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The paper is devoted to a study of the exit boundary of random walks on
discrete groups and related topics. We give an entropic criterion for triviality
of the boundary and prove an analogue of Shannon’s theorem for entropy,
obtain a boundary triviality criterion in terms of the limit behavior of convo-
lutions and prove a conjecture of Furstenberg about existence of a nondege-
nerate measure with trivial boundary on any amenable group. We directly
connect Kesten’s and Folner’s amenability criteria by consideration of the
spectral measure of the Markov transition operator. Finally we give various
examples, some of which disprove some old conjectures.

Introduction. Probabilistic properties of random walks on groups are deeply inter-
twined with many essential algebraic characteristics of groups and their group algebras
(amenability, exponential growth, etc.). On the other hand, random walks on groups
regarded as a special class of Markov processes provide new simply describable examples
of nontrivial probabilistic behavior. Both these aspects make the subject especially
interesting and important.

Investigations of random walks on groups “in general” were started in the 1950’s ([29,
41]), but no doubt the interest in this topic has grown during recent years. In fact, there is
a great gap between the complete theory of “classic” walks on abelian groups ([60] etc.)
and the state of the problem for sufficiently general groups (e.g. discrete). There are no
answers for the simplest questions and the number of studied examples is very scanty in

-the second case.

The roughest question which does not appear in the classic theory is that about
triviality (or nontriviality) of the exit boundary of random walk. The boundary itself gives
valuable information about the group and the measure on it (see below), and the
determination of the boundary (or deciding its triviality) should precede the study of more
traditional problems such as laws of large numbers, central limit theorems, etc. (e.g. [34])
which lie beyond the scope of this paper.

In the present paper we solve to a certain extent the problem of boundary triviality for
discrete groups, namely: ,

1) We give an entropic criterion for triviality of the boundary and prove an analogue of
Shannon’s theorem for entropy.

2) We obtain a boundary triviality criterion in terms of the limit behavior of convolu-
tions and prove a conjecture of Furstenberg’s about existence of a nondegenerate measure
with trivial boundary on any amenable group.

3) We directly connect Kesten’s and Folner’s amenability criteria by consideration of
the spectral measure of the Markov transition operator.

4) We give various examples; some -of these disprove certain old conjectures. Particu-
larly, we give examples of solvable and locally finite (i.e., amenable) groups with symmetric
measures whose boundaries are nontrivial and, conversely, an example of a solvable group
of exponential growth whose boundary is trivial for every finitary symmetric measure.
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It is interesting to remark that at first glance it seems that the boundary for every
amenable group with symmetric measure is trivial. The examples of Section 6 show that
this conjecture is false. Moreover, a controversial statement that every group of exponential
growth has nontrivial boundary for any measure is also false. In other words, the problem
of boundary is more delicate than that of growth: the number of words with fixed length
gives only rough estimates of entropy.

We emphasize that many concrete problems on boundaries are unsolved. For instance,
the boundaries of semisimple (or free) groups with nonfinitary measures are still undeter-
mined. It is worth mentioning that one can canonically define a series of unitary represen-
tations of G in the space of square-integrable functions on the boundary. This series
coincides with the principal series of representations for semi-simple Lie groups with
spherical measures [23]. Interesting properties of these representations for the free group
were discovered in the recent paper [70]. The authors intend to return to this question
further.

The results of the present paper were announced in [65] without proofs. Later other
proofs (close to ours) of Shannon’s theorem and of Furstenberg’s conjecture were given by
Derrienic [17] and J. Rosenblatt [58], respectively. See Section 7 for further bibliographical
comments.

There exists a good number of different definitions of boundary. Their interrelations in
the case of discrete groups are considered in the authors’ paper [66]. Briefly, all the
boundaries coincide in a sense. In this paper we use only some coincidences (particularly,
between the exit and stationary boundaries) specified in Section 0. In general the question
of boundary triviality involves such different problems as existence of phase transitions
and properties of characters of locally finite groups (e.g. see [64]). From the “general
measure theory” point of view it may be reduced to the theory of decreasing sequences of
measurable partitions (or o-algebras) [63]. However, random walks on groups have their
own peculiarity which is expressed, for instance, by the fact that the boundary is a G-space
with quasi-invariant measure and carries some additional structures (see Section 3 and
[66]).

Thus the subject can be dealt with by different approaches:

) 1) Since random walk on a group is a homogeneous (in time and space) Markov process
with o-finite stationary measure, the problem in question certainly belongs to the general
theory of Markov processes.

2) Since the measure p on a discrete group G is an element of the group algebra ¢'(G),
the transition operator assigned to u (Markov operator) can be studied by means of
harmonic analysis. In particular, the spectrum of the operator in the spaces ¢*(G) and
¢*(G) determines to a certain extent the probabilistic behavior of trajectories of the
random walk.

3) Since the one-dimensional distribution of the random walk at a time n is the n-fold
convolution of the measure g, the problem is related to the asymptotic theory of convo-
lutions, theory of equidistribution, etc.

4) Since the transition operator is a discrete analogue of the Laplace operator, the
problem is connected with the theory of potential, the theory of harmonic functions,
Martin boundaries, etc.

5) Lastly, the shift in the trajectory space of the random walk is a measure preserving
transformation (dissipative, in general) with o-finite stationary measure. Therefore one can
apply here an arsenal of ergodic theory techniques (with due regard for o-finiteness of
measure); that is, one can use the theory of measurable partitions, entropic methods, etc.
(these methods appear to be new for o-finite invariant measure in general).

We underline that the examples naturally appearing in the theory of random walks
turn out to be very sophisticated if the group structure is eliminated. For instance, the
transition operator assigned to a random walk on a free group can scarcely be studied
without use of the group properties.
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The methods developed here (entropic, in the first place) can prove helpful for
generalizations to broader classes of random processes such as random walks

1) on continuous groups,

2) with continuous time,

3) on semigroups and more general algebraic structures (e.g. formal grammars, graphs,
etc.),

4) on trajectories of a G-space (particularly, measurable). )

Connections with some of the questions listed above are also considered in the authors’
paper [66] devoted to boundaries.

0. Basic notions. The object of this section is to give the definition of random walk,
to introduce certain measures on the space of trajectories of the random walk and to give
a list of different (equivalent) definitions of the boundary of random walk, I'(G, p), as a
measurable G-space with y-stationary probability measure ».

0.1. Preliminary definitions and notations. Throughout this paper we shall use the
following notations: G is a countable infinite discrete group with the identity element e,
1 — a probability measure on G. The pair (G, p) will be called a group with measure. The
support of the measure y will be denoted by supp u:

1) _ supp p = {g € G:p(g) > 0}.
The reflection of the measure u will be denoted by fi:
@ e =ng™), g€G

The measure u will be called nondegenerate if the semigroup generated by its support is
all of G, finitary if supp u is finite, and symmetric if u = ji. In the rest of the paper the non-
degeneracy condition for the measure p will be assumed satisfied unless otherwise
specified. We do not assume aperiodicity of the measure p.

The infinite Cartesian product of G with itself, G%*(Z, = {0,1 - - -}) will be denoted by
G*. In the sequel the elements of the product

(3) Y= (yO) Y1, Y25 o ') € G~

will be called trajectories, and the set G is the space of trajectories (or the path space).
The space G* carries the natural topology—the product of discrete ones on every factor.
This topology is a metrizable separable complete one, thus G* can be regarded as a Polish
space. ’

The coordinate maps from G* into G will be denoted by C”

4) C:y= (YY1, )Y n=0.

Cylinder subsets of G* (subsets consisting of ‘trajectories hitting fixed points of G at fixed
times) will be denoted as follows:

(5 C:={yeG:C"(y) =g}

is the set of trajectories hitting a point g at a fixed time n,

(6) Cayigh = Nie C;

is the set of trajectories hitting a fixed sequence of points at fixed times, and
) Cym=nk, Cy, g =C™(y),

is the set of trajectories hitting the same points as a fixed trajectory y at fixed times n.. In
the sequel C*(y) (the nth coordinate of trajectory y) will frequently be denoted simply by
Yn.
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0.2. Definition of random walk.

DEFINITION 0.1. The right random walk (G, p) on a group G determined by a
probability measure p is the time homogeneous Markov chain with the state space G and
with the transition probabilities

® plg|lh)=ph7'g), & hLEG,

which are invariant under the canonical left action of G on itself (here and from now on
p(g| h) is the transition probability from 4 to g).

In other words, the position of the random walk can be obtained from the preceding
one by right multiplication with the independent random group element (increment of the
random walk) which has the distribution u. Note that following [60] we define here the
random walk only by its transition probabilities (without any fixed initial distribution), so
that the random walk can be identified with the pair (G, ). The left random walk can be
defined similarly (with transition probabilities p(g| k) = p(gh™)).

Evidently, p(g7'|A™") = fi(h'g) and replacing the measure p by the reflected one i
reduces the study of the left random walks to the study of the right ones. Everywhere
below we shall consider only right random walks without stipulating that explicitly.

If the initial distribution of the random walk is concentrated on an element g of G,
then a probability Borel measure zP* arises on the trajectory space G* in the usual way—
this measure is the image of the product-measure u® = X p X - - - on the infinite cartesian
product [[?-1 G by the map

(9) (xly X2y ¢ ,) - (g) 8X1, 8X1X2, ** ')

from the space of increments [[?-; G into the trajectory space G”. The measure .P*
corresponding to the initial distribution 8. is the most important and it will be denoted
simply by P*. The measure P* is concentrated on the subset

(10) Gr={yEG:y=eyl1yr Esupp p, k= 1}

of the trajectory space G*.
An arbitrary initial distribution 6 determines on the trajectory space the measure

(11) oP* =Yz 0(g)sP".

Recall that the convolution p*p’ of two measures u and p’ on a group G is defined as
the image of the product-measure u X p’ on G X G by the canonical map (x1, x2) — x1x2
from G X G into G. Then n-fold convolution of the measure p. will be denoted by pn. It is
useful to regard the point measure 8. as po. Thus the one-dimensional distribution of the
measure ¢P* at a time n = 0 can be written as

(12) Cn°app' = 0*.[1,,,.

Let (G, C) be the group algebra of the group G over the field C. The measure . = Y,
1(g)8,; is an element of the group algebra, hence p defines a linear operator on every
representation space of G (particularly on /'(G) itself, on ¢ %(@), ¢(@), etc.) This operator
P* acts on any space of functions on G as .

(13) P'f(g) = 3 f(gx)n(x) = f f(n) deP*(y)

i.e., P* acting on the space ¢*(G) is the Markouv operator of the random walk (G, pt). Since
P* is Markov, it is positive (i.e., preserves the cone of positive functions on the group) and
the constant function / is invariant under P*.

As usual, the conditional measure P* of the set A; given the condition A, will be
denoted by P*(A, | Az). For example, P*(Cg| C%) is the conditional probability of hitting a
point g at time n for trajectories which hit a point 4 at time %. The following formula for
the transition probabilities
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(14) PHCE | Ch) = p(h7g)
evidently holds whenever the condition C% has non-zero measure. The measure space

(G, P*) and all of its quotient spaces are Lebesgue spaces, hence the standard technique
of conditional measures and measurable partitions (e.g., [56]) is applicable to these spaces.

0.3. Boundaries of random walks. Given a random walk (G, ), one can canonically
define a measurable G-space I' with quasi-invariant probability measure » which is
u-stationary, i.e.,

(15) v(A) = pxv(A) =Y, v(g7'A)u(g), ACT.

In the sequel the measure G-space (T, ») will be called the boundary of the random walk
(G, p). The boundary naturally appears in very different situations [27, 64, 67] and it can
be defined in rather different ways. Here we list only some of the possible definitions which
will be used below. A detailed study of the correspondence between different boundaries
of the pair (G, p) is given in [66].

a) Stationary boundary. A measurable subset of the trajectory space A C G” is called
stationary (mod 0) if it contains simultaneously with almost every trajectory y also all
trajectories y’ which can be obtained from y by coordinate shifts and by replacing any
finite number of coordinates, i.e., all ¥’ such that y,.+. = y. for all sufficiently large n and
a fixed integer k. The o-algebra & of classes of stationary sets (P* - mod 0) is called the
stationary o-algebra.

A subset a C G is called a p-trap (or: trap, if p is fixed) if the limit lim,/.(y.) exists for
P* almost all trajectories y € G*, i.e., if almost every trajectory entirely belongs to a for
sufficiently large times or never hits it “at infinity.” Define the natural equivalence of
traps: traps a and a’ are equivalent (or: mod O coincident) if their symmetric difference
alAa’ is a completely transitive set, i.e.,

(16) Py € G*:limplapa(yn) =0} = 1.

‘The classes of traps form a Boolean algebra as can be easily seen.

ProposITION 0.1. The correspondence
an a— A(a) = {y € G":limula(y») = 1}
determines an isomorphism between the Boolean algebra of classes of traps and that of

classes of stationary sets.

This fact enables us to define a measure type preserving left action of G on the
stationary o-algebra & ‘

DEFINITION 0.2. The stationary boundary T = T'(G, p) of the random walk (G, p) is
the quotient space of the measure space (G*, P*) with respect to the measurable partition

attached to the stationary o-algebra &
The canonical factorizing map will be denoted by bnd:

(18) bnd:G* - T.

This map determines on I" the probability measure » = bnde P* which is G-quasi-invariant
and p-stationary. The measure » will be called the exit measure of the random walk.
One can define the conditional measures P} on the trajectory space for almost all

points y €T} i.e.,

1
A

for any nontrivial stationary A C G and cylinder set C C G”. These measures P% are
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Markov ones for almost all y € I" and determine homogeneous (in time, but not in space!)
Markov chains on G (conditional random walks) with transition probabilities

(20) PYCE|CR) = PHCE| C") (7)

b) Poisson boundary. A real-valued function f on the group G is called p- harmomc if
the equality

(21) f(g) =Y f(gx)p(x)

holds for every g € G, i.e,, if fis an invariant function of the Markov operator P*. The
Banach space of all u-harmonic bounded functions on G (with sup-norm) will be denoted
by H;. The space H; can be regarded as a commutative Banach algebra with the

multiplication
(22) (£ X f2)(&) = lim, 3 fi(gx)fo(gx)pun(x).

Define the Poisson space I1,(G) of the pair (G p) as the spectrum of the Banach
algebra Hy. One can define a probability measure 7 (Poisson kernel of p) on the space
I1.(G) as follows: let f+— f be the Gelfand transform from H} onto C(Il,); then

(23) f f) di(x) = f(e).
Every bounded p-harmonic function f admits the following Poisson representation
(24) fle) = J' 7@ dgta) = J' £ % ) i)

and the Poisson formula (24) constitutes an explicit form of the Gelfand transform from
HY onto C(I1,) = L*(I1,, 7).

The Poisson space (II,, 7) as a measure G-space is canonically isomorphic to the
boundary (T, v).

¢) Martin boundary. Let A(G, p) be the Martin boundary of the pair (G, p), i.e., the
compact closure of extremal positive u-harmonic functions on G (normed by the condition
f(e) = 1) in the topology of pointwise convergence. The Martin boundary is a topological
G-space with naturally defined left action of G.

Given a positive y-harmonic function f, there exists a unique representing measure
on the Martin boundary, i.e.,

(25) flg) = f h(g) dv(h), g€ G.
A .

Denote the representing measure for the constant function / (I(g) = 1, g € G), by », and
its support, supp », by A;. The compact A, is called the active part of the Martin boundary.
The compact A; as a G-space with measure », is canonically isomorphic to the boundary
T, »).

d) Exit boundary. Let o/ be the o-algebra of measurable subsets of the trajectory

space (G, P*) which are determined by the coordinates y,, yn+1, - -+ , of the trajectory y.
The intersection )
26) oo = A

is called the tail (residual, asymptotic) s-algebra of the random walk. A measurable subset
A C G” belongs to <, iff the fact that a trajectory y € G* belongs to A does not depend
on any finite set of coordinates and is determined only by its behavior “at infinity.” The
tail o-algebra of the random walk (G, p) coincides (P* - mod 0) with the stationary
o-algebra %, so that the exit boundary of the random walk, (G*, P*)/%4, is canonically
isomorphic to the boundary (T, ») as a measure space.
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1. Entropic criterion of boundary triviality. In this section we define the entropy
h(G, p) for random walk on a discrete group G determined by a measure p, and state the
following entropic criterion of boundary triviality: the boundary I is trivial iff the equality
Rh(G, p) = 0 holds (Theorem 1.1). Further we consider some applications of this criterion
to groups of nonexponential growth.

1.1. Definition of entropy. Let G be a countable discrete group. The entropy of a
probability measure p on G will be denoted by H(u)

(0] H(p) = =Y sesuppu 1(8)log pn(g).

The following simple proposition permits to estimate the entropy of the convolution of
two probability measures on G.

ProposITION 1.1.  Given two probability measures u’ and p.” on a group G with finite
entropies, the entropy of their convolution is also finite and

@ H(w'su") < H(w') + H(p").

ProOF. The canonical map (g1, g€2) = g1&: from G X G onto G translates the direct
product g’ X p” into the convolution u’*u”, hence by monotonicity of entropy [57] and by
the evident relation H(p" X p”) = H(p') + H(pn”) we obtain the desired result.

Now fix a probability measure p on G with finite entropy H(u). Denote the entropies of
its convolutions H(u.) by A. (n = 0). Obviously, ks = H(pe) = H(8) = 0. The following
evident formula for A, will be useful in the sequel:

(3) h, = H(.un) = —Zy,, I-‘rn(yn)log ﬂn(yn) = “‘j log I"n(yn) dp"(y)-

Proposition 1.1 implies that all the A, are finite and the sequence {4} is subadditive,
i.e., An+m < R, + By (n, m = 0). Thus there exists a finite limit lim,(A,/n) < H(p).

" DEFINITION 1.1
[1] Let G be a discrete countable group, ¢ a probability measure on G with finite
entropy H(p). Then the limit

H(pn
4) h(G, p) = lim,, (: )

is called the entropy of the pair (G, p).

This invariant has the following probabilistic meaning: asymptotically A(G, p) is the
mean specific quantity of information on one factor contained in the product x,+ -+ X,
= y, of n independent G-valued random variables x; with distribution u (cf. below

Proposition 1.2).

REMARK. One can easily show that if the entropy H(y) is infinite, then all the A, =
H(u,) are also infinite.

1.2. Criterion of boundary triviality. " Let {n») and {a.} (n = 1) be the following two
sequences of measurable partitions on the trajectory space (G*, P*)

yry evVk=n y=yi,
5 on
®) y~y eVk=n y.=yi
i.e., two trajectories lie in the same element of the partition 7, if their coordinates with
indices %k = n coincide, and in the same element of the partition a, if their initial segments
(up to the nth coordinate) coincide. The partitions a, increase and their join \/5-1 a» is
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equal to & (the partition of the trajectory space into points). The sequence {1.} is
decreasing; the corresponding measurable intersection /A\,=1 7. will be denoted by 7. The
partition 7 is called the tail partition of the random walk (G, p) because the o-algebra of
n-measurable subsets coincides (P* - mod 0) with the tail o-algebra . of the random
walk.

Recall that given two measurable partitions ¢ and { of a Lebesgue space (X, m), the
quantity .

(6) H@O=ip%mmﬂOWM)

where m(x, £|{) is the conditional measure of {(x) (the element of ¢ containing x) with
respect to ¢, is called the mean conditional entropy of the partition £ with respect to the
partition ¢ [57].

Now evaluate the mean conditional entropy of the partitions a, with respect to the
partitions 7,.

ProPOSITION 1.2. If0 < k < n then the mean conditional entropy of the partition oy
with respect to the partition 1, equals

(7) H(ar|nn) = khy + hnt — ha.
In particular,
8) H(au | nn) =Ry + An-1 — A

Proor. Evaluate the conditional measure P*(y, ax|n.) when a trajectory y € G* is
given:

@ PH(y, ax| ) = PHCI*| C) = PHCP* N C3)/PH(C5)
= (1) oo o pulXn)  pnr Y2 Yr) /Wn(Yn).

Integrating now log P*(y, ax|1.) by the measure P* we obtain the desired result.
Now, because 1, > n.+1 for all n, we get

(10) H(al | nn) < H(al |nn+l)1
hence
(11) hn - hn—l > hn+l - hn

(here we used a well known monotonicity property of the mean conditional entropy [57]).
Comparing (11) with the definition of 4(G, n) we obtain

ProPOSITION 1.3. The sequence {h,+1 — h,} decreases monotonically to the entropy
h(G, p).

We now proceed to the proof of the main theorem.

THEOREM 1.1. Let G be a discrete countable group, p a probability measure on G
with finite entropy H(p). Then the boundary TG, p) of the random walk (G, p) is trivial
iff h(G, p) = 0.

ProoF. Since the decreasing sequence of partitions 7, converges to the tail partition
7, the sequence of mean conditional entropies H(ay | 1.) converges to H(ax | m) [67]. Passing
in (7) to the limit on n and applying Proposition 1.3 we obtain

(12) H(a|n) = kH(p) — kh(G, )
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and, in particular

(13) H(e|m) = H(p) — (G, ).

Since the equality H(¢ | {) = H(£) holds for partitions ¢ with finite entropy iff the partitions
¢ and ¢{ are independent, and since H(ax) = kH(p), we obtain A(G, p) = 0 iff the partitions

o and 7 are independent for all %; but this means triviality of n and of the boundary
T'(G, p) by the Kolmogorov 0-1 law. ’

REMARK. Theorem 1.1 in the given form is not applicable to the case H(u) = . For
example, if G is an abelian group and the entropy H(y) is infinite then lim,(%,/n) = o, but
the boundary I'(G, p) is trivial by the classical Choquet-Deny theorem [13].

1.3. Applications of entropic criterion. Problem of growth. The criterion stated in
Theorem 1.1 enables us to state triviality for boundaries of some classes of groups with
measure.

Let G be a finitely generated group, T a generating finite set. Consider the sequence of

powers of T

(14) T"={g=g1. e .gn:giET}.

DEFINITION 1.2,
[62] The group G is said to be of exponential growth if

(15) lim, | T"|"/"
and of nonexponential growth otherwise. If
(16) |T"|=C-n?

then G is said to be a group of polynomial growth with degree not more than d.
It can be easily seen that this definition does not depend on the choice of T.

ProrosiTION 1.4.
[2] Let G be a group of nonexponential growth and p a finitary measure on G, then
the boundary I'(G, p) is trivial.

ProoF. Denote the support of u by T Since supp u. = T" we obtain H(u,) <log| T"|.
Nonexponentionality of growth of G implies that log | T" | = o(n), hence A(G, p) = 0. Thus,
I'(G, p) is trivial by Theorem 1.1.

Triviality of the boundary for some classes of exponential groups (see 6.3) and for
certain nonfinitary measures on nonexponential groups also can be obtained by estimating

the entropy H(pn).
Let ;. be a probability measure on a finitely generated group G with finite generating set
T (containing e). Define the probability measure k on Z in the following way:

(17) k(k) = w(T\T* )

is the measure p of the words whose length is exactly k. Then one can easily obtain the
following estimate:

(18) H(p,) = =Y kn(k)log kn(k) -log | T* |

where k. is the nth convolution of k. The inequality (18) reduces the problem of boundary
triviality to that of the asymptotic behavior of convolutions on the group of integers and
permits to prove triviality of the boundary for some classes of nonfinitary measures on

nonexponential groups.
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Triviality of the boundary for groups of polynomial growth with arbitrary measure can
be easily deduced from structure theory. All the polynomial groups are finite extensions of
nilpotent groups (Gromov’s theorem [30]), and the boundary for nilpotent groups is trivial
[21, 49]. Hence the boundary is trivial for any measure on a polynomial group (cf. Lemma
4.2 of [25]). A recent paper by Grigorchuk (in print in Dokl. Akad. Nauk. SSSR) contains
the statement that there exists a finitely generated periodic group with intermediate
growth (between polynomial and exponential). The problem of the existence of such
groups was raised in [52].

CONJECTURE. Given an exponential group G, there exists a symmetric (nonfinitary, in
general) measure with nontrivial boundary.

It also seems plausible that such a measure can be chosen finitary (but nonsymmetric).
On the other hand, there exists an exponential group whose boundary is trivial for all
finitary symmetric measures (see 6.3) in spite of a conjecture from [1].

The notion of growth for countably generated groups is more delicate. It does not seem
right to regard all the locally finite groups as those of polynomial growth for no other
reason than the boundedness of the sequence {| T"|} for all finite T [47]. The notion of
uniform polynomial growth defined in [11] appears to be more natural.

DEFINITION 1.3. A discrete group G has uniform polynomial growth if for each
positive & there exists a polynomial p; such that

(19) | T"| =< pa(n)

for each T consisting of % elements.

In other words, p; gives a uniform estimate of growth for k-generated subgroups of G.
The degrees of the polynomials p; are bounded for groups which are polynomial in the
sense of Definition 1.2, but in general the degrees of p, are unbounded (e.g. consider the
group Y*3 Z).

By analogy with Definition 1.3, one can give the following.

DEFINITION 1.4. A discrete group G has weak exponential growth if

log| T"|

(20) lim,sup; 7=« =c>0

for a certain natural %.

It is easy to show that the symmetric group . (which is locally finite) has weakly
exponential growth. This fact is in keeping with the existence of a random walk with
nontrivial boundary on &.. (see 6.7).

2. Shannon Theorem for random walks. Random walks on countable infinite
groups have no finite stationary measure. However, an analogue of the Shannon-McMillan-
Breiman theorem can be stated for this class of Markov processes (Theorem 2.1). The
theorem implies many interesting corollaries.

2.1. Random walks and endomorphisms with o-finite measure. Let 0 be a positive
measure (not necessarily probability) on a group G. Consider the corresponding measure

(1) oP" =Y, 0(8)  P*

on the trajectory space G*. The measure 4P* is finite (or o-finite) simultaneously with the
initial measure 6. Denote the shift on the trajectory space G* by T': (T'y)» = Yn+1. Generally
speaking, T does not preserve the measure , P* and even the type of measure. The measure
oP* is T-invariant iff the measure § (regarded as a function on G) is i-harmonic. There
exist no non-zero summable harmonic functions on infinite groups, so that every T-
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invariant measure for infinite G is only o-finite. The T-invariant o-finite measure , P* =
¥ ¢ ¢ P* corresponding to the Haar measure m on G, is of most interest. Many properties of
random walk can be expressed in terms of the endomorphism T with o-finite measure
=P*. For instance, conservativity of T is equivalent to recurrence of the random walk,
ergodicity of T to triviality of the exit boundary, and mixing of T to triviality of the
stationary boundary of the random walk (G, p) (details see in [58, 66]).

Thus the entropy A(G, p) defined in Section 1 is a measure of nonergodicity of the
endomorphism T, so that our entropy is quite different from the entropy of conservative
transformations with o-finite invariant measure [42, 43].

2.2. Shannon’s Theorem. The entropy defined in Section 1 can be also determined
individually (i.e., along trajectories of the random walk).

THEOREM 2.1. Suppose the entropy H(p) of a probability measure p. on a countable
group G is finite. Then the equality
) lim,(1/n)log p.(y») = —h(G, p)
holds for P* almost all trajectories y € G*.

Proor. Define the following sequence of measurable functions on the trajectory space
¢x(y) =log P*(C;|mer1) = log P*(Cy| C3*")
-1
pCy)pe(y1 Yer1) k=0,

(3) - log Mk+1(yk+1)
and define
(4) #(y) = log P*(Cy|n).

The functions ¢ and ¢ are logarithms of conditional probabilities of the first coordinate y,
of a trajectory y with respect to the o-algebras .., and .. By the convergence theorem
for conditional probabilities we obtain ¢»(y) — ¢(y) P* a.e. The convergence ¢, — ¢ can
be also stated in L'(P*). Since

®) f or(y) dP*(y) = —H(eu | nen1), J’ ¢(y) dP*(y) = —H(au|n)

(see Proposition 1.2), and because H(ai|n:) — H(ai|n) by properties of conditional
entropy, we get

(6) f‘l’k(y) dP*(y) — f o(y) dP*(y).

The functions ¢ are nonpositive, hence the sequence ¢ converges to ¢ in L'(P*) (e.g., see

[51)).

Expanding now p.(y.) as

n(Yn) Pn—1( YT Yn) pe(yrtayn) o
7 w(yn) = — . — s wW(¥r210),
( ) H (y ) Hn—l(yl lyn) I-‘:n—2(y21yn) /-"(ynllyn) K Iy
we obtain
(8) log pn(¥s) = i1 log p(yih yi) — Yie1 n—i( U ),

where U is the ergodic measure preserving transformation on the trajectory space
(G*, P*) induced by the Bernoulli shift on the space of increments of random walk:

9 (Ue=y1'yrr1, k=0.
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Now it is easy to demonstrate that the relation
1 .
(10) - Yia o UTy) = j ¢(y) dP*(y) = h(G, p) — H(p)

holds for almost all trajectories y (this technique is standard cf. [8], Theorem 13.1). Since
(11) (1/n) Ti1log p(yiy yi) > —H(p)
evidently holds for almost all trajectories y we obtain the desired equality (2).

REMARK. In fact, we also have proved convergence of the sequence (1/n)log u.(y») to
—h(G, ) in the space L'(P*).

2.3. Corollaries of Shannon’s Theorem. Here we suppose that the entropy H(p) is
finite. The entropy of the pair (G, n) is denoted by A(G, p).

COROLLARY 1. Triviality of the boundary I'(G, p) is equivalent to the condition:
(12) lim,(1/n)log pn(y») = 0
holds for P* almost all trajectories y € G*.

Kesten [39, 40] introduced the condition
(13) lim,(1/n)log u.(e) =0

on the pair (G, p) which is equivalent (if p is nondegenerate and symmetric) to amenability
of G. Examples from Section 6 and the Corollary of Theorem 4.2 show that the condition
(12) is stronger than Kesten’s condition. Thus the probability of returning to e turns out
to be an atypical even in the logarithmic scale for certain amenable groups (log u.(e) =
o(n), but log p.(y.) = O(n) a.e.).

COROLLARY 2. The equality
(16) lim,(1/n) Yi-1 log P*(C5| C3*') = —H(au|n) = A(G, p) — H(p)
holds for P* almost all trajectories y—the mean value of the logarithms of the cotransition

probabilities P*(C%| C*') converges to h(G, p) — H(p) along almost all trajectories.

ProOF. Since

(15) PHC3| C3*) = 7,%%2—)#@; Yer1),
we get
(1/n) Yi-1log PH(Cy| C5*)
(16) = (1/n)(Tr-1 log p( ¥ Yer1) + log p1(1) — 10g pns1(Yns1))

— —H(p) + (G, p).

CoROLLARY 3. The equality
an lim,(1/n) Yi-1 log P*(C3| C57, n) = —H(au|n)
holds for P* almost all trajectories y of the random walk.
ProoF. Since the transition probabilities of the random walk are invariant with
respect to the left action of G on itself, we get
(18) PXC3| C;7m) = PX(Cy|n)
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wherey’ = U*'y. Thus, applying the ergodic theorem to the shift U, we obtain
.1 _
(19) lim, - i1 log PHCE|CE ) = J' log P*(Cy|n) dP*(y) = —H(ea| 7).

REMARK. Denoting the exit point of the trajectory y by y» — ¥~ = bnd(y), we can
rewrite (17) as

(20) lim,(1/n) Yi-1 log P*(yx| Ye-1, ¥=) = —H(ea |n) = h(G, p) — H(p),

i.e., the mean value (along trajectories) of logarithms of transition probabilities for almost
all conditional walks (provided the exit point is fixed) equals A(G, p) — H(p).

COROLLARY 4. The equality

(21) lim,(1/n) Y71 log P*(yr| yr+1) = lim,(1/n) Yi-1 log P*(ye| Ye-1, Y)

holds for almost all trajectories y of the random walk, i.e., the mean value of logarithms
of cotransition probabilities and the mean value of logarithms of transition probabilities
for conditional walks coincide for almost all trajectories.

COROLLARY 5. The equality

dy" (y2) = A(G, ),

(22) lim, ! log
n

where y.. = bnd(y) and v is the exit measure on T, holds for almost all trajectories of the
random walk.

ProOF. By the formula (20) from Section 0 we get
(23) lim, % Yroi log PHC%|CE Y, n) = lim, — {Ek_l log P*(Ck|C:™) + 1o g (yw)}
;hence by Corollary 3 we simply obtain the desired result.

REMARK. Itis of interest to extend the results of this Section (particularly the formula
(21) which seems to be sufficiently general) to a greater class of Markov processes with a
reasonable definition of entropy (similar to our A(G, p)).

3. Differential entropy of boundary and Radon-Nikodym transform. This
section is devoted to the description of the entropy A(G, u) in terms of the differential
entropy of shifts of the exit measure » on the boundary I'. We define a p-entropy
E(B, A, p) of an arbitrary measurable G-space B with p-stationary probability measure A
and state the inequality E(B, A, p) = A(G, p) which holds with equality iff (B, A) is a
covering space of the boundary (T, »). As a corollary we obtain a simple formula for the
entropy A(G, p’) of a measure u’ expanded in powers of u.

3.1. Kullback-Leibler distance and entropy h(G, p). Recall that the quantity

O In| ) = — J logZ—:;(x) dns ()

is called the Kullback-Leibler distance (or informational deviation) between two equiv-
alent probability measures »; and », on a measurable space X [44]. The distance takes
nonnegative values (including +) and equals zero iff the measures »; and », coincide. In
general, the Kullback-Leibler distance is nonsymmetric, i.e., I(#1|»2) # I(vz|»1). If X is a
G-space, then the natural action of G on the space of measures on X preserves the distance

I, ie. I(gv1 |gV2) = I(Vl | Vz).
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THEOREM 3.1. If the entropy H(u) of a measure p on a group G is finite then

dg™!

dv

In other words, h(G, p) is the mean (with respect to g) distance between the measures
-1

g 'vandv.

2 () dv(y) = Se (&I ]).

) h(G,p) ==Y pu(8) J’ log

ProoF. Using the formulas (20) from Section 0 and (13) from Section 1 we obtain

h(G,p) = H(p) — H(ou |p) = H(p) + f log P*(C5|n)P*(y)

dj;‘” (bnd(y») dP*(3)
4

=H@p + J' log(P"(Ci) .
3)

di
=H@u) + Yo u(g) f log (u(g) . ng_lv (Y)) dr(y)
dg

-,
@ (y) dv(y)

=-Zen(8) f log
(in the last step we used the substitution y; = g, bnd(y) = gv)

3.2. p-entropy of a G-space. Based upon Theorem 3.1, we can give the following

DEeFINITION 3.1.
[37] Let B be a measurable G-space with a p-stationary probability measure A. The

quantity
() EB, A\ p) =Y. m(&I(g7 AN

is called the entropy of the space (B, \) with respect to p (u-entropy of the pair (B, A)).
Evidently, E(B, A, p) equals to zero iff A is G-invariant. On the other hand, A is p-

stationary, hence

(5)
and we get

PROPOSITION 3.1. The u-entropy E(B, A, p) satisfies the inequality
(6) EB,\, p) = —Ysug)logu(g) = H(w.

Let p’ and p” be two probability measures on G and let the measure A be p' -and p”-
stationary simultaneously. Then A is evidently stationary with respect to the convolution
p/+p” and to all convex combinations a’p’ + a”u” of the measures p” and w”.

PROPOSITION 3.2. Given two measures ' and n” on G and a measurable G-space B
with probability measure A such that p’*\ = u”*\ = A, the following equalities hold:

) EB,\ p'+pu”) =EB,\, p') + E(B, A, p"),
EB,A, o'p +a"p") = a'E(B,\, 1) + «"EB, A, p”").

Proor. It immediately follows from the definition of p-entropy. For example,
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EB, A, p'*p") = Zen'*pn"(QI(g7 A|N)

d\(g18:b)
—Yee b (g)0"(&2) J’longzl%—dA(b)

@

- (an” AN &18:0) "
= —Yae b (&) (gz)flog N zb) d\(b) + E(B,A, p")

=E(B,\,p') + EB,A, p").

COROLLARY 1. Let A be a y-stationary probability measure, p'= Yr=o arte  (Xr=0 Ok
=1 a,= 0), then

&) E(B, A, p') = E(B, A, p) - Yk=o kotr.

COROLLARY 2. Let p be a probability measure on a group G, p’ = Y =0 arir (L =0 or
=1, ar = 0), then

(10) h(G,p') = h(G, p) + Y =0 kar.

Proor. Coincidence of boundaries I' (G, p) and T'(G, p”) [37, 66] and Corollary 1 imply
the desired result.

COROLLARY 3. If the entropy H(u) is finite then
(11) EB,\p =h(Gp

for every measurable G-space B with p-stationary probability measure \.

Proor. This statement is a consequence of Corollary 1 for the case .’ =y, Proposition
A3.1 and the definition of A(G, p).

3.3. Radon-Nikodym transform. Now we shall give a necessary and sufficient condition
of the equality E(B, A, p) = A(G, p).

DEFINITION 3.2. Let B be a measurable G-space with u-stationary probability measure
A. The Radon-Nikodym transform rn of the space (B, A) is the measurable map from B
into R¢ (space of real-valued functions on G with the topology of pointwise convergence)
defined (mod 0) by the formula

(12) (rn(b))(8) =d§;? (®).

Evidently, rn is a homomorphism of the measure space (B, A) onto its image. The
support of the measure rne\ (compact by inequalities (5)) will be denoted by RN(B, A)
and called the Radon-Nikodym compact of the space (B, A). Almost all (with respect to
the measure rn o)) elements of RN are positive u-harmonic functions on G, since A is p-
stationary. The compact RN consists of only the point 7 iff the measure A is invariant. The
action of G on RN (induced by the action on B) is given by the following formula:

_dglrnod) . dhT'gmed) | y(h7'g)
(13) () (8) =ZE 05 ) =t ) =L

Obviously, the measure rn oA is p-stationary with respect to this action.
As a measure space, (RN, rne}) is isomorphic to the quotient of the space (B, A) with
respect to the measurable partition generated by the countable set of Radon-Nikodym
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derivatives on B:

dgh
(14) Ag(b) = 7“;— ().

Thus we obtain:

ProrosiTION 3.3. For almost all b € B

(15) — (0) = (rn(d)).

d\ drno)
ProprosITION 3.4. The Radon-Nikodym transform does not change the value of p-
entropy, i.e.
(16) E(RN, rno), p) = E(B, A, p).

Remark now that by Proposition 3.3 the Radon-Nikodym compact determines a
decomposition of / into positive p-harmonic functions (elements of RN)

17) I= [ y drnoA(y),

since for every g € G

(18) J v(8) drne(y) = JM (y) drneA(y) = 1.
drno\

Consider the Radon-Nikodym transform of the boundary I'(G, ) of the random walk.
To begin with, recall that the boundary (T', ») is isomorphic (as a measure G-space) to the
active part of the Martin boundary A:(G, p) with the measure »; (representing measure of
I), the action of G on the Martin boundary being the same as the action (13) of G on RN—
see 0.3. By the relation

X
(19) I = J (g—l'Y)(x) dVl(g—lY) = J Yy((gé')) dg”l('y)r gr x € Gr
we obtain two decompositions of / into extreme p-harmonic functions:
dgri(y)
20 I= d = .

By uniqueness of the representing measure on the Martin boundary, it follows that for
almost all y € A((G, p)

a,
(21) i =va.
V1
Thus we get

ProrposiTION 3.5. The Radon-Nikodym transform of the ‘boundary (T, v) is an
isomorphism of the measure spaces and the corresponding Radon-Nikodym compact RN
with the measure rne\ coincides with the active part of the Martin boundary A(G, p)
with the measure vi—the representing measure of I.

Since every decomposition of / into y-harmonic functions can be obtained by integration
from the decomposition into extreme p-harmonic functions, we obtain by Proposition 3.5:

ProPOSITION 3.6. Given a measurable G-space B with p-stationary probability meas-
ure A, the Radon-Nikodym compact RN(B, \) as a G-space with measure rn°\ is a
quotient space of the boundary (T, v).
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THEOREM 3.2. Let u be a probability measure on G with finite entropy H(u), and B
a measurable G-space with p-stationary probability measure . Then

(22) E(B, A, p) = (G, p),

and equality holds iff the Radon-Nikodym compact (RN, rno)\) of the space (B, \) is
tsomorphic as a measure G-space to the boundary (T, v) of the random walk (G, p). In
other words, the equality holds iff the Radon-Nikodym transform as a homomorphism of
measure G-spaces can be passed through I':

rn
B—e—e 3 RC
AN R

(23) AN

N
r

hereT'— RC is the canonical imbedding defined in Proposition 3.5.

ProoF. We base it upon the following simple property of the Kullback-Leibler
distance: if »; and v, are two equivalent measures on a space X, p a measurable map of X
onto X', v} = pow;(i =1, 2), then I(v1| vs) < I(v:| »2) and equality holds iff (dv:/drz)(x) =
(dvi/dv2)(p(x)) a.e.

Now let (RN, rn o A) be the Radon-Nikodym compact of the space (B, A). By Proposition
3.6 there exists a factorizing map p:I' — RN. By the given property of the Kullback-
Leibler distance and by Proposition 3.4 we immediately obtain

(24) E(B,\, u) = E(RN, rneX, p) =34 p(gI(g7'(rnoN) [ o))
=Y n(@I(g 'v|v) = h(G, p).
The equality E(B, A, p) = h(G, p) is equivalent to the equality

dgv __dg(rne})
E (y) = m (p(y)

for all g € supp p and almost all y € I". By the nondegeneracy of u we obtain that (25)
holds for all g € G; but by Proposition 3.5 this means that p is an isomorphism of the
measure G-spaces. The theorem is proved.

(25)

4. Convolutions and boundary triviality. Proof of Furstenberg’s conjec-
ture. In this section we state the following criterion for boundary triviality in terms of
convolutions of the measure p:I'(G, p) is trivial iff the sequence u, converges to a left-
invariant mean on G (Theorem 4.2). On the basis of this criterion we give a proof of
Furstenberg’s conjecture: for every amenable G there exists a probability measure y with
supp p = G for which the boundary I' (G, p) is trivial (Theorem 4.4).

4.1. Boundary triviality and uniform distribution. The following theorem is obtained
by arguments usual in the theory of Markov processes.

THEOREM 4.1. Let pu be a probability measure on G. The boundary T\(G, p) of the
corresponding random walk is trivial iff the following strengthened condition on uni-
formity of distribution holds for almost all trajectories y € G* and each g € supp u:
I“"-l(g -lyn)

=1,
Iln(yn)

1) lim,,
Proor. The conditional probability of the cylinder set C; (when the nth coordinate

of the trajectory is fixed) equals

,J'n— 1 ( g —ly n )

v PH(C4| C3) = p(8) (o)
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If the boundary I'(G, p) is trivial, then the convergence theorem for conditional probabil-
ities gives

@) P(Cg| C3) —n P*(Cg|n) = P*(Cs) = p(8),

hence (1) holds.

Conversely, if pt.-1(&27'y»)/pin (¥2) —n 1 for each g € supp p, then pa—i(£7Yn)/ttn (¥n)
—n 1 for each g € supp p and almost all trajectories y. But the latter means exactly that
all cylinder sets C% (hence all cylinder sets C%” ... ..) are independent of the tail o-algebra
. Therefore .., n and I'¢(G, p) are tnv1al by the Kolmogorov 0-1 law.

4.2. Convergence of convolutions to the invariant mean. Recall (e.g., see [28]) that
a sequence {¢.} of probability measures on G is called weakly convergent to a left-
invariant mean on G if the sequence {g¢» — ¢»} tends to zero weakly in £~ (G)* for every
& € G, and strongly convergent to a left-invariant mean if {g¢. — ¢»} tends to zero in the
norm topology of #/(G) (here g¢(A) = ¢(g~"A) is the left shift of ¢ by g).

Also recall that the perwd of u is the greatest common divisor of {K = 0 : ux(e) =< 0},
pis called aperiodic if it is of period 1.

THEOREM 4.2. Given a nondegenerate and aperiodic probability measure p on G,
the following conditions are equivalent:
i) The boundary I'(G, p) is trivial,
ii) The sequence {u.} of convolutions of the measure p converges strongly to a left-

tnvariant mean on G,
iii) The sequence {u.} converges weakly to a left-invariant mean on G.

ProoF. By the aperiodicity of p we can without loss of generality assume that the
identity element of the group is charged by p

(i) = (ii). Since e € supp p, by Theorem 4.1 we get

(4) lim,, I-‘an l(g yn) = lim,, I-‘an—l(g yn) limn Mn(g-lyn) = 1
I»"n(yn) ﬂn—l(yn) ﬂn(yn)

for each g € supp pn and almost all y € G*, hence

_ (g %)

(@) > e} -, 0

(5) un{xEG: 1

for all g € supp p and every & > 0. Since supp ¢ generates G by the nondegeneracy of , this
completes the proof.

(ii) =» (iii). This implication is trivial.

(iii) = (i). Apply the fact that triviality of the boundary I'(G, p) is equivalent to the
absence of nontrivial bounided p-harmonic functions on G (see 0.3). Let f be such a function,
then for every x € G, one can write

(6) f(x) =Zef(gpn(x7"g)

and, in particular,

™ fle) = X4 f(&un(8).
Subtracting (7) from (6) we get

@) f(x) = fle) = L F(&)(pn (x7'8) — pn(8)).

By weak convergence of {u.} to a left-invariant mean and by boundedness of f the right-
hand side of (8) tends to zero if n — . Hence f(x) = f(e) for every x € G, i.e., f is constant.
Therefore, every bounded p-harmonic function on G is constant and I'(G, p) is trivial.
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COoROLLARY. If G is nonamenable (i.e., there are no invariant means on G) then the
boundary T'(G, p) is nontrivial for every nondegenerate measure p. on G.

REMARK 1. If p is periodic with period d > 1 then an analogous assertion about the
sequence of measures i, = (1/d)(pn + pns+1 + +++ + pin+a—1) holds true.

REMARK 2. Existence of a sequence of measures weakly converging to an invariant
mean on a group is well known [28] to be equivalent to existence of a sequence strongly
converging to an invariant mean. Theorem 4.2 shows that these types of convergence
coincide for sequences of convolutions.

REMARK 3. The right random walk and the left one (see 0.2) differ as Markov
processes, but their one-dimensional distributions p. coincide. The criterion of boundary
triviality from Theorem 1.1 depends only on one-dimensional distributions of the random
walk, and does not depend on whether right or left walk is considered. Therefore, given a
measure y with finite entropy H(p) the boundaries of the left and right random walks are
trivial (or non-trivial) together, and convergence (strong or weak) of convolutions u., to a
left invariant mean is equivalent to convergence (strong or weak) of the sequence . to a
right-invariant mean on G. However, an example from 6.5 shows that this equivalence
does not hold for measures p with infinite entropy H(u).

4.3. Convolutions and amenability. Reiter’s condition is one of the conditions equiv-
alent to amenability of a group G (see Section 5): a group G is amenable iff for any finite
subset K C G and ¢ > 0 there exists a probability measure ¢ on G such that | ¢ — g¢| <&
for every g € K. Evidently, Reiter’s condition can be reformulated in the following way:
G is amenable iff there exists a sequence of probability measures ¢, on G such that
lim, || ¢» — g¢=|| = O for all g € G. Can one choose the sequence {¢,} with some special
properties? For instance, can the sequence {¢,} be assumed to consist of convolutions of
a measure? The following criterion answers the question.

THEOREM 4.3. In order that a countable group G be amenable, it is necessary and
sufficient that there exists a nondegenerate probability measure p. on G such that

9) lim, || p — 8Blin " =0
for all g € G (p» is the n-fold convolution of p).

Proor. Sufficiency obviously follows from Reiter’s condition.

The proof of necessity is of main interest and consists in a direct construction of the
desired measure using Reiter’s condition. This construction is not trivial; for instance, the
measure in question cannot be chosen finitary for certain groups (see 6.2).

Let e € Ko C K, C - - - be an increasing sequence of finite sets exhausting G, {¢;}2: and

{e:} 21 two sequences of positive real numbers such that Y2, ¢, = 1 and ¢; decreases to zero.
Let {n;} be a sequence of integers such that

(10) (tl + e+ t,‘._l)n' <§;.

The group G is amenable, hence by Reiter’s condition there exists a sequence of probability
measures a, on G with finite supports A,, = supp a.. such that the following condition is
satisfied:

11) | am — atm || < &m, V& € B = K U (Aps) ™.

Obviously, the measures a,, can be chosen to satisfy the condition 4,, = supp am D Bn.
Now let

(12) n= 2:=1 tmOm

and show that p is the desired measure.
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Let g be an element of G, then g belongs to A,,—; for a certain natural m. Denote the
element n,, of the sequence {n;} by n. Consider the n-fold convolution of u:
(13) I"'”=2ktk1 coo by O Koo ® O,

where the sum is taken over all multi-indices &2 = (k;, ---, k.) with nonnegative &;.
Subdivide the sum (13) into two summands:

= Z|k|<m tkl oo tk"akl Keook Qp

(14)
v2 = pn — »1 (| k| = max;k;).
Evidently
(15) D1l = Sistam th -+ th, = (6 + o+ t)™ <im.

Consider now the measure »;:
(16) Ve = Z“’lim tkl e tknakl*...* o, .

Fix a multi-index & = (ki, .- -, k,) such that | 2| = m. Let j be the lowest index such that
the inequality k; = m holds; then we can rewrite = o, *---* a;_in the form

(17) 0 = 01 * ak].* 02.

Since the inequality k2; < m holds for every i < j by the choice of j, the inclusion supp a,
C An— also holds for every i < j (the sets A,, increase). Since j = n we get the inclusion

(18) supp & C (Am-1)""".
Besides that, g € A,,—; and therefore supp g6 C (A-1)"; hence by (11) the inequalities
(19) " A, — g01*ak].|| < &m, " O, — 01*akl " < Em

hold. Consequently

(20) lgbi*an, — Orixan, || < 2ém.
Hence

(21) | g01*anx 02 — 61% an* b2 || < 26,
ie.,

(22) lgd — 0| < 2¢m.

The latter inequality implies

(23) lgve — v2|| < 2€nm.
Since || »1 || < & (hence || gv1 || < ex) we finally obtain

(24) [l gun — pnll < 4€m.

The proof is completed because the sequence of norms {|| gu. — . ||} -1 is monotone non-
increasing and the sets A,, exhaust G (hence every g belongs to all A,, with sufficiently
large m and || gun — || —» 0).

REMARK 1. The case of an arbitrary locally compact o-compact group can be dealt
with in the same way by replacing finite sets K; by compacts, etc.

REMARK 2. The measures a; obtained by Reiter’s condition can be chosen symmetric.
Then the constructed measure p is also symmetric and the sequence of its convolutions
converges to a bi-invariant mean on G.
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4.4. Furstenberg’s conjecture. The proven criterion and Theorem 4.2 imply the fol-
lowing:

THEOREM 4.4. For every countable amenable group G there exists a nondegenerate
symmetric probability measure p. such that the boundary I'(G, p) of the corresponding
random walk is trivial.

Passing (if necessary) from the measure u to a convex combination of its convolutions
(this replacement does not change the boundary I'—see [37, 66]), one can assume the
support of the measure u to be all of G. Thus Theorem 4.4 proves the following conjecture
due to Furstenberg [26]: A group G possesses a measure p. whose support is all of G and
for which the boundary T'(G, p) is trivial iff G is amenable.

5. Amenability. Folner’s and Kesten’s conditions. For the sake of completeness,
we consider here another important quantitative invariant connected with the random
walk—the spectral radius A( G, p) of the corresponding Markov operator. Below we give a
simple direct proof of the equivalence of Folner’s and Kesten’s conditions and on the basis
of this proof we obtain estimates for the probability pu.(e) of returning to the identity
element e in n steps by means of the speed of growth of Folner sets on the group. Further,
we discuss some conjectures and examples connected with the latter characteristic.

5.1. Criteria of amenability. At the moment, a good number of amenability criteria
are known (see [28, 69]), but Folner’s condition seems to be the simplest and most
profound of them. Fdlner’s condition for discrete groups can be formulated as follows:
Given a finite subset K C G and € > 0. A finite subset A C G is called a right Félner set for

the pair (K, ¢) if
(1) |AgAA|<e|A|, VgEK

Then existence of a right-hand invariant mean on G(i.e., amenability of G) is equivalent
to existence of Folner sets for every pair (K, €). (In this Section we consider (for technical
reasons) right-invariant means on G. Their existence is well known to be equivalent to
existence of left-invariant (or bi-invariant) ones [28], which were dealt with in the previous
Section.)

Other amenability conditions can be easily deduced from Folner’s condition. Reiter’s
condition used in Section 4 is among them. Various modifications of Folner’s condition are
important in applications, particularly, in the theory of G-dynamical systems (e.g. [55]).

Another important amenability criterion is the condition stated by Kesten [39, 40]
which connects the existence of an invariant mean on a group with the rate of decrease of
the probabilities of returning to the unit element of the group e, and with spectral
properties of the Markov operator of a random walk in the space #2(G). By the criterion
a group G is amenable iff the equality

(2) A(G, p) = lim sup, (p.(e))"" =1
holds for every symmetric probability measure u on G(here A(G, u) is the spectral radius
of the Markov operator P* attached to the measure u (see 0.2) in 2%(G)).

5.2. Correspondence between Kesten’s and Folner’s conditions. Now we shall state
a direct connection between Kesten’s and Folner’s conditions. Let P be the Markov
operator in £*(G) assigned to the random walk (G, u):

(3) Pf(g) = Y f(gx)p(x).
Then the following equality can be easily deduced
(4) Il'n(g) = <8e1 Pnsg), gE G,
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(here (fi1, f2) = Y. f1(8) f2(g) is the scalar product in #*(G)). Note that the operator P is
selfadjoint iff the measure p is symmetric. If P is selfadjoint then its square @ = P?is a
positive operator in #*(G). Obviously || @ || = || P|| =< 1. Consider the spectral representation

of @:

1
(5) Q =f t dE (1),
)
where E is a projection-valued measure on #*(G). Then
1
(6) .Ur2n(e) = (891 Pznse) = (Qn89> 8e> =J tr dY(t)
0
where
(7) Y(A) = (Ed, 8.), AC[O, 1],

is the corresponding spectral measure.
Since the spectral radius of @ is completely determined by its diagonal spectral measures
and (Es8g, 8;) = (Ead., 8.) for every g € G, we get

(8) r(Q) = sup supp y = lim, (2 (e))/"
and
9) r(P) = Vr(Q) = M(G, p) = lim sup, (p(€))"".

Note that p.(e) > 0 for every even n by the symmetry p. Hence the limit
lim,, (u.(e))"/" exists iff the period of u is one (i.e., iff u,(e) > 0 for all sufficiently large n).

THEOREM 5. If a countable group G is amenable then the spectral radius A(G, p)
equals 1 for every symmetric probability measure p on G. Conversely, if A\(G, p) = 1 for
some symmetric measure j. whose support generates G, then G is amenable.

ProoF. 1) Let G be an amenable group. If the support of y is finite then by Folner’s
condition there exists a nonzero e-invariant function for P in ¢%(G) for every ¢ > 0 (i.e.,
| Pf — fll < || fIl). For instance, one can take the characteristic function of a Folner set for
supp p. Hence the norm of P(and the spectral radius) is equal to one, i.e, A(G, p) = 1. If
the support of u is infinite then for every ¢ > 0 there exists a finite subset 7. C supp g such
that u(7.) > 1 — ¢ and we can take for almost invariant function the characteristic function
of a Folner set for 7. with sufficiently small e.

2) Let A(G, p) = 1 for a symmetric non-degenerate measure u on G. Fix a finite subset
K C @G. Passing (if necessary) to a n-fold convolution of the measure , we can suppose that
supp p contains K. Consider a decomposition of the measure p into a convex combination
of two symmetric probability measures g = ap1 + (1 — a)ps, ie., P = aP; + (1 — a) P,
where P; are selfadjoint and | P;|| = 1. Then |P|| < a || P, || + (1 — a)|| P:||, hence | P.|| =
1. Thus we can assume that the measure p is finitary and supp p contains K. Now, there
exists an almost P-invariant function f € £%(G), i.e., | f — Pf|| < ¢| f]|. We can take for f the
characteristic function of a finite subset A C G (see proof of Theorem 3.6.3. in [28]). By the
finiteness of supp u,

min{p(g):g € supp p} =8> 0,

hence either P/4(g) = 1 or Pl4(g) =1 — & for every g € G. Thus

(10) sV[ADAg|/2 = s\[A\Ag| = |f - Pfl=e | fl =eV[Al, g€ K.
Hence A is a 2¢6°/3%-Folner set for K. The theorem is proved.
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5.3. Estimation of spectral measure. The first part of the proof of Theorem 5.1 can
be made constructive to give an estimate of the spectral measure through the growth of
Folner sets. Thus we can obtain effective estimates of the spectral measure y and
probabilities pz,(e).

THEOREM 5.2.
[36] Let A. C G be an e-Folner set for T = supp p. Then for every h <1

1— 2¢/h?
(11 1—-h 1))z~
) y([ D A,
and
_ 2
(12) pne) = (1 — hyr 1= 2¢/R

[Al -

The final estimate of u2.(e) for given G and p now can be obtained by maximization of
the right-hand side of (12) as a function of 2 and e.

ExaMPLE. Consider the group G: (see 6.1) with a symmetric measure u concentrated
on the generators given in 6.1. Using the method from [62] we obtain the following e-Fdlner
set for supp u:

(13) A.={(x,f):x € C, flzrc = 0}

where

(14) C={x=(x1,---,xk)EZ":Osxis—l—}
€

is the cube with edge 1/¢ in Z*. Thus

(15) |A. | =27 e*

and by simple computations we obtain the estimate

(16) pzn(e) = exp(—cyn®*/#**D)

where c; is a constant depending only on k.

REMARK 1. It is interesting to compare the estimate (16) with the asymptotic behavior
of the Golod-Shafarevich series (e.g. [14]) for the same groups given in [7]:

17) gosha,(G) ~ exp(n*/**?)

REMARK 2. Note that the estimate given in Theorem 5.2 depends on supp g only and
thus it seems to be rather imprecise. So, for the abelian group Z* with a symmetric
measure concentrated on generators and Folner sets

1
(18) A,,={x=(x1,-u,xk):OSxis——}
£
we get fizn(e) = cx/n?*, but in fact pz.(e) ~ cx/n*? (see [60]).
REMARK 3. Finally we emphasize that the problem of interrelations between spectral
properties of P and algebraic characteristics of G is an interesting and complicated one.

For instance, it is even unknown when the spectral measure v is absolutely continuous
with respect to the Lebesgue measure.

5.4. Growth of Folner sets; localizing conjecture. The problem of ascertaining the
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least possible growth of Félner sets for a given amenable group which was first outlined in
[62] becomes more interesting in connection with Theorem 5.2. The “localizing conjec-
ture” proposed in [28] that given an amenable group G with finite generating set U, the
powers U” become for all sufficiently large n (K, ¢)-Folner sets for any given pair (K, ¢) is
false. In fact, if G is of exponential growth and | U"gA U™ | < ¢| U™ | for all sufficiently large

n and g € U, then
(19) | U = | U1+ €| UJ).

Hence lim, | U | = 1, which contradicts the exponentiality of G.

(For examples of amenable groups with exponential growth see Sections 6.1, 6.6. It
should be mentioned here that Olshanskij [71] recently constructed an example of a finitely
generated periodic non-amenable group. This example disproves the well-known conjecture
[28].)

Recall that superexponential growth of Folner sets for groups of exponential growth
follows from very fast decrease of spectral measure y([1 — A, 1]) as A tends to 0 (see 5.3).
Several interesting questions appear in this connection.

1. Does there exist an exponential amenable group G such that the cardinalities of
(K, €)-Folner sets grow not faster than exp(1/¢) for a given subset K C G?

2. Given a fixed growth of Folner sets (as a function of ¢) does there exist a finitely
generated countable group with this growth?

3. It was proved in [28] (Theorem 3.6.6) that given a non-exponential group G with
finite generating set U, the sequence U” contains an infinite number of (K, ¢)-Folner sets
for any pair (K, ¢). It is not clear whether all the U" are (K, ¢)-Folner sets for sufficiently
large n in this case. This assertion was proved for abelian groups ([28], Theorem 3.6.5) but
the proof essentially depends on special properties of vector groups. Remark that Gromov’s
theorem [30] reduces the problem for polynomial groups to the case of nilpotent ones.

6. Examples. This section is devoted to the determination of the boundaries for
several interesting classes of groups with measure. Random walks on groups G, = Z* x
Y2+Z> (cross product of Z* and ¥, z+Z>) are considered in Sections 6.1-6.5. The study of this
class of groups with measure enables us to construct some new nontrivial examples.
Further we consider random walks on the affine group of the dyadic-rational line (6.6), on
the infinite symmetric group (6.7) and on the free group (6.8).

6.1. The groups Gy and random walks on them. Let Z* = Y%, Z be the k-dimensional
integer lattice and ¥ 2+ Z, be the direct sum of isomorphic copies of the group Z; = {0, 1}
which are indexed by elements of Z*. It is useful to regard the group ¥ z+Z. = Fo(Z*, Z)
as the additive group of finite configurations on Z* (with the operation of pointwise
addition mod 2). The value of a configuration f € Fo(Z*, Z,) on an element x € Z* will be
denoted by f(x) and the support of f by supp f:

Q) supp f= {x € Z*: f(x) # 0}.

Let Gy = Z* < Fo(Z*, Z>) be the cross product of the groups Z* and Fy(Z*, Z2) (the
lattice Z* naturally acts on F,(Z* Z.) by shifts). The group Gy as a set consists of the
ordered pairs g = (x, f) where x € Z* and f € Fy(Z*, Z;) and has the following group

operation
(2) (%1, A)(x2, o) = (%1 + X2, /L + T f2)

where T is the action of Z* on F(Z*, Z.) by shifts:
®3) (TN ) =fly—x), x,y€Z*fE Fo(Z* Zy).

The groups G are solvable of length 2, they are finitely generated with generators a..,
..+, az and & (the a; are the generators of Z*, § is the configuration on Z* consisting of
only one point—the zero of Z*) and they have exponential growth.
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Now let 1 be a probability measure on G,. The increments of the random walk (G, p)
will be denoted by (x;, f;) (i.e. (x;, f;) are i.i.d. random G-valued variables with distribution
). Then

4) (yn; ¢n) = (xn; fl) e (xn; fn)

is the position of the random walk (G, ) at time n. The definition of the group operation
on G; implies the following formula expressing the subsequent state of the random walk in
terms of the preceding one and the corresponding increment:

(5) Yn+1 = Yn + Xn+1, On+1 = ¢p + Ty,,fn+l-

6.2. A solvable group for which any finitary nondegenerate measure has nontrivial
boundary. Consider a finitary nondegenerate measure u on Gi(k = 3). Since every
nondegenerate random walk on Z* is transient for % = 3 [60], the first coordinate y, tends
to infinity for almost all trajectories {(y», )} n-o of the random walk (G, ). The measure
u is finitary, hence the support of the configuration T}, f,+1 and any fixed finite subset of Z' k
are mutually disjoint for sufficiently large | y. | (here | z| = max;| z;| for any z = (21, - - -, 2z)
€ Z*). Thus the sequence of values ¢,(z) becomes constant for large n a.s. for any fixed z
€ Z*. In particular, the subset

(6) a={(x,f) € G:f(0) = 0}
of Gy is a trap, and the corresponding set of trajectories
(7) A = {{(Yn, n)}n=0:1im, 6, (0) = 0}

is a tail set. The set A is nontrivial by nondegeneracy of p, hence the boundary I'(G:, ) is
nontrivial. Thus we proved:

ProPOSITION 6.1. Let u be a finitary nondegenerate probability measure on the group
Gr(k = 3). Then the boundary I' (G, p) is nontrivial.

COROLLARY. The entropy h(Gx, u) is positive.

REMARK. Since the groups G; are solvable and, by the same token, amenable, there
exists a nondegenerate probability measure p with trivial boundary I'(G%, p) (Theorem
4.4). This measure p cannot be finitary for £ = 3 as follows from the above. Moreover, the
entropy H(u) for such a measure appears to be infinite.

6.3. A group of exponential growth for which any finitary symmetric measure has
trivial boundary. Consider the group G; with symmetric measure p whose support
consists only of the elements (0, &), (2, 0), (—z, 0), where z is the generator of Z and & is
the configuration on Z charging the zero only. Consider the projection {y.}r-o of a
trajectory {(Y», ¢n)}n=o of the random walk (Gy, p) from G, onto Z. Since y, = x; + -+
+ x, where x; are ii.d. Z-valued random variables with a finitary symmetric distribution
(projection of u onto Z), Kolmogorov’s classical inequality for sums of independent random
variables implies the inequality

8) PE{{(¥n, dn)}oco:Ve=n |y|=n**}=1- D/n'?

where D is the variance of the increments x;.
Thus the random walk hits the set

9) a, = {(x,f) € G:|x| = n** supp fC [-n**, n**]}

in n steps with probability close to 1. The cardinality of the sets a, grows subexponentially,
i.e. log| a.| = o(n). The measure p is finitary, so that

(10) min{u(g):g Esupp p} =§>0
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and

(11) min{u.(g):g € supp p.} = 8"
Finally we get

(12) H(p,) < log|a,| — D/n'*log &",

ie., H(u.) = o(n), hence A(Gi, p) = 0 and I'(G, p) is trivial.

We have considered here, for the sake of simplicity, only measures p concentrated on
generators of Gi, but our considerations are also applicable to any finitary symmetric
measure ¢ on G;. Thus we obtained:

PROPOSITION 6.2. The entropy h(G, p) equals to zero (and the boundary I'(G1, p) is
trivial) for any finitary symmetric measure p. on G.

REMARK. This example disproves the conjecture from [1] that every nondegenerate
finitary measure on a group of exponential growth has nonzero entropy. The following
problem is still open: whether a measure with nonzero entropy exists on any group of
exponential growth (see 1.3).

6.4. A criterion for boundary triviality for groups G.. Stabilization of the sequence
{¢-(0)} for almost all trajectories {(yn, ¢n)}n-o in the example from 6.2 enabled us to
obtain a nontrivial tail set. One can also give examples of more complicated “tail behavior”
when the sequence {¢.(2z)} has no limit, but the difference ¢.(z1) — ¢ (22) becomes stable
as. for all 2;, 2; € Z* [38]. At the moment we have no complete description of the
boundary I'(Gy, p) for arbitrary u just as for the symmetric group—6.7 and the free group—
6.8). It is unknown whether the tail sets determined by the behavior of the configurations
¢» on finite subsets A; C A, C --. C Z* (UZ-, A,, = Z*) form a base for the whole tail o-
algebra. However, we can give the following simple sufficient condition for boundary
triviality.

PROPOSITION 6.3 [38]. If the induced random walk on Z* is recurrent then the
boundary " (G, p) is trivial.

ProOF. The subgroup G% = {(x, f) € Gi:x = 0} is a recurrence set for the random
walk (Gh,u), hence the boundary I'(Gy, p) is canonically isomorphic to the boundary of G
with an appropriate measure (cf. Lemma 4.2 from [25]). The latter boundary is trivial
since G is abelian. Hence the boundary I'(G, ) is also trivial.

The proven Proposition together with Proposition 6.1 gives a necessary and sufficient
condition for boundary triviality for finitary measures, generalizing Proposition 6.2.

PRrROPOSITION 6.4. The random walk on the group Gy, determined by a finitary measure
u has trivial boundary iff the projection of the random walk onto Z* is recurrent. In
particular, the boundary I'(Gy, ) for a symmetric finitary measure u is trivial for k = 1,
2 and nontrivial for k = 3.

In 6.5 we shall give an example of a measure p such that the boundary I' (G, p) is trivial
in spite of transience of the corresponding random walk on Z'.

6.5. A probability measure on a solvable group for which the sequence of convolutions
converges to a right-invariant but not left-invariant mean. Convergence of the convo-
lutions of a measure u to a left-invariant mean on G is equivalent (by Theorem 4.2) to
triviality of the corresponding (right) random walk. Since the one-dimensional distributions
coincide for right and left random walks, the entropic criterions of boundary triviality
(Theorem 1.1) implies that convergence of the convolutions to a right-invariant mean is



RANDOM WALKS ON DISCRETE GROUPS 483

equivalent to convergence to a left-invariant mean for measures y with finite entropy H(u).
The following example demonstrates that this equivalence does not hold if the entropy
H () is infinite. (This example was partly influenced by an example from M. Rosenblatt’s
book [59]. The authors are obliged to B.A. Rubshtein, who pointed this paper out to

them.)

Evidently, the left random walk determined by p is canonically isomorphic to the right
one determined by the reflected measure i (see 0.2). Thus the problem is reducible to
construction of a measure p with trivial boundary I'(G, i) and nontrivial boundary
I'(G, ).

Consider the following measure u on the group G::

3

1
u(1,0) = ry p(=1,0) = g (0, &) = o,

RO, 8) = p0, 8 +8) =3,

p(0, 82) = (0, &1 + 82) = (0, do + 82) = (0, do + &1 + &2) =%,

(13) e e e e e e e

1
(En > 0, 2:=0 & = 5 N Z;T:o ne, = OO).

The measure p is nondegenerate and H () = oo.
The inverse element of an element (x, f) € G is

(14) (x, )7 = (=x, T-f).

In particular,

(15) ©0,N7=(0,f), (x,07"=(-x,0),
hence

ﬂ((), f) = M((), f); ﬁ(x, 0) = M(—x’ 0)‘

It is easy to show that I'(G, ) is nontrivial (the induced random walk on Z is non-
symmetric and the measure p is concentrated on the configurations charging the positive
semi-axis of Z only). The proof of the triviality of I'(G, [1) is more complicated (for details
see [38]). The definition of i implies that fi,(Yn, f + ¢n)/fn(Yn, ¢n) —» 1 for almost all
trajectories {(¥», ¢n)} n-o of the random walk (G, 1) and all configurations f. Hence every
bounded ji-harmonic function on G is trivial and I'(G, fi) is also trivial (cf. Theorem 4.1).
Thus we obtain:

PRrOPOSITION 6.5. There exists a solvable group G and a nondegenerate probability
measure j. on G such that the boundary T'(G, [i) is trivial and the boundary T'(G, p) is
nontrivial, i.e., the sequence of convolutions of u, converges to a right-invariant mean on
G, but not to a left-invariant mean. '

6.6. Nontrivial boundary for random walk on the affine group. Consider the group G
= Aff(Z['4]) of matrices g ‘11) where p = 2%, g = m/2" (k, m, n € Z) with the operation

of matrix multiplication—the affine group of the dyadic-rational line. The group is
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solvable of length 2, has exponential growth and can be determined by the generators a

“\0 1 01
image of the group G = Z < Fo(Z, Z) under the canonical homomorphism 7: G — G

x k
16) 7, f) = <§ =2 ‘k))

= (2 0) and b = 1 1) and the relation b%a = ab. The group G is the homomorphic

Thus, the study of the boundary I" for random walks on G can be reduced to the study
of the boundary T for random walks on G and its behavior under the action of 7. Namely,
if fu is a measure on G with p = 7 ° Ji then the boundary I'(G, ) is the quotient of the
boundary I'(G, i) with respect to the measurable partition into ergodic components
corresponding to the action of the kernel of «# (see [66]):

an ker 7 = {(x, f) € G:x = 0; 3 f(k)2* = 0).

In particular, if I'(G, fi) is trivial then T'(G, u) is also trivial.

The theory of random walks on the group G is analogous to that of random walks on
the group G1 =Z < Fo(Z, Z2) (cf. 6.4). Let {(x, ¢n)} n=0 be a trajectory of the random walk
(G, 1. If the configurations ¢, converge (a.s.) to a configuration ¢.. on Z (hence I'(G, i) is
nontrivial) and the sum Y:-o ¢-(k)2* is finite a.s., then the action of ker = on the
configuration space does not change the value [Yx-o ¢« (%)2%] ([x] is the integer part of x).
Thus there exists a nontrivial ker 7-invariant measurable function on the configuration
space and I'(G, p) is nontrivial. Note that the measure p can be chosen symmetric (but
nonfinitary). On the other hand, it is easy to show that the boundary I'(G, p) is trivial for
every finitary symmetric measure p on G (cf. 6.3).

6.7. Nontrivial boundary for random walk on infinite symmetric group. Consider the
symmetric group ©. of finite permutations of a countable set. The group . is countable
and locally finite. Every finitary measure u on &, is contained in a finite subgroup by its
local finiteness, thus the boundary I'(®.., p) is trivial for these measures. Nevertheless, the
following is true:

PROPOSITION 6.6. There exists a symmetric probability measure p. with finite entropy
H(u) on the group ©. such that the boundary I'(©., p) is nontrivial.

Proor. Let V be a countable set. Consider the “natural” right-hand action of &, on
V by finite substitutions:

(18) v-g=g"v), veEV, gE G.,.

The main idea of the proof consists in the construction of a measure p on &, such that the
homogeneous Markov chain on V with transition probabilities

(19) P (x1] %) = p{ g € Cu:g 7 (%) = %1}

(which is induced by the natural action of ©.) has a nontrivial exit boundary. Evidently,
the inverse image of a tail set of the induced chain is a tail set of the random walk. Thus,
nontriviality of the exit boundary of the induced chain implies nontriviality of the boundary
I'(®x, w). )

It will be useful to regard V as the set of sequences v = (vi, +--, U,) of finite length
0=<|v|=n<o (v;=0,1). Define two sequences of elements of S,:

(U],"',Un,O), i=n
a;(vy, ++o,0) =91, v+, Un-1), t=n—10,=0
(1, =+« , Un) otherwise
(20) ,
(U],"’,Un,l), tL=n
bi(viy -, ) =4 (V1, c¢+,Un1), I=n—1Luv, =1
V1, +++, Un) otherwise.
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In other words a, exchanges the elements of V,, = {v:|v| =n} and of V;4; = {v:|v|=n
+ 1, Un+1 = 0}, and b, the elements of V,, andV;.; = {v:iv=n + 1, v,4+1 = 1}. Now it is easy
to demonstrate that the measure p defined by

21) plas) = p(b;) = %

where Y {20 a; = 1, is as desired for an appropriate choice of the sequence {a;} (for details
see [38]).

REMARK 1. The measure p charges only the elements of &, of second order (a? = b}
= e), hence p is symmetric.

REMARK 2. The support of the constructed measure u does not generate all of S..,, but
a simple modification of the given construction provides an example of a nondegenerate
symmetric measure .’ with nontrivial boundary.

REMARK 3. The measure u with nontrivial boundary I'(S., u) can be chosen to have
the entropy H(u) finite. On the other hand, the entropy A(®., p’) equals zero for any
finitary measure u’ by the local finiteness of ©.. This fact demonstrates that in general
there exists no approximation of a measure . in a countable group G by finitary measures
uw® such that the entropies h(G, u?) converge to h(G, ).

REMARK 4. It is unknown, whether the boundary I'(©.., ) admits a complete descrip-
tion in terms of the Markov chain induced by the natural action of &, on a countable set
V, and, in particular, whether triviality of the exit boundary of the induced chain implies
triviality of the boundary I'(&.., u).

REMARK 5. The problem of describing all Markov chains on a countable set, induced
by a random walk on the group of its finite substitutions is, evidently, equivalent to that
_ of describing all convex combinations (not only finite) of finitary bistochastic matrices.

6.8. Random walks on the free group. Let % be the free group of rank % with the set
of generators 95, = {ax+1, -+, @} (@i' = a-;). The Martin boundary of random walks on
% for some classes of measures was investigated in a number of papers. The case when p
is concentrated on the set of generators 2, was dealt with in [21, 48] (see also [20]). In this
case the initial segments of the words y, coincide for sufficiently large n, i.e. the words y,
converge to an infinite noncancellable word y. for almost all trajectories{y,}»-o of the
random walk. The Martin boundary (coinciding here with its active part) can be naturally
identified with the compact of infinite noncancellable words (ends of %.—see [61])

(22) F={ai,ai, +++:0i, € Dy, I + bns+1 7 O}.

Thus the boundary I'(%., u) (coinciding as a measure -space with the active part of
Martin boundary) can be identified with %, and the exit measure » on %, can be completely
computed. The Martin boundary for an arbitrary finitary measure on % also can be
identified with % [15].

The problem of description of the stationary boundary (or the Martin boundary) for
nonfinitary measures is still open. The words y, as before converge a.s. to an infinite word
(G. A. Margulis oral communication), but it is unknown whether the tail sets determined
by the infinite words exhaust the whole tail o-algebra of the random walk. It should be
noticed that the set Z, of infinite words for the free group %, of infinite rank is not compact
in the natural topology and, hence, cannot serve as the Martin boundary of a random
walk.

7. Comments and complementary notes. In this Section we give bibliographic
comments (of course, not complete) and complementary remarks to the main text.
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0. The investigation of boundaries of nonabelian random walks started with the Martin
boundary—it was determined in [20, 21] for free and nilpotent groups (for general Martin
theory see [12, 18, 19, 54]; the Martin theory for random walks on locally compact groups
is given in [6]).

The Poisson boundary for semisimple Lie groups was defined by Furstenberg in [23,
24]. This was motivated by the fact that the Poisson boundary for the group SL(2, R) of
the motions of the Poincaré disc coincides with the boundary circle, and the Poisson
representation in this case coincides with the classic Poisson formula connecting the values
of a harmonic function inside the unit disc with its boundary values.

The stationary o-algebra (and the stationary boundary) can be similarly defined for
arbitrary homogeneous Markov chain with countable state space [33, 54]. The traps were
called in [9] and [54] “almost closed sets” and “regular sets”; they also were used in [22]
for the definition of the Feller boundary which coincides in fact with our stationary
boundary. The term “trap” seems to be the most adequate for this notion. The connection
between the notion of trap and the notion of the “end of group” used in topology [61]
makes itself conspicious; this connection was also pointed out in [41]. These notions
coincide for the free group (see 6.8), but they differ in general and the problem of their
interrelations is worth further investigation.

We underline that it is the nondegeneracy of u that permits us to define the quasi-
invariant action of G on the stationary boundary. Nevertheless, the results of the Sections
1, 2 hold true also for adapted measures u (u is adapted if the group generated by supp p
is all the G).

The definitions of the exit boundary and of the tail o-algebra are also taken from the
general theory of Markov processes [19, 33]. Equality of the tail and the stationary
g-algebras (P* - mod 0) can be easily deduced from Derrienic’s 0-2 law for homogeneous
Markov processes [16]. The authors came to know the paper [16] only after [65] had been
published and the first proof of the equality was obtained by more direct considerations.
If the measure pu is aperiodic then the o-algebras & and & coincide ¢ P*-mod 0 for any
initial distribution 6. If d = 1 is the period of u then any stationary set A can be canonically
subdivided into d mutually disjoint tail sets. It is the fact that the tail and stationary

- o-algebras for random walks coincide that enables us to use the entropic technique for
investigations of the stationary boundary I' (G, ), since the tail partition can be canonically
represented as the measurable intersection of a decreasing sequence of coordinate parti-
tions.

1. The entropy A(G, p) for discrete groups G was defined by Avez in the paper [1]. In his
next paper [2] he proved (by rather complicated means) that the equality A(G, u) = 0
implies triviality of the boundary I'(G, p) for finitary u (see also [3]). A definition of
h(G, ) (in terms of differential entropy) for continuous groups G with measure p absolutely
continuous with respect to the Haar measure on G was given in [4] and there it was proved
that A(G, ) = 0 implies triviality of all bounded y-harmonic functions on G. This theorem
applied to discrete groups means that A(G, u) = 0 implies that I'(G, p) = {-} (e, I'is
trivial) for arbitrary u. Equivalence of the conditions A(G, u) = 0 and I'(G, p) = {-} for
discrete groups had been first shown in [65]. Here we give this proof. Another proof based
upon Kingman’s subadditive ergodic theorem was later independently given by Derrienic
[17]. Generalization of the criterion from Theorem 1.1 to continuous groups is an interesting
problem. Absence of continuity properties for differential entropy of continuous partitions
simildr to these of ordinary conditional entropy (see [57]) seems to be one of the main
obstacles to this generalization.

2. Theorem 2.1 also had been published in [65]. Another proof was given independently
in [17].

3. Although the entropy A(G, p) was formally defined in [1], the differential entropy of
the boundary E (T, v, u) (coinciding with A(G, u) by Theorem 3.1) had begn used earlier by
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Furstenberg [25] in investigations of boundaries for SL(n, Z), n = 2, 3. In fact, he used
statements close to our Theorem 3.2 (also see [32]). Note that the proof of inequality (22)
from Theorem 3.2 is also valid for continuous groups and it permits one to obtain for these
groups another proof of the implication A(G, p) = 0 = T'(G, p) = {-} (cf. [4]). It is
interesting to find out when the inequality (22) holds with equality for continuous groups.
This problem is equivalent to that of finding necessary and sufficient conditions for
triviality of boundary in entropic terms (see above comments to Section 1).

The Radon-Nikodym transform is a special case of a well known construction from the
ergodic theory of dynamical systems: a G-dynamical system (X, ») with quasi-invariant
measure » and generator Y can be realized by shifts in the space of functions on G by
means of the map

1 yix— {Zﬂ (x)\lf(gx)} ERC.
4

geq

In our case the generator v is the unit function / and important properties of the Radon-
Nikodyn transform (e.g. compactness of supp rn°)) are due to peculiarities of the random
walk and its boundary.

4. This section is also devoted to a detailed exposition of the results announced in
[65]. The proof of Theorem 4.2 uses Nelson’s proof of the classic Liouville theorem [53]
(also see [4]). Another proof of Theorems 4.3 and 4.4 similar to ours was given indepen-
dently by J. Rosenblatt [58] after the paper [65] had been published.

5. Theorem 5.1 is well known but the given simple proof is new. The proof of Theorem
5.2 is given in [36]. Remark that the indubitable connection between analytic character-
istics of the random walk on G and spectral properties of the corresponding Markov
operator P* in ¢*(G) and ¢*(G) is still poorly understood. The spectrum of P* in £*(G)
seems to depend on properties of p to a larger degree then the spectrum in ¢%(G). For
instance, nontriviality of the boundary I'(G, p) is equivalent to existence of nontrivial
invariant functions for P* in ¢*(G) (see 0.3). The problem of finding conditions for
symmetric u (i.e. when P* is selfadjoint as an operator in ¢*(G)) which imply reality of the
spectrum of P* in ¢*(G) is of special interest. The spectrum of P* is not real for a
symmetric finitary nondegenerate measure p on any group Gy [46]. Thus interrelations of
boundary triviality and reality of the spectrum of P* are nontrivial (cf. 6.4). This problem
is also connected with the problem of completely symmetrical (= Hermitian) group
algebras. The investigated examples are also very close. Recall that the group algebra
¢'(G) is Hermitian if every selfadjoint element of it has real spectrum as an operator in
¢(G) (or in ¢(G)). This definition differs from the usual one [10] only in formulation.
The group algebra can be called positive Hermitian if every positive (as a measure on G)
selfadjoint element of £*(G) has real spectrum in ¢(G) (or in £*(G)). The coincidence of
these two notions is still an open question (also see [47]).

6. The first examples of determination of boundaries of random walk were given in [13,
21]. Triviality of boundary for random walks on abelian groups was proved in [13] and on
nilpotent groups in [21] (also see [49, 51]). The first example of nontrivial boundary (for
free group) was given in [21].

The problem of finding conditions for nontriviality of the boundary for sufficiently
general groups with measure (even for solvable groups) is difficult and all examples known
to the authors are listed in the present paper.

Sections 6.1-6.7 are the summary of the paper [38]. The group-theoretic construction
used in the definition of the groups G is well-known as the “direct wreath of groups”. For
instance, Gy is the direct wreath of the passive group Z; with the active group Z* (notation:
Z3Q Z¥)—see e.g. [45]. Vershik in [62] proposed to use the groups G as examples in the
study of analytic characteristics of groups (and random walks on them). The groups G
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provide us with another series of examples: their group algebras are non-Hermitian [46].
Remark that a group similar to our Gy (but more sophisticated) was used in [35] also for
the construction of an example of a non-Hermitian group algebra. This Hulanicki’s group
also can provide an example of nontrivial boundary on a locally finite solvable group [38]
(cf. 6.7).

The following interesting algorithmic problem is connected with investigations of
boundaries for the free group: to find an algorithm which solves the problem of boundary
triviality for groups determined by one relation (the measure p can be assumed to be
equidistributed on generators) [64].

The problem of a complete description of the boundary is more difficult than that of
finding a nontrivial stationary set. For example, it is unknown whether infinite words
exhaust the whole boundary of random walks on the free group. The analogous questions
for random walks on the symmetric group and on the groups G, are also open (cf. Section
6). The following plausible conjecture is worth mentioning in this connection: every G-
invariant measurable partition £ of the boundary I'(G, p) such that the action of G on the
factor T'/¢ is effective, is trivial. The single example of an invariant partition of the
boundary is the partition £z of T into ergodic components with respect to the action of a
normal subgroup H—in this case the action of G on I'/éw = I'(G/H, px) is evidently
noneffective [66]. Note that for groups SL(n, Z), n = 3, there exist no nontrivial invariant
partitions at all [50]. It should be noticed here that the action of the free group #on the
space Zwith any quasi-invariant measure is tame (= approximable) [68, 72].

Continuous groups are beyond the scope of the present paper. Boundaries of semisimple
Lie groups were treated in [5, 26]. An example of nonsymmetric measure on the affine
group “ax + b” with nontrivial boundary was given in [5]. Our example from 6.2 seems to
be the first example of a symmetric measure on a solvable group with nontrivial boundary.
An analogous example for continuous groups can hardly be constructed, because every
symmetric measure with compact support absolutely continuous with respect to the Haar
measure on a connected amenable Lie group has trivial boundary as follows from [31].
The proof of the fact is based upon the structure theory of Lie groups and an entropic
criterion from [4]. The very intriguing problem of interrelations between boundaries of a

. continuous group and of its lattices is still solved only for certain measures on SL(n, R)

and SL(n, Z) [25, 32].

Added in proof. In a recent paper [73] Ledrappier (using equality of the entropy
h(G, p) and the differential entropy E(T', », u)-see Section 3-proves that for a large class of
random walks on discrete subgroups of SL (Z, C) the boundary is the Riemannian sphere

S
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