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NECESSARY CONDITIONS FOR SAMPLE BOUNDEDNESS OF
p-STABLE PROCESSES!

BY MICHEL TALAGRAND
University of Paris VI and The Ohio State University

We extend to general p-stable processes the lower bound that Marcus and
Pisier established for strongly stationary p-stable processes. This bound also
extends the results of the author on general Gaussian processes.

1. Introduction. For a space T provided with a pseudometric d, denote by
N(T, d, €) the smallest number of open balls of radius ¢ that cover T. Consider
an index set T and a Gaussian process (X,), . r indexed by 7. Provide T with the
pseudometric d(t,u) = (E|X,— X, |?)"/2 If X has a version with bounded
paths, a result of Sudakov [6] shows that sup, . ,e(log N(T, d, €))/2 < co. In the
stationary case, Fernique [2] showed that Dudley’s sufficient “metric entropy”
condition [1]

(1) /0 “(log N(T, d, £))/* de < oo

is also necessary for the sample continuity of Gaussian processes. Marcus and
Pisier [5] extended the Dudley-Fernique theorem to strongly stationary p-stable
processes, 1 < p < 2, as well as Fernique’s necessary condition to the case p = 1.
They also extended Sudakov’s result to general p-stable processes, 1 < p < 2.

Fernique [2] has given sufficient conditions weaker than (1) for sample
continuity (resp. sample boundedness) of Gaussian processes. The author has
shown [7] that these conditions are necessary, and the structure of abstract
Gaussian processes is now well understood. In this paper, we extend the neces-
sary conditions to p-stable processes, 1 < p < 2. Our result extends the “neces-
sary” part of the Marcus-Pisier result to the nonstationary case and also
extends their own extension of the Sudakov result.

The condition we give is optimum of its type. The difference with the
Gaussian case is that it is, however, not sufficient. This is due to the well-known
fact that the properties of p-stable processes, for p # 2, are not entirely de-
termined by the pseudodistance that they induce on the index set.

For 1 < p < 2, a random variable 0, is called (real-valued symmetric) p-stable
if for each A,

E expiNd, = exp(—|\]P).

Then E|6,|" < oo for r < p.
A random vector (X,..., X,) is called (real-valued symmetric) p-stable if
there exists a positive measure p on R” such that for all sequences (a;)™, of R”,
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we have

(2) Eexp(i zn: anj) = exp(—'/;n

=1

n
Y aB;
j=1

dM(B))-

Hence I ,a;X; is distributed like (f|Z7-,a;8;” du(B))'/76,. In particular, for
1<i<j<n,r<1,wehave
r\1/r r\l/r D /p
(EIX, - X,1")"" = (EG,1)"( [18, = B dp(B)| -
This shows that one can define for r < 1 a pseudodistance d, on the index set by
d (i, j) = (E\X, - X,I")""

and that all these distances are equivalent.
A process (X,),cr is called (real-valued symmetric) p-stable if for each finite

sequence ¢, ..., t,, the random vector (X,,..., X, ) is p-stable. We fix once and
for all r < 1 (say r = 1/2), and consider the pseudometric d on T given by
(3) d(¢,u) = (EIX, - X,I")"".

We denote by D the diameter of (T, d). For 1 < p <2, we define q by
1/p+1/g=1.Forp=1,weset ¢g=c0.Forp>1,0<t<1, weset h(t)=
(log(1/¢))'/9, and we set h_(t) = log*log(1/t).

THEOREM A. Let 1 <p <2. Let (X,),cr be a p-stable process. Suppose
that (X,),cr has a.s. bounded sample paths. Let M >0 be such that
P({sup, ,c7|X, — X,| = M}) < 1/2. Then there is a probability measure m on
(T, d) [where d is given by (3)] such that

(4) VxeT, j(;Dhq(sup{m({t}); d(x,t) <e})de < KM,

where K , depends on p only. If, moreover, (X,),cr has a.s. continuous sample '
paths on (T, d), there exists a probability measure on m on (T, d) such that

lim sup j:hq(sup{m({t}); d(x,t) <e})de=0.

e=0 xeT

2. Tools. Marcus and Pisier [5], elaborating on earlier ideas of LePage [3],
brought to light the essential fact that p-stable processes are mixtures of
Gaussian processes. This fact will also be central here. Let Z be a positive
random variable (r.v.) satisfying P(Z > ) = e~*. Let (Z;,), be independent
identically distributed (i.i.d.) copies of Z and let ;= Z, + --- +Z;. Let U be a
finite set, (X,),cy be a p-stable process on U and p be a finite positive measure
on RY asin (2). Let Y be a r.v. valued in RV and distributed according to p/||p||
and let (Y;)2, be i.i.d. copies of Y that are independent of the (Z;). Denote by
(2, =, P) the basic probability space. Consider another probability space
(', Z', P’), on which is defined an i.i.d. sequence (g;) of normalized Gaussian r.v.
Denote by Pr the product probability on £ X €’
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LeMMA 1 ([5]). For some constant c( p), depending on p only, the RV-valued
r.v. on @ X Q' given by

(5) c(P)Iul? ¥ gi(«)(Ti(w)) ™ Yi(w)
i=1
has the same law as (X,),cy-

Given w, (5) defines a Gaussian process ( X{) given by
X = () T £(10) 7 E()(0).
The canonical distance d,, associated with (X®) is given by
®)  aXs.0) = (c(pIMI?)" T (1)) (¥ w)(s) - (o) (0))"

i=1

For p <2,let a givenby 1/a =1/p — 1/2.

LEmMMA 2 ([4] and [5]). For some constant d(p), depending on p only, we
have for s, tin U, ¢ > 0,

(7) P({we€ Q;d,(s,t) <ed(s,t)}) < exp(—d(p)e®).

PrROOF. For A > 0, (2) implies that for some constant a(p) we have
Eexp(i\(X, — X,)) = exp(—APa(p) dP(s, t)).
On the other hand,

}\2
E_exp(i\( X, - X,)) = exp( - ;df,(s, t)),

SO

}\2
exp(—APa(p) d?(s,t)) = Ewexp( - ;df,(s, t))
and (7) follows by Chebyshev’s exponential inequality. O

The natural approach to Theorem A would be as follows (at least when T is
finite). For p = 2, the result has been proved in [7], so for each w we have a
probability measure m,, that satisfies (4) for d_ and A,, and one can try to take
for m a mixture of the measures m. Unfortunately, this simple approach seems
to be doomed to failure because there is no way to ensure that the choice of the
various measures m,, is made in a coordinated way. Instead, we are going to use
the machinery of [7] to reduce the proof of Theorem A to the proof of a simpler
(but still nontrivial) statement.

A finite metric space (U, §) is called ultrametric if &(s, u) <
max(d(s, t), 8(t, u)) for s, t,u in U. So, two balls of U of the same radius are
either identical or disjoint. We denote by %, the family of closed balls of U of
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radius 4. Let i, € Z be the largest such that card %, = 1. We set y = 4%, For
x in U, we denote k(x, i) the number of disjoint balls of %;,, that are contained
in B(x,47"). We set

£(U) = L 47 (log k(x, ).
i>i,
Let LL(t) = log}(logt) for ¢ > 1 and LL(1) = 0, so we have ¢ < exp(2-L®"). We
set
£(U)=vy+ Y 47'LL(k(x,i)).
i>i,
[The term vy is needed for the technical reason that LL(2) = 0.] We set
¢9U) = inf £4(U), ¢&°(U) = inf £2(U).
xeU xeU
In Sections 3 and 4, we will prove the following fact.

THEOREM B. Let1 < p < 2. Consider a finite ultrametric space (U, §) and a
p-stable process (X,),cy. Assume that the pseudo distance d induced by X is
greater than 8. Let M > 0 be such that P({sup, ,cr|X,— X | > M}) <1/2.
Then £§%(U) < K, M, where K, depends only on p.

The bulk of Section 2 of [7] is devoted to prove, when q¢ = p = 2, that
Theorem A follows from Theorem B (which in that case is due to Fernique). The
arguments make no use of any theory of stochastic processes, but only of
constructions in abstract metric spaces; only minor modifications are needed to
show that Theorem A follows from Theorem B for any 1 < p < 2. To prove
Theorem B, we have to show that sup, ,c 7| X, — X,| is large whenever {%(U) is
large. The information that £%(U) is large is very precise. This is what makes the
proof possible.

3. Proof of Theorem B for p > 1. By hypothesis P({sup; ,cy|X; — X, =
M}) < 1/2. By Fubini’s theorem, there exists a set Z C & with P(Z) > 1/3 such
that for w € Z we have

P’({ sup |X¢ — X¢| > M}) <3/4.
s, telU

Using the known fact that all the quantiles of the quantity sup; , | X" — X;’|
are equivalent, the Gaussian case of Theorem A, that is Theorem 1 of [7], shows
the following:

LEMMA 3. For w in Z, there exists a probability measure v, on (U, d ) such
that

veelU, [ h(n({yeUsdys, ) <e}))de < KM,
0

where K is a universal constant.
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The function h,(t) is convex for ¢ < e~ '/2, but is not convex for 0 < ¢ < 1.
For that reason, it will be more convenient to use the function ¢(t) = hy(t/3)
(the choice of 3 is rather arbitrary). This function is convex for 0 < ¢ < 1. To
prove Theorem B, we will exhibit a subset A of &, with P(A) > 3/4, and
constants K,, K,, K,, depending on p only, such that for w in A, for each
probability measure » on U, we have

®  £9U) s Kysup [“o(o((y € Us d(x, y) < e})) de + Koy,

xeU

We observe that @(¢) < hy(t) + (log3)"/2, so for « € A N Z we have

sup fK”(p(v({y € U; d,(x, y) < ¢}))de < KM + K,y(log3)""%.
xeU"*0
Since (U, d) is of diameter greater than or equal to y/4, we obviously have
y < K,M, where K, depends on p only. Combining with (8), this proves
Theorem B.

The philosophy of the approach is that a large value of £9%(U) means that
(U, d) is very big in an appropriate sense. Since (7) means that d (s, t) is, most
of the time, not much smaller than d(s, ¢), we can expect that U will be big with
respect to d_, for most values of w. The construction is made rather delicate by
the following feature: While (7) tells us precisely how d (s, ¢) behaves compared
to d(s, t), if we take another couple (s’, t'), we have no information about the
joint behavior of d (s, t), d (s', t).

We need an auxiliary probability measure A on (U, §). This measure is
homogeneous in the sense that the mass of any ball of radius 4~' is divided
evenly among all the balls of radius 4~*~! that it contains. Equivalently, for any
x inU, M{x}) = (I, ; k(x, i) "

Let us now fix i > i,. Let B,, B, € %;, with B, # B,. Let b, ¢ > 0. We define

A(B,, By, b,c) = {we @A M{(x, y) € B, X By; d,(x,y) < bd™'})
> cA(B,)A(B,)}.

LEMMA 4. P(A(B,, B,, b, ¢)) < (1/c)exp(—d(p)b™*).

PROOF. For x in B,, y in B,, the ultrametricity shows that &(x, y) > 47 s0
d(x,y) > 47" Let

Ax, y) = {0 € Q;d,(x,y) < b4™'},
so by (7) we have
E(]'A(x,y)) = P(A(x: y)) < exp(—d(p)b_"‘).

So we have

E(f [, 5l AN(2) dA(2) | < MBONByJexp(~d(p)b™).
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The result follows since

A(B,, B,, b, c) = {w eq; f fB XBZIA(x,y)(w)dA(x)d}\( y) < c)\(Bl)A(Bz)}.
]

For B € %,, and j < i, there is a unique B’ € %; that contains B. We denote
by k(B, j) the number of elements of %, , contamed in B’,s0 k(B, j) = k(x, J)
whenever x belongs to B. In particular k(B i) is the number of elements of %, , ,
that are contained in B. Also, if j<i’<i,and B€ %,, B € B;, BC B, we
have k(B, j) = k(B’, j). We denote by %/ the subset of %; that consists of the
balls B in %; for which

k(B,i) = 2[k(B, Jj).
J<i
Set 7 = 6/d(p). Consider B in %/, so that k(B, i) > 1.
Given two balls B, B, € %,,,, B,, B, C B, B, # B,, we consider the event

C(B, B, B,) = A(B,, B,,(rlog(2k(B, i)))”"*, (2k(B, i)) ).

It follows from Lemma 4 that we have

9) P(C(B, B, B,)) < 2~ *k(B, i) ",
For D in %,, we consider the event
(10) A(D) = UC(B, B,, By),

where the union is taken over all choices of j > i, B in #/, BC D, B,, B, in
®;.1, B, # By, B,, B, C B.[If no such choice is possible, we set A(D) = 2.]

LEMMA 5. P(A(D)) < (21, k(D, j)) ™2

PRrOOF. The proof goes by decreasing induction over i. If i is large enough
that D has only one point, then A(D) = @, so that P(A(D)) = 0. Assume now
that we have proved the lemma for i + 1, and let D be in %,;.

CaSE 1. Assume D € %/, s0 k(D, i) > 2. Let
A—l = U{A_(D,); D' €%, D' c D},
= U{C(D B, B,); B,, B, € %,,,, B, #+ B, B, B, c D}.

We have A(D) = A, U A, We have, by the induction hypothesis, and since
k(D,i) > 2,

P(&) < (D121, )] < 3(2T1KD. )
We have, using (9),
P(A,) < 3k(D,i)* - 27*k(D, i) * < 3k(D,i) % < %(2[‘[k(D ]))

J<i

and P(A(D)) < (21, ;k(D, )"
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Casg 2. We have D & %/; with the same notation as before, A(D) = A, so,
by the induction hypothesis,

P(A(D)) < k(D, i)(z [T1x(D, j))_2 < (2 TTk(D, j))_2.

J=<i J<t

This completes the proof. O

Let A=Q\ A(U), so P(A) > 3/4. We fix w € A and we proceed to prove
(8). For B € %/, we set

«(B, i) = 4"%(7 log(2k(B, i))) .
LEMMA 6. Fix B € %B/. For y € B, let
H,= {x € U;d,(x, ) < a(B, i)).
Then for each y in U,
A(H,n B) < 3\(B)/2k(B, i).

ProoF. Suppose otherwise, and let y be in U with
}\(Hy N B) > 3\(B)/2k(B, i).

For C in %, ,, C C B, we have \(C) = A(B)/k(B, i). It follows that there exist
at least two balls B,, B, of %, ,, B,, B, C B such that for [ = 1,2 we have

A(H, N B,) > A\(B,)/2k(B, i).
For x,, x, in H,, we have d (x,, x,) < 2a(B, i), so we have
A @ AM({(x,,x,) € B, X By; d(x,, x,) < 2a(B,i)})
> A(B,)N(B,)/4k(B, i)’.

This, however, contradicts the fact that w & C(B, B,, B,) and concludes the
proof. O

Let x be in B. Since the function ¢(#) is convex, we have

I = A(B)™" [¢(+(H,)) dA(x)
(11) > (p(}\(B)_l [ d)\(x))

=q>(fgdv),

&(y) =\(B)"'A(H,n B).
It follows from Lemma 6 that 0 < g < 3/(2k(B, 7)), so we have
I > (log(2k(B, i)))>.

where
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We get, since1/2 — 1/a = 1/q,

(12) a(B, i)l = 472~ 2(log(2k(B, i))) .
For x in U, let us enumerate as
i(x) < --v < il(x)(x)

the indexes j such that B(x,47/) € #/. Note that i)(x) = i,. For I < I(x), let
b(x,1) = a(B(x,474®), i)(x))
= 47421 log(2k(x, i,(x))))_l/a.
For x in U, let

1(U) = l EI: 474=)(log(2k(x, i,(x))))_l/a.
<l(x)

We have

fvl }l:( )b(x, Do(v({y € U; d,(x, y) < b(x,1)})) dA(x)

= ZfBa(B, De(v({y € U;d(x, y) < a(B,i)})) dA(x),

where the summation is taken over each value of i and each B € %/. Using (12),
we see that this latter quantity dominates

4721/« Y 4~i(log(2k(B, i)))"/IA(B),
where the summation is over the same range. But this quantity is
4‘27‘1/“fnx(U) dA(x).
U

We now observe that for ! < I(x), we have b(x,l+ 1) < b(x,1)/4. Also,
b(x,1) < 771/, since k(x, iy) > 2. It follows that if we let K, = 7~ 2/% we have

l % )b(x, Do(»({y € U;d,(x, y) < b(x,1)}))

< 2/(;K2y<p(v({y € U;d (x,y) <e}))de.

In conclusion, for w in A, we have shown that for each probability measure »
on U, we have

sup [*o(v((y < U; d.(x, ) = o)) de
(13) > fU( [ “o(({y € Uy do(x, y) < ¢))) de) dA(x)

> 951/ fUnx(U) d\(x).



1592 M. TALAGRAND

To prove (8), we have to evaluate this latter integral. For x in U, s < I(x) and
ig=1i(x) < -+ <ifx) <j<ig(x),
we have
k(x, j) < 22 R(x, i(x)” - k(x,i(x)*
as is shown by immediate induction over j. It follows that
(log k(x, 7)) < (27~ "log2)? + Y (2/4®log k(x, i,(x)))l/q.
1<i<s

A simple computation shows that there are constants K, K¢ such that {,(U) <
K (U) + Kgy. Since £U) < [y4(U) dA(x), this and (13) prove (8) and con-
clude the proof. O

4. Proof of Theorem B for p = 1. The overall approach is similar to the
case p > 1, but the details are quite different. We again try to find A C @ with
P(A) > 3/4 such that (8) holds. We define A as in Section 3. For x in U, i > i,
we set m(x, i) = [LL(k(x, i))/4], where [¢] denotes the integer part of . So we
have LL(k(x, 1)) < 4m(x, i) + 4, and

k(x,i) < exp(2tm=D+4),
For B in #;, j > i, we define m(B, i) as m(x, i) for any x in B. For a ball B in
%;, let
B= {(x,y) € Bx B;8(x,y) > 4771,
so(x, y) € B2\ Bif and only if x and y belong to someball B’ € %, ,, B’ C B.
It follows that A ® A(B) = A%(B)(1 — 1/k(B, i)).
For B in %,, and m(B, i) <r < 2m(B, i) + 1, define

C(B,r)={we Ao N{(x,y) € B;d,(x,y) <12747"})
> (exp(~27))A @ A(B)),
where 7 is given by 7= (d(1)/2)"/2. The proof of Lemma 4 shows that
P(C(B, r)) < exp(—2%). Let
¢(B) =Uc(B,r),
where the union is taken over all choices of r, m(B,i) <r < 2m(B,i) + 1. So

we have P(C(B)) < 2exp(—22m(B,0+2),
We denote by %/ the collection of those B in %; that satisfy

(14) m(B,i)>2 Y m(B,j)+3(i—-iy+1).

ig<Jj<i

[The reason for using i — i, + 1 instead of i — i, is to ensure that m(B, i) > 3.]
We denote, for D in %,

AD) = U{C(B); BcD,Be Ug&;}.

J=i

[If no such B exists, we set A(D) = @.]
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LEMMA 7. For D in @, we have P(A(D)) < (4I1; _ ;<*(D, j)~>.

PrROOF. The proof is very similar to that of Lemma 5 and goes by decreasing
induction over i. Since A(D) = @ if D contains only one point, the formula
holds for i large enough. Assuming now that it has been proved for i + 1, we
prove it for i.

Case 1. D e %.. We have A(D) = A, U C(D), where
A, = U{A(B); B€ %,,,, Bc D}.
By the induction hypothesis,
_ -2
P(A}) < k(D, i)(4 1 (D, i)) :
ip<J<t
Since D € %/, we have k(D, i) > 2, so that
-2
P(&) <34 T k(D.))) -
p<J<i
We also have P(C(D)) < 2exp(—22™P-9*2) Now
m(D,i) =22 [] m(D,j)+3(i—i,+1),

lh<Jj<i
SO
22m(D, i) > 2i—i0+ 12maxj<i(4m(D, H+4) > Z 24m(D, j)+4.
ih<Jj<i

On the other hand, since m(D, i) > 1, we have 2° exp(—22™D:H*1) < 1, and
since k(D, j) < exp2*™PD:N*4) we get

—2
2exp(~27®9+) < (4 T1 K(D, J)
lp<Jj<i

and this completes the induction.

Case 2. D ¢ %/. Then
-2 -2
P(A(D)) < k(D, i)(4 IT k(D, j)) < (4 IT &(D, j)) .
ih<J<i h<j<i
The proof is complete. O
Weset A =9\ A(U),so P(A) >1—1/16. We fix w in A, and we proceed

to prove (8). For x in U, we denote by i;(x) < -+ < i, (x) the indexes i such
that B(x, i) € %/. (It is possible that no such index exists.) For [ < I(x), we set

tl(x) = 2il(x) + m(x’ il(x))’
u(x) = 2i)(x) + 2m(x, i) (x)) + 1.

By definition of &/, we have m(x, i,(x)) > 2m(x, i) whenever i < i;(x); so we
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have u,(x) < t,(x) whenever I’ <l < [l(x). Let us fix x € U and [ < I(x), and
let B = B(x,4~%“®), Let us fix r such that
m(x,i,(x)) <r<2m(x,i(x)) + 1.
Fix y € U, and define a by
}\({z €B;d (y,2) < 72"‘14‘il(")‘1}) = a\(B).
Then we have
A @ A({(u,v) € B d,(u,v) < 727474"1}) > a®\(B).
So we have
A® )\({(u, v) € B;d (u,v) < 1-2"4‘il(")‘1})
> M(B)(a® - 1/k(x, i\(x)))
> A ® A(B)(a? - 1/k(x, i)(x))).
Since w ¢ A(B), we see that
a® < 1/k(x,i,(x)) + exp(—27").
Since r — 1 < 2m(x, i;(x)) and k(x, i,(x)) > exp(2*™* u(*)) we get
a® < exp(—22") + exp(—22""D) < 2exp(—2%""D),
So, if we set

g(’y) = }\(I_B)}\({Z €B,d (y,2) < 72—'—14—i,(x)—1}),

we have shown that 0 < g < 2 exp(—2%"~), For a probability measure » on U,
the computation of (11) shows that

(15) A(B)‘I/;;p(y({y; d(x,y) < 7.2—1'—14—i,(x)—1})) d)\(x) > or-1
On the other hand,
/22_"(x)_4¢(”({y; d,(x,y) <7e}))de

—u(x)—4

u(x)+3

> Y 277 %(u({y d(x, y) < 127%}))),

i=t(x)+4

so combining with (15) [where we take r = i — 3 — 2i,(x)], we get

[N ([ 013 e, ) < 7e)) e

(16) > 27% "4 ®m(x,i,(x))A(B)

=25 /B 4~ 4®m(x, i)(x)) dA(x).
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Using the fact that u,(x) < ¢,(x) for I’ < [, and that 274* < y, we get by
summation from (16)

[ =) [o(({5: dulz, ) <¢))) de
(17) co
> 72_5/ﬂx(U)d)\(x)»
U

where 1,(U) = I, _ .yt~ ““'m(x, i)(x)) and where K, is a universal constant.
For x in U, s <l(x) and i(x) < -+ <iyx) <j<i,,(x), we have, by
immediate induction over j, that

m(x, j) <3(j =iy +1)3/ "% + ¥ 3/ 4®m(x,iy(x)).
l<s
For this, we deduce by summation that for some universal constants K, K,, we
have

gx(U) < KBY + Kan(‘U)’

so §(U) < [((U)dMx) < Kgy + Kofyn,(U) dA(x). .
Combining with (17), this proves (8) and finishes the proof. O
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