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STOCHASTIC COMPACTNESS OF SAMPLE EXTREMES

By LAURENS DE HAAN AND GEERT RIDDER
Erasmus Universiteit Rotterdam

Let Y}, Y,, - - - be independent and identically distributed random vari-
ables with common distribution function F and let X, = max{Yy, - -, Y,} for
n=1,2--- .Necessary and sufficient conditions (in terms of F) are derived
for the existence of a sequence of positive constants {a,} such that the sequence
{X,/a,} is stochastically compact. Moreover, the relation between the
stochastic compactness of partial maxima and partial sums of the Y,’s is
investigated.

1. Introduction. In the following compactness properties of sequences of sam-
ple maxima are investigated. This parallels results of Feller (1965) with respect to
compactness properties of sequences of partial sums. It will become clear, that, in
the case of sample maxima, it is not evident how the concept of stochastic
compactness should be defined. Therefore this concept will be defined in two

different ways (Sections 2, 4). For both definitions necessary and sufficient condi-

tions are obtained (Sections 3, 4). These conditions are in terms of the distribution
function, in contrast to those for the compactness of sample sums. They resemble a
generalisation of the concept of regular variation called R-O-variation (Seneta
(1976)). The relation between the present results and the theory of R-O-variation
will be considered in Section 4. The relation between the compactness and the
weak convergence of sample maxima and the relation between the compactness of
partial maxima and the compactness of partial sums will be considered in Sections 5
and 6 respectively. In Section 7 some examples and counterexamples are presented.

2. Stochastic boundedness and compactness.
2.1. Definitions. Let {X,} be a sequence of real-valued random variables with
distribution functions (df) {F,}.

DeriNITION 2.1.1.  The sequence of random variables {X,} is stochastically
bounded if for all € > 0 there is an x, > 0 such that P(|X,| > x,) <& for all n.

REMARK 2.1.1. This definition is equivalent to each of the following assertions.

1. Every subsequence {X, } of {X,} contains a further subsequence {X, } such
that {X, } —, X with X a nondefective random variable.

2. lim,_,  P(|X,| > x) = 0 uniformly in n.

We now define the concept of stochastic compactness of sample maxima. For
that purpose we consider a sequence of identically and independently distributed
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(ii.d.) random variables {Y,} with common df F. We suppose that:
(1) F is continuous (see Remark 2.2.2);
(2) F(0) = 0 (see Remark 2.2.1);
(3) F(x) < 1 for all x (this is to avoid trivialities).
We now define forn=1,2,- - -
X, =max{Y,---,Y,}.

DErFINITION 2.1.2. The sequence of sample maxima {X,} is stochastically com-
pact if there is a sequence of positive constants {a,} such that the sequences
{X,/a,} and {a,/X,} are stochastically bounded.

REMARK 2.1.2.
1. An alternative formulation of this definition is that the sequence of sample

maxima {X,} is stochastically compact if there is a sequence of positive
constants {a,} such that every convergent subsequence of {X,/a,} has a limit
distribution concentrated on (0, o).

2. Instead of {X,/a,} we can consider the sequence {In(X,/a,)}. This is
possible because {X,} is a sequence of positive random variables. The
stochastic compactness of the sequence of sample maxima {X,} then is
equivalent to the assertion that there is a sequence of real constants {5,} such
that the sequence {In X, — b,} is stochastically bounded. This is an alterna-
tive way to present the results because In X, = max{ln ¥},- - - ,In Y, }.

3. Helly’s theorem implies that every subsequence of {X,/a,} contains a further
subsequence that is weakly convergent. In the definition of stochastic com-
pactness, however, certain limit distributions are excluded. In the definition
above limit distributions which assign positive probability to the points 0 or
co are not admitted (note that one can always choose the constants {a,} such
that, e.g., X, /a, —,0). In his definition of stochastic compactness of partial
sums Feller excludes degenerate limit distributions. In the sequel we will
consider an alternative definition of stochastic compactness of maxima where
also a larger class of limit distributions is excluded.

2.2. Necessary and sufficient conditions for stochastic compactness. From Re-
mark 2.1.1 it follows that the stochastic compactness of the sequence of sample
maxima {X,} is equivalent to the following two assertions:

(2.2.1) lim, , lim inf,  F"(a,x) = 1.
(222) lim, , lim sup,,_, . F"(a,x) = 0.

REMARK 2.2.1. From (2.2.1) and (2.2.2) we see that the requirement F(0) = 0
does not result in a loss of generality. For if 0 < F(0) < 1, then for x > 0

(2.2.3) P(X,| >a,x)=1— F*(a,x) + F'(—a,x —).
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However, the last term on the right-hand side of (2.2.3) clearly converges to 0 as
n— 0.

Lemma 2.2.1.
(1) lim,_lim inf, F"(a,x) = 1 &lim,_lim sup,_,,n(1 = F(a,x)) = 0.
(2) lim,olim sup,_,F"(a,x) = 0« lim, lim inf,_ n(1 — F(a,x)) = .
PrROOF. We only prove part 1; part 2 can be proved analogously. We have

n(1 - F(a,x)) )

lim inf,_,  F"(a,x) = lim infn_,w(l - :

= exp[ —lim sup, _,n(1 — F(a,x))].
and (1) follows.
Necessary and sufficient conditions for the stochastic compactness of a sequence
of partial maxima are given by the following theorem.

TueorREM 2.2.1. Let F be a continuous distribution function with F(0) =0,
F(x) < 1 for all x. The following assertions are equivalent:
(1) Let {Y,} be a sequence of iid. random variables with common df F. The
sequence {X,} of sample maxima from {Y,} is stochastically compact.

) lim,_, lim sup,_mll——_—I;((th)) = 0.

3) Elto,x0>O,O<M<lsuchthat1—1__—}7%<Mfort>to,x>xo.

4) 3C, p > 0such that 1—1__—}:‘% <SCx Pforx > 1,t >t

)

ol F5) 'SF ) 45 < oo and lim inf,_, X ;(i ()") > 0 with H(x) = j2-—£) SF (5) 4.
(6) fj”—l;spﬁ ds < oo and lim, _, ,, lim sup,_,w—l%(({%) =0.

REMARK 2.2.2. It is thus necessary for stochastic compactness that E In(l + Y)
< o0.

ProOF. Here we only prove 1< 2. The other implications follow from the
results of the next section (take K(x) = 1 — F(x)).
1 = 2. If the sequence {X,} is stochastically compact, then by Lemma 2.2.1

lim, olim inf,_, (1 — F(a,x)) = .

Thus, in particular, there is an x; > 0 such that
lim inf,_,n(1 — F(a,x,)) > 0.
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Also, according to Lemma 2.2.1, we have:
lim,_ lim sup,_,  n(1 — F(a,x)) = 0.
Define for t > 0
n(t) = min{m|a,,,, >t}
so that
Ay ST <y

and

1 - F(tx1 . -)f-)
1/ [1 = F(a,,x)]n(1) n() +1

1— F(tx;) [l = Faex)][n()+1]  n()
Because n(f) — o as t — oo it follows that
1 - F(rx) _
1 — F(¢)
2 = 1. Define for n > 1 the sequence {a,} by:

n(1 — F(a,)) = 1.

This is possible because F is continuous. Then:

lim,  lim sup,_ 0.

X—>00

1 — F(ix) _

=R

0 < lim,_, lim sup,_, n(l — F(a,x)) < lim,_, lim sup,_,
Analogously lim, clim inf, , n(1 — F(a,x)) = oo follows from lim, olim inf,
(1 — F(tx))/(1 — F(£)) = oo.

REMARK 2.2.3. The assumption that the df F is continuous plays an important
role in this proof. It is possible, however, to replace this assumption by a slightly
weaker one, namely the condition that there are an x, > 0 and an n, such that for
n2ng
(2.2.4) lim inf, ., n(1 — F(B,x;)) >0
with

B,,=inf{x|l—F(x)<%} n=12"---.

Since in case the sequence {X,} is stochastically compact there are x,, x, > 0 and
an n, such that for n > n, .
n(1 — F(a,x,)) > 1
n(1 = F(a,x,)) < 1,
it follows that
x; < gﬂ < X,.

n

Thus we can replace the sequence of constants {a,} from the definition of
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stochastic compactness by the sequence { 8,}. It is now not difficult to show that
(2.2.4) together with (2) of Theorem 2.2.1 is equivalent to stochastic compactness
for df’s which are possibly not continuous.

3. The class of asymptotically decreasing functions. In this section we investi-
gate the class of nonincreasing functions which satisfy assertion 3 of Theorem 2.2.1.

DErINITION 3.1.  Let K be a positive and nonincreasing function defined on R*.
The function K is asymptotically decreasing if there are xy, t, > 0and 0 <M < 1
such that

K?((%l<M for x > xy,t > 1,

REMARK 3.1.

1. From this definition it follows that lim_,  K(x) = 0.

2. If we define K*(x) = sup{K(y)|y > x} it can easily be shown that K* is
right-continuous and that K is asymptotically decreasing if K* is asymptoti-
cally decreasing. Thus we can suppose without loss of generality that K is
right-continuous.

3. The sequence of sample maxima {X,} is stochastically compact iff 1 — F is
asymptotically decreasing.

4. The above-defined concept is a one-sided generalisation of the concept of
regular variation.

In the definition of R-O-variation (a two-sided generalisation of regular varia-
tion) two inequalities appear: A positive and measurable function K is said to be
_ R-O-varying if there are @ > 1, ¢, > 0, m > 0 and M < oo such that
K(tx)
k(1)
(see, e.g., Seneta (1976)).

Another (different) generalisation of regular variation is the concept of
dominated variation which is used by Feller (1965). A non-increasing, positive
function K is dominatedly varying if there are C, p, ¢, > O such that

K(tx)
K(?)
(cf. assertion 3 of Theorem 3.1)

5. It should be noted that in Definition 3.1 we have assumed that the function K
is nonincreasing. This assumption plays an important role in the derivation of
the necessary and sufficient conditions for a function to be asymptotically

- decreasing. It is however possible to define a similar concept for measurable
but not necessarily nonincreasing functions. In that case the necessary and
sufficient conditions are different from those given in Theorem 3.1 (see

Section 4).
The conditions are given by the following theorem.

m < <M for 1<x<aandt >

>Cx7? for t>t,x2>1
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THEOREM 3.1. The following assertions are equivalent:

0))] The function K is asymptotically decreasing.
. Ix
2) lim,_, lim sup,_, K((t))
(3) 3C, p, ty > 0 such that K((”‘)) KCx~Pforx > 1t >4
4 f7 K(S) ds < oo and lim sup, _, ﬁg ; < oo with H(x) = [ —— K(s) ds.
K(s) . . .
) f f—Tds < o0 and H is asympiotically decreasing.

ProOF. 1=>3 (cf. Feller (1965), page 385). If K is asymptotically decreasing,
there are 0 < M < 1, x, > 1 and ¢, > 0 such that

K(x,)

K(t)

< Mfort > ¢

Thus with induction

K(tx(;‘) —InM

no— np =
K(t) <M Xo with P Inx > 0.

0
Then for x{ ' < x <x§ (n=1,2,---)andt > 1,

K(tx) _ K(tx$™") - _
< < (n—bp < P
KOO Cx

with C = x§.

3 =2 and 2 = 1. The implications are trivial.

Next we prove that if K is asymptotically decreasing then H(1) < oo. Assertion 3
of Theorem 3.1 implies that there is a £, > 0 and x, > 1 such that

K(tx) ( x )“P
— — >
0 < X forx > 1,¢t > ¢,
Let A > max{x,, t,} and define forn =2, 3, -

I — f§n+l K(S) ds.

Then

. K(sA . K(s)[ A" A\*
In = fAn—l—(—S——)‘ dS' < fﬁn—l‘%(‘x—l) dS' = (—) In——l’
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—(n—2)p
L= ()™
Xy
and hence H(1) < oo.

We now prove the other implications.

Thus

3=4.Fort > ¢,

H(1) _ 0 K(tx) dx w0y —p—1g . _ £
X0 = e K@) x < CfPx~P"ldx < o0.
4=2 Forx > land b > 1
s R O D (o .
= > =
©>a2 5 K(%) K(x) K()
Hence
K(bx) a
K(x) ln b’
4=35. Let a(?) = Hgt; Then for x > x; >0
fxl a(t) dt = x'tfl—I;(((tT)); dt = —In H(x) +1In H(x,).

Thus

H(x)=p exp(—fili(tt—) dt) for x > x, with 8 = H(x,).

Then for x > 1

lim sup,_,w—lj—{(ti) = lim sup,_, exp(— i ﬁ"g% dv)

1)
< exp(—f’{%lim inf,_, a(st) ds) <x7"

because lim inf,_ a(s) = n > 0.
5= 4. There is an x, > 1 such that

K(2)

H(t) — H(ix)) _ oo 5, K(s) ds fx
=% H(t)

H(D) o [ () s < et

0 < lininf,_,

Hence (4) holds.
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Assertion (5) states that the function H is asymptotically decreasing. Thus lim
sup,_,,H(tx)/ H(t) < Cx~* for C, p > 0. However, it is shown above that one can
take C = 1. This is also true for functions which are possibly not integrals
involving a monotone K-function, as stated in the following theorem (the proof is
omitted).

THEOREM 3.2. Let L be a nonincreasing function and let the derivative of L exist.
The function L is asymptotically decreasing with C =1 i.e., 3ty, n > 0 such that
L(tx)/L(£) < x™" for t > 1, x> 1 iff limsup, Lix(x) <0 with Ly(x)=
In L(e*).

4. An alternative definition of stochastic compactness of sample maxima. Until
now we have assumed that the common df F of the Y,’s which appear in the
definition of the sequence of sample maxima {X,} is continuous. This requirement
played an important role in the proof of Theorem 2.2.1. It is, however, possible to
drop the continuity requirement. As a consequence we will have to exclude in the
definition a class of limit distributions different from that excluded in Definition
2.1.2. We define:

DEFINITION 4.1.  The sequence of sample maxima { X, } is stochastically compact’
if there is a sequence of positive constants {a,} such that every convergent
subsequence of {X,/a,} converges weakly to a distribution with df G (depending
on the subsequence) which satisfies the following requirements:

1. G(o0) =1

2. G(x) < 1for all x € R (cf. Remark 2.1.1).

The requirement that G(co) =1 is equivalent to the assertion that lim,_
lim inf, | F"(a,x) = 1; the requirement that G(x) < 1 for all x is equivalent to
lim sup,_, ,F"(a,x) < 1 for all x > 0. Necessary and sufficient conditions for the
stochastic compactness' of the sequence {X,} are given by the following theorem.

THEOREM 4.1. The following assertions are equivalent:

€)) The sequence of partial maxima { X,,} is stochastically compact'.
@
. . 1 — F(tx) _ .. 1 — F(tx)
lim,_,  lim sup, = F) 0 and lim inf, | T=FoD 20 > 0 for all x > 0.
3) Txy < Xy, 85, 0 <m < M < 1 such that
1 — F(ex ‘
m <t—F£(t—))§Mforxo<x <xp,t 2t
()] 3¢y, C,, C,, p, 7 > 0 such that
Cix™ "< 1= Frx) SCyx"Pforx > 1,t > ¢,

1 — F(¥)
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(5)

F(s) 1 — F(x) . 1 — F(x)
Ik ds < o0, liminf, | ——————H(x) > 0 and lim sup,_, “H ) <
with as before H(x) = [ f%?@ ds
(6) Jrii (S) ds < o0 and 3ty 1,0 > 0 such that
x=? H(tx) - S
< —= 7I0) Kx "fort >ty x > 1.
Proor. First we prove 4 = 1. From assertion 4 it follows that
1 — F(tx) |
— < —=x7 > < L
= () C,x fort > ¢,/x,0<x <1

Define forn =2,3, - - -
- inf{x[l — F(x) < ‘rli}
From the right-continuity of F it follows that 1 — F(a,) < 1/n. We also have that
1 - Fla,-)>—
Then for 0 < e <3

1-Fr(1—¢) 1 —r
—— (- > .
= F) < C1(1 e) "fort > 2t

In particular:
1 - F(a,(1 —¢) < CL(I —¢) (1 — F(a,)) for n > n,,
1

Letting ¢/0 we conclude that 1/n > 1 — F(a,) > C,/n for n > n,. Now it can
easily be shown (extend Lemma 2.2.1 for this case) that {X,} is stochastically
compact!.

For the implications 1 =2, 2=4, 34, 4= 5, 5 < 6 the reader is referred to
the proof of Theorem 3.1. No particular difficulties arise from the appearance of
left-hand inequalities in the assertions.

Finally we prove 5, 6 = 2. Assertion 6 gives lim,_, _lim sup, , (H(tx)/H(?)) =
0. Using assertion 5 we find

. F(tx
0 < lim,_, lim sup,_ml—%
, - F() H(1x) H(1)
< — li ——— = (),
. lim sup,_m 70 lim, , lim sup,_,, I710) im Sup, . 7 0]
Analogously one proves
1 - F(tx)

lim inf,_m 0 > 0forallx > 0.
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REMARK 4.1.

1. With a similar argument as in Remark 2.2.2 one can show that, without loss
of generality, the constants a, in Definition 4.1 can be chosen as a, = inf{ x|l
— F(x) < 1/n}.

2. The sequence {X,} is stochastically compact' iff 1 — F is R-O-varying at
infinity with constant M < 1 (cf. Remark 3.1).

3. The sequence {X,} is stochastically compact iff the inverse function of
1/(1 — F) is R.O.-varying at infinity. This is true even if in the definition of
stochastic compactness we do not require the continuity of F.

5. Stochastic compactness and convergence. We have investigated the stochastic
compactness of the sequence of partial maxima {X,}. This sequence can however
show a more precise limiting behaviour. It is for instance possible that there exists a
sequence of positive constants {a,} such that {X,/a,} —, C. The weak law of large
numbers gives necessary and sufficient conditions for this case (Gnedenko (1943)).
Another possibility is that there is a positive sequence {a,} such that {X,/a,)}
—,X (X nondegenerate). The conditions for the stochastic compactness, for the
stochastic compactness!, and for the weak convergence of the sequence {X,} are
compared in the following scheme (remember H(x) = (1 — F(s)/s ds):

I. Equivalent are

(a) {X,} is stochastically compact (Definition 2.2.1).
(b) 3G, p, 1, > 0 such that

1 — F(tx)

20) < CxPforx > 1,t > ¢,

(¢) 3¢ > 0 such that

1 — F(x)

—_— 1 .
H(x) >cforallx >0

II. Equivalent are
(@) {X,)} is stochastically compact' (Definition 4.1).
(b) 3C,, Cy, 1, p, 1y > 0 such that

1 — F(tx)

Cix™ "< 70

S CyxPfort >ty,x > 1.

(c) 3C, >0, C, < oo such that

1 — F(x)

> 11 0.
Q) C, forall x >

C, >

III. Equivalent are
(a) There are constants {a,} such that {X,/a,} —,X with P{0 < X < o0}

= 1.
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(b) 30 < a < oo such that
1 - F(tx) _ .

'—I—L—F(W for x >0

hmt—)oo

(©) limx_m—1—;7(€C(Txl =a (0 < a < o).
Note that the case a = o corresponds to the weak law of large numbers.
A derivation of the necessary and sufficient conditions for weak convergence can
be found in Gnedenko (1943), de Haan (1970).

6. Stochastic compactness of sample maxima and sums. In this section we
investigate the relation between the stochastic compactness of partial maxima and
partial sums. Let {Y,} be a sequence of i.i.d. random variables with common df Fj;
suppose that the distribution is symmetric about zero. Define forn =1, 2, - - -

S, =Y, +---+7,
In Feller (1965) the following definition of the stochastic compactness of the
sequence {S,} is given.

DErINITION 6.1.  The sequence of sample sums {S,} is stochastically compact if
there is a sequence of positive constants {a,} such that every subsequence of
{S,/a,} contains a further subsequence which weakly converges to a nondegener-
ate and nondefective distribution.

Necessary and sufficient conditions for the stochastic compactness of the
sequence {S,} are given in the following theorem. Here F is the df of | Y.

THEOREM 6.1 (Feller (1965)). The following assertions are equivalent:
(1) The sequence of sample sums {S,} is stochastically compact.
(2) 30 <& < 2 such that

G(tx)
G(1)

lim sup,_, < x27¢ for x > 1 with G(x) = [5s[1 — F(s)] ds.

(€)

.. G(x .
lim 1nfx_,°°-;2—[1—_(}7)6ﬁ > 3 with G(x) = [§s[1 — F(s)] ds.

REMARK. The formulation of the theorem is different in Feller’s paper. Using
partial integration one sees that (3) is equivalent to Feller’s (9.1). The equivalence
of (2) and (3) follows as in the proof of Theorem 2.2.1. -

The relation between the stochastic compactness of partial maxima and partial
sums is given by the following theorem.

THEOREM 6.2. For a df F the fo)lowing implication holds:

L= F(%) _ 6, lim inf Gx)

. . 1
llmx—)wllm su —> 00 S . x_)co—'—'_ by
P T=F (1) x[1-F(x)] 2
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PrOOF. It is given that

. 1 — F(tx) _ I _
lim sup, ., TR0 o(x) with lim,_, @(x) = 0.
Hence for 0 < x <1
. 1 — F(tx) 1
= = >
lim inf, T F0) (l) k(x) > 1
¢ X
We then have:
lim inf GX) 5 fLok(s) ds.

72 x[1 - F(x)]

Because lim ok(s) = oo there is an 0 < sy < 1 such that if s < s, then k(s) > M >
1. Hence:
Josk(s) ds = [psk(s) ds + [isk(s)ds > [sM ds + [} s ds
—LB(M - 1) +1> 1,

Theorem 6.2 shows that the stochastic compactness or the stochastic compactness'
of a sequence of sample maxima implies the stochastic compactness of the
corresponding sequence of sample sums. The converse however is not true (see
Example 7.3). Note that the convergence of the entire sequence {X,/a,} is
equivalent to the convergence of {S,/a,} in the case of a nondegenerate limit
distribution. The well-known technique of considering the partial maxima as
functionals on the partial sums process, successful in the case of convergence of the
sequence, cannot be used here.

REMARK 6.1. A similar relation between partial maxima and partial sums exists
in the case of the weak law of large numbers (W.L.L.N.). If F is a df and {X,} the
corresponding sequence of partial maxima and {S,} the corresponding sequence of
partial sums, then

(1) W.LL.N. for sample sums: There are constants {a,} such that

lim,_,  P(|(S,/a,) — 1| >¢€) = 0 for all ¢ > 0 iff

Jo[1 — F(s)] ds _

lim, e x[1 - F(x)]

(Feller (1971)).
(2 W.LL.N. for sample maxima: There are constants {a,} such that
lim P, , (|(X,/a,) — 1| >¢&) =0 for all ¢ > 0 iff -

. 1 — F(tx) _
lim, | = ) - 0<x<1
=0 x>1

(Gnedenko (1943)).
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If the sequence {X,} satisfies the condition of the W.L.L.N. for partial
maxima then
lim Jo[1 — F(s)] ds 1 — F(sx)ds _
¥ x[1 = F(x)] 1 — F(x)
We conclude that {S,} satisfies the condition of the W.L.L.N. for partial
sums.

> fSlim inf, .

7. Examples and counterexamples. In this section we give some examples of
df’s for which the corresponding sequence of partial maxima is not stochastically
compact. Moreover we show that the converse of Theorem 6.2 is not true. Finally
we prove that the sequence of partial maxima from the geometric distribution is
stochastically compact, though it is not weakly convergent.

ExampLE 7.1. Let

F(x)=0 x<e
1

=]l-— x>e
In x

Both the sequence of sample maxima and that of sample sums are not stochasti-
cally compact.

ExampLE 7.2. Let
F(x)=0 x<e
=l-exp*(2i+sinnlnx)lnx x >e.
Then for every sequence {#,} with #, — cc we have:
1 — F(t,x) _
1 — F(t)
with L,(x) =In(l — F(e™)),y =In x and 5, = In ¢,.

Because s {sin(In s, + In(1 + y/s,)) —sinln s, } — y cos In s, — 0 as k — oo we
have:

lim, o(x) lim;_  Ly(s, +y) — Li(s;) = In p(e”)

limg_,  L(s, +y) — La(se) = —a27x — ax lim,_, . (sin In(s, + y) + cos In s5;).
The limit points of (1 — F(x))/(1 — F(t)) as t — oo are thus given by
o(x) = x~ € with C E[O, 2012%].
Hence:
l—_F(_tx_) =1
1 = F(r) )
ExampLE 7.3. The converse of Theorem 6.2 is not true. Consider namely
Example 7.2 with & = 6. Then the distribution has a finite variance and according

lim, , lim sup,_,
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to the central limit theorem the sequence {S,/a,} converges to a normal distribu-
tion. The sequence of partial maxima is, however, not stochastically compact.

ExampPLE 7.4 (Petersburg game). Let

F(x) =1 — e llogx x>0
=0 x<0

It is easy to see that lim,_,  lim sup, (1 — F(zx))/(1 — F(¢)) = 0.
Because F is not continuous, we must show that there are positive C;, C, and a
sequence {a,} such that
G G
— < 1 — F(a,) <— for n > n,.
With a, = n we have
1
n
Hence F satisfies the first compactness property.

e
< l—F(an)<71-.
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