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EXTENDED RENEWAL THEORY AND MOMENT CONVERGENCE
IN ANSCOMBE’S THEOREM

By Y. S. CHOW!, CHAO A. HSTUNG? AND T. L. Lar®

Columbia University

In this paper, an L, analogue of Anscombe’s theorem is shown to hold and
is then applied to obtain the variance and other central moments of the first
passage time T, = inf{n > 1:S, >cn®}, where 0 <a <1, §, =X,
+ .-+ +X, and X}, X, * - - are iid. random variables with EX, > 0. The
variance of 7, in the special case @ = 0 has been studied by various authors in
classical renewal theory, and our approach in this paper provides a simple
treatment and a natural extension (to the case of a general a) of this classical
result. The related problem concerning the asymptotic behavior of max; . ,j ~“S;
is also studied, and in this connection, certain maximal inequalities are obtained
and they are applied to prove the corresponding moment convergence results of
the theorems of Erdos and Kac, and of Teicher.

1. Introduction and summary. Let X, X, X,, - - - be iid. random variables
with c0 > EX = p > 0 and let 0 < a < 1. Setting S, = X, + - - - +X,, define
(1.1) T,=inf{n > 1:8S, >cn®},

where c is a positive constant. While in the special case a = 0 the first passage time
T, has been extensively studied in classical renewal theory, the case of general a
has been recently considered by a number of authors in the literature (cf. [2], [7],
[11], [12], [16]), and it is well known (cf. [7], page 281) that as ¢ — oo,

(1.2) (c/p)~ V49T, 51 as,
(1.3) ET, ~(c/w)"/"™*,
(1.4) ET? ~(c/py/%® if E(X ¥ <o p> 1

Under the additional assumption that X has a finite variance o® > 0, the
asymptotic normality of T, was first established by Siegmund [12] who showed that
as ¢ - o,

(1.5) (1 = a)(e/p) ™ T, — (c/w)" "™} =eN (O, (o/1))

where —; denotes convergence in distribution. While (1.3) gives the asymptotic
behavior of the mean of T, (1.5) suggests that the following asymptotic formula for
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the variance of 7, may be true:
(1.6) Var T, ~(1 — @) o /p)’(c/p)™®  as c— .
When X is nonnegative, Feller [6] proved (1.6) for a = 0 in the lattice case and
Smith [14] extended it to the nonlattice case. Later Heyde [8] proved it without the
restriction to nonnegative random variables. Their methods make use of Black-
well’s renewal theorem and the fluctuation theory of random walks to find
sufficiently detailed expansions for ET, and ET?. (Clearly the simple first-order
asymptotic expressions (1.3) and (1.4) are too crude to give (1.6)). Recently
Siegmund [13] used Wald’s lemma for squared sums to derive expansions for ET,
and ET? with which he proved (1.6) for a = 0. All these proofs only deal with the
case a = 0, and in [7], page 299, Gut pointed out that the validity of (1.6) for « > 0
had remained an open question.

In this paper we shall establish (1.6) in the general case 0 < a < 1 under
minimal moment conditions on X by using (1.5) and showing uniform integrability.
More specifically, we obtain the following theorem:

THEOREM 1. Let X, X, X,, - - + be ii.d. random variables with EX = y > 0 and
VarX =0>>0and let S,=X,+--- +X,. Let 0<a <1 and p > 2. For
¢ > 0, define T, as in (1.1). Assume that E|X |’ < co.

() The family {c™P/CV=MNT, — (c/w)TE|P, ¢ > 1} is uniformly integrable.
(ii) If @ < 3, then (i) implies that
17y {eP/CO=T, — (c/pn)/ "W, ¢ > 1} is uniformly integrable.

Consequently as ¢ — o0,

(18)  E|T, = (¢/w)"" " ~(1 = &) (/)" "o /p)'m, for 0 <r <p,
where m, = 2m)~ 2 J®|x|" exp(— 2 x?) dx is the rth absolute moment of the standard
normal distribution. This further implies that

(1.9 E{T. - (¢/w)"""®} = o(c”/@1=) if r is a positive odd integer < p.
(i) If 3 < a < 1, then (1.7), (1.8) and (1.9) still hold under the further assumption
(1.10) P[X >x] = o(x7?/C0=N) a5 x—o0.

The moment condition E|X|? < oo is clearly a very natural condition for the
uniform integrability result (1.7). Theorem 1 says that this minimal condition
suffices for the case a < 3. We now explain why additional conditions on the tail
distribution of X* have to be assumed for (1.7) to hold in the case a >j.
Obyiously (1.7) implies that given € > 0 and 0 < y < 1, there exists ¢, sufficiently
large such that for all ¢ > ¢,

(1.11) e > cP/QU-NE{(c/p) /070 - Tc}pI[T‘ <(e/w1=]

>(1- -Y)Pu—p/(l—a)cp/a(l—a))})[Tc < 'Y(C/Ii)l/(l—a)]-
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Hence in particular (1.7) implies that
P/@I=DP[X >c] =P/ "DP[T,=1]>0 as c—oo.

Therefore (1.7) implies (1.10). For a < 3, (1.10) is automatically satisfied under the
assumption E|X|? < oo (since p/(2(1 — «)) < p). However, for the case a > 1,
(1.10) is a necessary additional condition for the uniform integrability result (1.7).

In the special case p = 2, the uniform integrability result (1.7) has been obtained
by other methods by Woodroofe ([16], Theorem 5.1) under the more restrictive
moment condition E|X|? < oo for some g > max{4, 1/(1 — a)}. Woodroofe ([16],
pages 74-75) gave some applications of this result in his development of an
asymptotic expansion for E7T, under further conditions on X.

Putting » = 2 in (1.8) and » = 1 in (1.9), we obtain the asymptotic formula (1.6)
for Var 7, as an immediate corollary.

COROLLARY 1. Let X, X}, X,,* - - be ii.d. random variables with EX = p >0
and oo >VarX =02 >0. Let 0 < a <1 and define T, for ¢ >0 as in (1.1).
Assume furthermore that (1.10) with p = 2 holds in the case 3 < a < 1. Then (1.6)
holds. ~

The proof of Theorem 1 will be given in Section 4. As shown in [7], page 298, the
asymptotic normality (1.5) of 7, is a consequence of the following theorem of
Anscombe [1]: If Y, Y,, Y,, - - - areiid. with EY = 0 and EY? = 0® < oo and if
{M(b), b > by} is a family of positive integer-valued random variables such
that as b — oo,

(1.12) b~ 'M(b) »p\  for some positive constant A,
then as b — o0,
(1.13) b-ISH®OY, 5 N(0, Ad?).

It turns out that Theorem 1 can likewise be proved by using the following L,
analogue of Anscombe’s theorem.

THEOREM 2. Let Y, Y, Y,,- - - be iid. with EY = 0, and let {M(b), b > by}
be a family of positive integer-valued random variables.
@) Forp > 1,if E|YPP*!' < o0 and

(1.14) {(6='M(b)), b > by} is uniformly integrable,
then
(1.15) {(b'%li‘,’,”(b))’,.l)p, b> bo} is uniformly integrable.

(i) Suppose for b > by, M(b) is a stopping time with respect to the o-fields %,
n > 1, where 3, is the o-field generated by {Y\,- - -, Y,}. Forp > 2, if E|Y|" <
oo and (1.14) holds, then (1.15) still holds.

The proof of Theorem 2 will be given in Section 3. While Anscombe’s theorem
says that the condition (1.12) on the convergence in probability of b~'M(b)
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guarantees the asymptotic normality of 5~ 2SM®Y, when EY? < oo, Theorem 2
says that likewise the uniform integrability condition (1.14) on b~ IM(b) guarantees
the conclusion (1.15) on the uniform integrability of randomly stopped partial sums
under natural moment conditions on Y. Since L, convergence is equivalent to
convergence in probability and uniform integrability, Theorem 2 and Anscombe’s
theorem together yield the following moment convergence result associated with
(1.13).

COROLLARY 2. Let Y,Y,, Y,,+ -+ be iid. with EY =0 and EY* = o°. Let
{M(b), b > by} be a Sfamily of positive integer-valued random variables.

(@) Forp > L, if E|Y|P*' < o0 and
(1.16) b~'M(b) —> 1, for some positive constant A,

then for every continuous function f : (— co, ) — (— 00, 00) satisfying f(x) = 0(|x|?)
as |x| - oo,

(1.17) lim,_, . Ef(b~1SM®Y,) = EA(Z),

where Z is a normal random variable with mean 0 and variance \o*.

(ii) Suppose p > 2 and M(b) is a stopping time (with respect to %, as in Theorem
2) for b > b,. Then we can replace in (i) the moment condition E|Y|P*' < oo by the
weaker condition E|Y|P < .

Closely related to Siegmund’s central limit theorem (1.5) for T, is the following
central limit theorem of Teicher [15] for max; ./ °S; : If X, X}, X, - - - are iid.
with EX = p > 0and o0 > Var X = 0> > 0, then for 0 < a < 1,

—a —a l—a
(1.18) (max,,j™%S; — pn'~%)/n2™* >eN(0, 6?).

In Section 5 we shall obtain the moment convergence theorems corresponding to
this result and to an analogous result of Erdos and Kac [5] for zero-mean random
variables under minimal moment assumptions on X.

2. A maximal inequality for driftless random walks. A very useful tool in the
analysis of the first passage time 7, and the maximal function max;,j™*S; in
extended renewal theory is the following inequality which was established in [4].

LEMMA 1. Let 1 <r < 2anda > 0 such that ra < 1. There exists an absolute
constant C, , such that if Y,Y,, Y, -+ are iid. with EY =0 and U, =Y,
+---+Y, thenforx >0andk,n=1,2,-- -,

(2.1) P[max;,j~°U, > x| < P[max;_,j~°Y; > x/ (2k)]
4+ {C, T (k/x)E| Y] )

PrROOF. See Lemma 5 of [4].
The right-hand side of (2.1) involves max;,/~ Y}, and this can often be easily
handled by using the following elementary inequality (again assuming
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Y, Y, Y, - tobeiid):
(22) P[max;_,j~°Y; > u] < ZjP[Y > u*].
3. Proof of Theorem 2. The following proof makes use of similar ideas as in [9],
Section 4. Let U, = Y, + - - - +Y,. Forx >0,
@1 P[|Ue| > bix] < P[M(b) > bx] + P[max; .| U] > bix].
Let p > 1 and k = [p] + 1. We note that
1 1
(32) P[max;(,|U| > bix| < P[max, .| Y| > b2x/ 24|
+P[maxj<bx|Uj| > bix, max; ;| Y| < b%x/ (2k)].
By an argument developed in [3] (see the proof of (3.3) on page 55 of [3]),
(33)  P[maxcn|Ul > bix, maxcpl Vil < bix/ (2k) ]
< P max,c,,| Y| > b2x/ 25|
< (4k*EY?/x)", by Kolmogorov’s inequality.
Assume that E|Y|?*! < oo and (1.14) holds. Then
(34) [oxr~ P[max, | Y| > bix/ (2k) ] dx
< bfexP[|Y] > bix/ (2K) ] d
< f°° WP[|Y| >u/ (2K)] du forb > 1 (sincep +1 > 2).
b/%

: The last term in the above inequality converges to 0 uniformly in b > 1 as £ — o0
since E|Y|P*! < oo. Since k = [p] + 1,

3.5) [@x? 1"k dx >0  as t—o0.

From (1.14), 3.1), (3.2), (3.3), (3.4) and (3.5), we obtain that
fx?~'P[|Uyqw| > bix] dx—>0  uniformlyinb > 1  ast—>oco.

This completes the proof of part (i) of the theorem.

Now assume that p > 2, E|Y|? < o and M(b) is a stopping time for each
b > 1. Take a small positive number & and choose K > 0 such that

(3.6) E|YPLyy >k <e.
Define
Y, =Y, yy<x) — EYLyyicxy Y=Y, — Y,
U =Y+ --+Y, U/=Y +---+Y.
Since M(b) is a stopping time and p > 2, by Lemma 2.3 of [7],
(3.7) E|Ujol < C(p, E|Y{IP)E(M(5)”",
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where C(p, x) is an absolute constant depending only on p and x. As the proof in
[7), pages 280-281, shows, the constant C(p, x) can in fact be chosen such that
lim, ,C(p, x) = 0. Therefore given n > 0, we can choose ¢ > 0 such that for all
b>1

(3.8) E|b=2 Ul? < nE(b~'M(b)Y"%,
in view of (3.6) and (3.7). Since Y is a bounded random variable, we obtain by
part (i) of the theorem that

(3.9) {1672 Upgnl?, b > 1) is uniformly integrable.
From (3.8) and (3.9), the desired conclusion (1.15) follows.
4. Proof of Theorem 1.

PrOOF OF THEOREM 1 (i). Since E|X [P < oo, it follows from (1.2) and (1.4) that
as ¢ — o0,

-1/(0-a)
(4.1) (c/m) T, -1
(cf. [10], page 140), and therefore by Theorem 2(ii),
(4.2) {(c"/ -5 —uT,|Y,c > 1} is uniformly integrable.
By Lemma 3.2 of [7], lim,_, ,c "'/ "®EX?. = 0. Since p > 2, this implies that

4.3) E{c"/(z("“))XTc}p—»O as ¢ — .

We note that

(4.4) 0<S8; —cTF<Sp_y— (T, — )"+ Xp <Xp.
Moreover,

(45) T, = (/W) T = p{(uT, — Sg) + (Sg, — T¥)}.

From (4.2), (4.3), (44) and (4.5), the desired uniform integrability of
(cP/QU=D|T — (c/W) TP, ¢ > 1} follows.

REMARK. When a = 0, Theorem 1(i) says that the family {c¢ ?/?|T, — c/p)?,
¢ > 1} is uniformly integrable. Thus for classical renewal theory (a = 0), the L,
analogue of Anscombe’s theorem has provided us with a simple proof of the
desired uniform integrability (1.7). To obtain (1.7) for extended renewal theory
(0 < a < 1), we shall make use of Theorem 1(i) and the following lemmas.

LEMMA 2. Let 0 < a < 1. Then for all c > 0 and x > 0,
(4.6) 1> cV/A-® 4 /@Oy — ¢ — o > (1 — a)c!/ @I,

'PrROOF. Define f(f) = t — ct%, t > 0. Then f'(z) > 0 iff ¢ > (ca)'/?~*. Hence
the implication (4.6) holds if
(47) {00 4 (1/QU-O} _ o c1/A=0 4 c1/@0-a))y)e

> (1 — a)cl/@0-y.
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To prove (4.7), set A = ¢'/0=9 p4 = ¢!/@1=x Then (4.7) can be rewritten as
(4.8) A+ apd — A=A + pA)* > 0.

Since 0 < a < 1, it is easy to see that 1 + ap > (1 + p)* for all p > 0. Hence (4.8)
holds.

LEMMA 3. Given 0 < a < 1and 0 <y < 1 — a, there exists 0 < 8 < 1 such that
forall c > 0and 0 < x < '/,

49) (1= 8)c/0-® g < cM/U=a) — (V/@U=Ny o p — 12 < —V/CU-Dyy,

PrROOF. Choose 0 < # < 1 such that 1 — § > a'/0~% and
(4.10) A-w*>1—(1-yu for 0<u<o.
Since f/(f) > 0if t > (1 — 8)c/=9(> (ca)'/1~9), where f(£) = t — ct*, it there-
fore suffices to show that for 0 < x < fc!/C1—),
@.11) (cV0=0) — (/U=y} _ (/=0 _ (1/C0-a)
< —cl/ea-ay,

But this follows easily from (4.10).

LEMMA 4. Let X, X, X,, - + - be ii.d. such that EX = p > 0 and E|X|" < o
Jor some 1 <r < 2. For 0 < a <1 and c > 0, define T, as in (1.1). Let g > r.
(i) Assume that

(4.12) P[X >x]=0(x"7) as x—oco.

Then for every 0 < 8 < 1, as ¢ — oo,

(413)  P[T. < (1-0)(c/w)"" "] = o(c™) if ag>1,
= o(c7?log c) if ag=1,

= O(C—(q—l)/(l—a)) if ag<1.
(ii) For the case aq = 1 above, if we replace the condition (4.12) by the stronger
condition
(4.14) lim, ,,/fu? '"P[X >u]du=0  forsome p>1,

then we can sharpen (4.13) (for the case aq = 1) as:
(4.15) P[T, < (1= 0)c/w"" "] = o(c™).

REMARK. One of our subsequent applications of Lemma 4 is when ¢ > 2 = r
and E|X|? < co. In this case we note that (4.12) and (4.14) are automatically
satisfied.

PrOOF. Without loss of generality, we can assume that 1 <r < 1/a. Set
n=1[1-0)c/w/" ¥ and e=(1—-6)"4"® —1 (>0). Then ¢ > (I +
e)un'~* and
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4.16) P[T. < (1-0)c/w)""™"]
= Plmax,c,i 5, > c]
< P[maxKnj_“(Sj — W) +pntTe> (1 + e);ml’“]
= P[maxK,j'“(Sj - ) > ey.nl“"].
To handle the last term in (4.16), we apply Lemma 1 with x = eun' =% ~ ¢(1 —
)' ~%. By choosing the integer k in Lemma 1 large enough, it then suffices to show
that P[max;,/~*(X; — p) > x/(2k)] satisfies the right-hand side of (4.13) (respec-

tively (4.15)) under the condition (4.12) (respectively (4.14)).
Let Y, = X; — p and let y = x/(2k). Assume (4.12). Then by (2.2),

(@17)  Plmax,c,j =%, >y] < Zj_iP[Y >3] = o(y 772, ").

Since y ~ (1 — 8)' "% /(2k) and n~(1 — 0)(c/w"/ "9, (4.17) implies that
P[max;,j”*Y; > y] satisfies the right-hand side of (4.13).

Now assume that ag = 1 and that (4.14) holds. Obviously (4.14) implies that for
k=23,---,
FEOuTPIX > u]du = £y 4 0 4 = 0(1).

Hence (4.14) implies that
(4.18) lim, /¥4’ 'P[X >u]du=0 forall p> I
By (2.2) and (4.18),
P[max;,j™°Y; > y] < ZjP[Y >yj*] < [TF'P[Y > jyt*] dt
= O(y‘l/"f)’,/”;u('/“)"P[ Y >u] du)
=o0(c7? as c—oo,sinceq=1/a.

PROOF OF THEOREM l(ii)—'(iii). To prove (1.7), we make use of Theorem 1(i).
Without loss of generality, we shall assume that p = 1. By Lemma 2, for all¢ > 0

and x > 0,
(4.19) P[ Tc —_ cl/(]—ﬂ) > cl/(z(l_'-"))x] < P[T‘c _ c]:‘a > (l —_ a)cl/(z(l_a))x]_

Take 0 <y <1 — a and choose 0 < # < 1 as in Lemma 3. Then by (4.9), for all
¢>0and 0 < x < fc!/@1=),
(4.20) P[Tc — /(-0 ¢ _cl/(2(l—a))x] < P[Tc <s(1- 0)01/(1—0()]
+P[T, — cT2 < —c'/CO-yy),
Obviously,
(421) P[T,— c/0-2 < —cl/@O-Dx] =0  ifx > cl/@0-a),
<P[T. < (1-8)c/0"®]  ifx > gc'/@0-),
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In view of (4.19), (4.20), (4.21) and the uniform integrability of {c?/@1~|T, —
cT2P, ¢ > 1} by Theorem 1(i), (1.7) would hold if it can be shown that as ¢ — oo,

(4.22) cp/(2(l—a))P[Tc <(@- 0)01/(1—01)] 0.

(For then given 1 > 0, there exists A large enough such that the left-hand side of
(4.22) is <7 if ¢ > A. On the other hand, if ¢ < 4, then P[T, — ¢'/1-9 < —
cl/(2(l—a))x] =0forx > Al/(2(l—a)).)

To prove (4.22), for the case @ =3 and p = 2 in Theorem 1(ii), we apply Lemma
4(ii) with ¢ = r = 2. For the other cases, we apply Lemma 4(i) with r = 2 and

(@) ¢ = p/(2(1 — a)) for Theorem 1(iii), noting that here ag > 1;

(b) ¢ = p for the case a <3 in Theorem I(ii), noting that 2(1 — a) > 1 and
p—1>p/2;

(c) g = p for the case « =1 and p >2 in Theorem I(ii), noting that here

ag > 1.

5. Moment convergence in the theorems of Teicher and of Erdos and Kac; and
some related maximal inequalities. In this section, we first consider moment
convergence in Teicher’s theorem- (1.18). As shown by Teicher [15], (1.18) is
actually a consequence of the central limit theorem (1.5) for T,. In fact,

61y «© P[maxj<nj_“~5} >pn'"* + n%“"x] = P[T, <n],
where

(5.2) ¢ =pn'" + n1%,

For fixed real x, the relation (5.2) implies that as ¢ — oo,

(53)  n=(c/w""™V = {(1 - @} (x + o(1))(c/p) /.

From (1.5), (5.1) and (5.3), (1.18) follows.

While the asymptotic expansion (5.3) holds for fixed x, it obviously does not
hold uniformly in large ¢ as x — co. Hence although we have established moment
convergence in the central limit theorem (1.5) for T, the corresponding moment
convergence in Teicher’s central limit theorem (1.18) for max;,j~*S; needs further
study. Making use of the basic maximal inequality (2.1), we are able to obtain the
following counterpart of Theorem 1 concerning moment convergence for Teicher’s

theorem.

THEOREM 3. Let X, X, X,, - - - be ii.d. random variables with EX = p. > 0 and
VarX =0>>0and let S, =X, +--- +X,. Let 0 <a <1 and p > 2. Assume
that E|X|P < oo. ‘

() If a <3, then

(5.9 {l(maxj<,J'“LS} - p,n“"‘)/n%_"lp, n> 1} is uniformly integrable.
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Consequently, as n — oo,

b+ § —a l—d .
(55) E(max;,j"S)) = pn'~ + o(n3~%);
(5.6) Var(max;,j~°S;) ~ o’n' =2,

(i) If « =4 and p > 2, then (5.4), (5.5) and (5.6) again hold. For «a =3 and
p =2, (5.4), (5.5) and (5.6) still hold under the further assumption

(5.7) [Pu P[X > u]du=o((logx)"") asx—o0.

(i) If 5 < @ < 1, then (5.4), (5.5) and (5.6) still hold under the further assumption
(1.10).

REMARK. Setting n = 1 in (5.4), it is clear that the uniform integrability result
(5.4) implies E|X |’ < o0. We now show that (1.10) is also a necessary condition for
(5.4) to hold in the case ; < a < 1. Clearly (5.4) implies that as n — oo,

o) = ,‘;‘.’/le’-'P[maxKnj—a% > pn' T + n%—"x] dx
> f?."'/lz/zxp_lP[Xl >un'" + n%“"x] dx
>p (2 - l)n"/zP[X > (p+ Z)nl—a]’

and so (1.10) holds. The condition (5.7) for the boundary case a =3 and p = 2 is
slightly stronger than the moment condition E(X *)? < oo but is weaker than
E(X*)log X* < o0. The reason why we need it will be evident from the
following proof (see (5.16) below).

Proor. We need only prove (5.4), since (5.5) and (5.6) are immediate con-
sequences of (5.4) and Teicher’s theorem. Define
(5.8) S, = (max;,i~S; — pn' == /n%““.
Let Y, = X, — pand U, = 27Y,. The proof of the umform integrability of ($,7)? is
easy, since for x > 0,

P[S:, < —x] < P[n_"‘S,, < pnl7o - xnfl'“] = P[n‘flU,, < —x],

and E|Y,|” < oo implies that {(n‘%IU,,I)P, n > 1} is uniformly integrable (as can
be easily shown by applying Theorem 2(ii) with M(b) = b = n).

To prove the uniform integrability of ($,*)?, first consider the case ;<a<l
Let g = p/(2(1 — a)). Then ag > 1. Take 0 <y < 1. For x > 0,
(5.9) P[maxy,,q@j“"sj > pun'"* + xn%“"]

< P[max,,,,Q@j‘“l/j > xn%“"]

< P[n‘flmaxK,,Uj > y"‘x].

Since {(n~ %Imaxj <nUjl)s n > 1} is uniformly integrable (see Theorem 4(ii) below),
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it suffices to show that
(5.10) Hmn_,wffx”"P[mawaj‘“S} >pn'"* + xn%"’] dx = 0.
To prove (5.10), we note that for 1 < x < n%,
(5.11)  P[max,,,j~°S; > pn'~* + xni~°]
< P[mamej‘“Sj > ;m“"]
= P[T-- < yn] = o(n~%"9) = o(n"?/?),
by (4.13) (for the case ag > 1). Thus
lim, ’,'EIxP“P[maijnj‘“% >pn!T + xn%“"] dx = 0.
Also a change of variable x = nt gives
,‘:?/zx""P[mamej'“% > pun'" + xn%""‘] dx
< n?/2[®P='P[max;_.,j U, > n""‘t] dt = o(1).
To see the last relation above, by choosing k large enough and taking 1 <r < 1/«
in the maximal inequality (2.1), we need only show that for every ¢ > O,
(5.13) [P~ P[max; Y, > en' =] dt = o(n"P/?).
By (2.2) and (1.10),
(5.14) [P~ 'P[max,_,j ™Y, > en' | dt < Z'_, [P TP Y, > en' o] dt
= o(n~1=IZr_ jm M PP di).
Since ag > 1 and ¢ > p, (5.13) follows from (5.14). Hence we have proved (iii).

To prove the uniform integrability of ($,*)? for part (ii) of the theorem, when
a =% and p > 2, we note that ap > 1 and we need only modify (5.14) as follows:

by (2.2),
5.15) [P max,_,j"2 Y, > en2t| dt
1 y< J
1
2

(5.12)

< (en%)_pZ;?-lj_p/zf:fu/zu"_lP[ Y, > u] du (setting u = eniltj%)
= o(n~?/?), since E|Y,|’ < o0 andp > 2.

When a =3 and p = 2, (5.11) still holds by Lemma 4(ii) (setting ¢ = 2) and we can
modify (5.15) as follows:

(5.16) f‘,’°tP[maxj<nj‘%Y} > anilt]—dt < (an%)_z(l + log n)[gn/uP[ Y, > u] du
= o(n™"), by (5.7).
From (5.15) or (5.16), (5.13) still holds in either case. Hence we have proved (ii).
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To prove the uniform 1ntegrab1hty of (S +)" for part (i) of the theorem, we note
that §,;* < (max;,/ “U)*/nz * Since @ <3 and E|Y P < oo, the desired con-
clusion follows from Theorem 4 below.

THEOREM 4. Let Y, Y, Y, -+ - be iid. random variables with EY = 0 and
EY?=o0%andlet Uy =Y, + -+ +Y, Lee0<a<jandp >2

(i) Let {W(t),t > 0} be the standard Wiener process and let Z, =
SUPo <1t~ “W(?). Then as n — o,

(5.17) (max; ,j~ U)/n2 ® 500Z,.
(i) If E|Y|P < oo, then (lmax;,j~ “Ul/ n? ~*Y is uniformly integrable, so (i) can
be strengthened as:
(5.18) lim,_, Ej(m Gend U/ ni“') Ef(0Z,) for every continuous
Sunction f : (— 00, 00) = (— 00, o) such that f(x) = 0(|x|”) as x — 0.

The result (5.17) is a consequence of Donsker’s invariance principle and can be
regarded as the counterpart of Teicher’s theorem (1.18) for driftless random walks.
In this driftless case, however, we require a <3 since Z, = o0 as. for a > 1.
Putting & = 0 in (5.17), we obtain the well-known theorem of Erdés and Kac [5].
Thus (5.18) can be regarded as a refinement and generalization of the Erdos-Kac

theorem.
To prove the uniform integrability result in Theorem 4(ii), since (max;,j *U;)"~

<Y, it suffices to show that {(max;,/ U Nt/ nZ‘“}” is uniformly integrable.
The maximal inequality (5.19) with r = 2 in the following more general lemma
gives the desired result.

LEMMA 5. Let Y,Y,, Y, - - - be iid. random variables with EY = 0 and let
U=Y +---+Y, Leta>0and 1 <r <2suchthat ra < 1. Let p > r and set

= [p/r] + 1. Then there exists an absolute constant A L, +, o« (depending only on p, r,
and o but not on the distribution of Y') such that for all x > 0 and m > 1,

(5.19) f2tr='{sup,s,, P[max,,j~U, > n/"2¢]} dt

<A4,, a{ _(P_’)/rEYPI[Y>x/(2k)] + xP~ k’(E]Y]’)k} ifpa <1,

<4, , (m P71 + log m)EY?lLiy ;. + x* ¥ (E| Y|} if pa = 1,

<4, , fm PO DEY Ly oy + XPT(E| Y)Y if pa > 1.
Moreover, there exists an absolute constant B, , , such tﬁat foralln > 1,

E{(m ax;c,jU)" /n/n o)
(5:20) B, , o {n~ " OE(Y*Y + (E|YIY} ifpa <,
< B, {n 7P/ (1 + log M)E(Y*Y + (E|YIY"} if pa = 1,
<B,,  [(nPIO/E(Y Y + (E|YIY} if pa > 1.
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ProOOF. To prove (5.19), we apply the inequalities (2.1) and (2.2) to obtain
(521) P[max,,j°U, > n"/"?=%] < {C, k't "E|Y|'}"
+37_,P[Y > n/D7ege/ (2K)].
Let 2 < m < 2°*! and note that
2PN sup, s i P Y > 0/ %/ (2k) ]} dt
(5.22) < SR, 32 2T P[2kY > 210/ mge] gy
< S 27 p0=ra)/r32T jopagoyr=1P[2KY > u] du.

To see the last relation above, use the change of variable u = 2 ~"/7j% From
(5.21) and (5.22), (5.19) follows.
To prove (5.20), let A = (E|Y|")!/”. We note that

(5.23) 5P~ P[max; iU, > n"/"=%t| dt < [P~ dt = N?/p.
Since E|Y|" = A’, we have

(529) APR(E|Y])* = 2.

From (5.19) (with x = A) together with (5.23) and (5.24), (5.20) follows.

REMARK. Let X, X,,:- - be iid. with EX=p >0 and let S, = X,
+ + -+ +X,. Define T, as in (1.1), S, as in (5.8) and let
(5.25) T, = (/W™ T, — (c/m)" ).
The inequality (5.19) not only gives an immediate proof of the uniform integrability
of (S,*) in Theorem 3(i), but it also gives a simple alternative proof of the uniform
integrability of (7,”)” for the case a < 5 in Theorem 1. To see this, we note that for
0<t< (C/M)l/@(l—a)),
(526) P[T, >t]=P[T, < (c/w"" " = tc/uw)"/® "] = P[T, <],

where

(5.27) h= (C/“)l/(l—a) _ t(c/“)l/@(l—a)).
It is easy to see that for 0 < ¢ < (c/u)!/@1~9),
(5.28) c — [,l.hl_" > (1 — a)p,th%_“.

From (5.26) and (5.28), it follows that for 0 < ¢ < (c/p)"/@0=D,
P[T >t]= P[maxK,,j_"Sj — ph'"% > —ph'me]
(529) < P[max;,j (S, — w) > (1 — a)uehi =]

i-—a
< sup,5, P max,,j (S, — w)/ (w(1 — @) > m2=2].

Hence setting r = 2 (with @ <3 and p > 2) in (5.19)8 we obtain from (5.29) the
uniform integrability of (7 )* for the case « <% in Theorem 1.
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Another easy corollary of the inequalities (5.19) and (5.29) is the following
interesting analogue of (5.20) for fc‘; given 0 < a <3 and p > 2, there exists an
absolute constant D, , (depending only on p and a but not on the distribution of
X) such that for all ¢ > 0,

(5.30) E(T7Y <D, . P{E(X — )" + (Var X)?/?}.
To prove (5.30), let Y = (X — p)/(w(1 — @)), A = (E Yz)zl, and note that
[erP[ T > t] de < [yr=1dt = A /p.
From (5.19) (with x = A, m = 1 and r = 2), (5.24) and (5.29), we obtain that
[P T > t] dt <4, {E(Y*Y +A2).

Hence (5.30) follows.
The maximal inequality (5.20) holds for all n and involves a universal constant

B, . ,and only E(Y*) and (E|Y|)?/". In the case r = 2, it is in some sense the

sharpest possible. When n = 1, the left-hand side of (5.20) reduces to E(Y *)?. On
the other hand, as n — oo, if E(Y *) < o0, then Theorem 4(ii) implies that

E{(max,,;j~U)* /ni~=}" - B2 (EY?P",

where Bf, = E(supy .t “W(?)y’ and {W(¢), t > 0} is the standard Wiener
process.
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