where r, > 0 is defined
by the equality —(L + 1) = —r,27% + 6Rc,”/4 and L > 0 is the same constant
as occurring in Lemma 3.1. []

The following lemma corresponds to Theorem 1.2 as Lemma 2.7 to Theorem
1.1.

LemMA 3.5. For each n = n, let G,(r), r > 0, be defined by

Gu(r) = Usewyox (0 € Q1 [1,(C.7% — CL7®) — (€7 — C_1)
rn—iT(n)QZ(k—l)T('n)ﬁ/z} .

v
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Then under the hypotheses of Theorem 1.2 for all sufficiently large r
31y P(lim sup, .. G,(r)) = 0 .

Now, by (29), (30), and (31), the proof of Theorem 1.2 may be finished by
using the same arguments as in Lemma 2.8. []

4. Proof of Theorem 1.3. In order to obtain sharp results on the order of
magnitude of the logarithmic factor in Theorem 1.3 the following obvious lemma
will be useful.

Lemma 4.1. Letf,, ---, f,, neN, be i.i.d. random variables on some p-space
(Q, &, P) with values in some measurable space (X, S7). Suppose thatS,, - - -, S,,,
m < n, are pairwise disjoint sets in S with P(f,€S;) = x forallj=1, ..., m.

Let

S= N Uk {fieS;}.
Then
(32) P(S) = Do (— 1)1 — jx)*.

Besides the lemma just cited, the following simple remark is essential for the

proof of Theorem 1.3.

LEMMA 4.2 (cf. Zaremba (1970), Lemma 3.1). Let w = {X,},.y be an infinite
sequence of points in R*. Suppose that for given qe N and ne N there exists a
measurable convex set C, such that 9C,(= boundary of C,) contains q points of
{xy, -+, x,}. Then
(33) D,(w) Z g/2n
for all pe ca (R*, 2, fulfilling supg..., #(9C) = 0.

We are now in the position to give the

Proor oF THEOREM 1.3. Let K’ = K,(1/2) be the sphere with center 1/2 =
(3> -+, ) € R* and radius 3. Then for each 0 < # < x/2 there exist m = m(f)
spherical caps in K’ with pairwise disjoint interior sets S,(6), - - -, S,,.5,(¢) of equal
Lebesgue measure y(6), where

(34) m(f) ~ 6*-*
(35) 1(0) ~ cgt+? as 0—0, where ¢>0.

(Cf. Zaremba (1970), pages 133-134.) By (35) there exists §, > 0 and ¢’ > 0
such that :

(36) ©(0) = c'6*+* provided 6 < 6,.
Choose ¢” > 0 so large that
37) k—=Dj(k +1) —c'c" < —1.

Then, for each ne N, let 6, be defined by

0'4 = (clln—l IOg n)l/(k+1) .
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Put
S, = N Ui {fi e Si(0.)} -
Then it follows from (32) that
P(S,) = D60 (—1(") (1 — ju@,))" = 2 — (1 + e, e,
(38)  P(S,) < (1 4 exp(—np(8,)"" — 1 < exp(m(0,) exp(—np(6,))) — 1.
Using (34) and (36) one obtains n,e€ N and ¢, > 0 such that
m(ﬂn)e‘”"mn’ < c,0,*F exp(—nﬁn"“c’)
é n(k—l)/(k+1)—c’c" , Provided n g g .
Apply (37) to obtain
(39) Z:'neN m(en) exp(_nﬂ(an)) < oo
In particular lim, _, m(9,) exp(—np(0,)) = 0 whence
m(0,) exp(—nu(6,)) ~ exp(m(0,) exp(—np(0,))) — 1.
So, by (38) and (39) 3,51 P(S,%) < oo, whence by the first Borel-Cantelli lemma
(40) P(lim sup,_., S,°) = 0 and P(liminf,_ . S,)=1.
On the other hand, we may infer from the definition of S, that foreachw e S,
neN, and every je {1, ---, m(8,)} there exists at least one i; € {1, - - -, n} with
fi @) €S(0,). Let
Co@) = co({fif(@):j=1, -, ml,))) .
Then it follows from geometrical considerations that f; () € 9C,() for all j =
1, ..., m(8,). Using (33)and (34) one obtains that for all sufficiently large n ¢ N
D”(w) g c"'n“(n/log n)(k—l)/(k+1)
— cllln—2/(k+1)(10g n)(l—k)/(k+1)

where ¢””” > 0 is some constant depending only on k. The assertion of Theorem
1.3 now is an easy consequence of (40). [J

5. Proof of Theorem 1.4. First we remark that concerning the proof of Lemma
2.6 and Lemma 3.4 the events F,(r) have been introduced only to cover the
case k = 2 and k = 3, respectively. For example, in the case of Theorem 1.1,
by redefining z(n) as '

z(n) = (loglogn - log, e/(k — 1)}
(z(n) = (2 loglog n-- log, e/(k — 1)) in the case of Theorem 1.2),

it would be possible to show directly by using the same arguments (e.g., cf. (19))
that for each k > 3 (k = 4 in the case of Theorem 1.2) and all large r > 0

(41) P(4,), P(E(r)) and  P(G,(r)) are O(n™).
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To prove the first statement in Theorem 1.4 we remark (cf. the proof of Lemma
2.8) that for each fixed r > O fulfilling (41) there exists r, > 0 such that
{@eQ: a,D,(0) = 1} C 4, U E(r) U G\(r)
which implies that
Ep(e, D))

Viapop<rgl @ Du(@) AP(®) + $ie,0,2rp X Dal(@) dP(@)
o + anp({anD'n g rO})
1y + a,(P(4,) + P(E(r) + P(C.()))

=ry+ a,0n?)—r, as n—oo.

I 1A

Using the same arguments as in the proof of Theorem 1.3, the last assertion
immediately follows from Chebyshev’s inequality and lim,__, P(S,) = 1. []

Finally, to prove the last statement of the first chapter, we remark that (23)
may equally well be applied to the case k = 2 (where d = 0), i.e., under the
assumptions of Theorem 1.1 for P-almost all w € Q

D,(w) = O((log njn)}) + O(T(n)}/n¥) = O((log n)i[nt).
As to the mean Glivenko-Cantelli convergence, the proof will be, except for

some minor modifications, the same as that given for Theorem 1.4 and may be
omitted here.
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