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A FUNCTIONAL CENTRAL LIMIT THEOREM FOR
RANDOM MAPPINGS

By JENNIE C. HANSEN
Tufts University

We consider the set of mappings of the integers {1,2,...,n} into
{1,2,...,n} and put a uniform probability measure on this set. Any such
mapping can be represented as a directed graph on n labelled vertices. We
study the component structure of the associated graphs as n — oo. To each
mapping we associate a step function on [0,1]. Each jump in the function
equals the number of connected components of a certain size in the graph
which represents the map. We normalize these functions and show that the
induced measures on D[0, 1] converge to Wiener measure. This result comple-
ments another result by Aldous on random mappings.

1. Random mappings have been studied in some detail in recent years.
Typically, for each n > 0, a uniform probability measure P, is defined on 7,,, the
set of all maps from (1,2,...,n} into {1,2,..., n}, by P(¢) = 1/n" for each
¢ € T,. In this context it is natural to investigate the limiting distributions, as
n — oo, of various characteristics of random mappings. Most properties of a map
¢ € T, can also be described in terms of an associated directed graph G, on n
vertices, labelled 1,2,..., n, which represents ¢ as follows. An edge from i to j
exists in the associated graph G, if and only if ¢(i) = . It is obvious that any
limit law for some property of random mappings can be interpreted as a limit
law for some characteristic of random directed graphs and vice versa. Limit
distributions for many properties of the random graphs associated with random
mappings have been computed (see [9], [10], [12]). In this paper we study only
the component structure of the associated random graphs.

It is known (see [4]) that as n — oo, the expected number of connected
components in the random graph G, is asymptotic to (1/2)ln n. Nevertheless,
the components of a typical graph G, for ¢ € T,,, do not evenly partition the set
{1,2,..., n}. Kolchin [9] determined, for fixed m, the limiting distribution of the
size of the mth largest connected component in a random mapping. It follows
from this result that for any 0 < ¢ < 1,lim,_, , P(¢ € T, the size of the largest
component of G, is greater than cn) > 0, i.e., for large n, a typical element of T,
has a component whose size is comparable to n. On the other hand, Kolchin also
showed that the limiting distribution of the number of components of fixed size
k is Poisson with parameter 1/2k. So, for example, lim, _, , P(¢ € T,: G, hasa
component of size one) =1 — 1/ e.

Aldous [2] improved Kolchin’s results by proving a global limit theorem for
the component structure of a random mapping. We describe this result. For all
n>0, i>0 and ¢ €T, define M*(¢p) to be the size of the ith largest

Received August 1987; revised May 1988.

AMS 1980 subject classifications. Primary 60C05; secondary 60B10.

Key words and phrases. Random mappings, random graphs, digraphs, Wiener measure, compo-
nent structure.

317

[Sa
4
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to é%%
The Annals of Probability. RIK®RN

www.jstor.org



318 J.C. HANSEN

component in G, if G, has at least i components, otherwise define M;"(¢) = 0.
Define the map L,: T, » v by L, (¢) = 1/n(M} (), MJ($),...), where Vv =
{(xy, xg5,...) x4, X9,... 20 and X2 x; = 1}. Aldous showed that the induced
measures P,o L' on v converge weakly, as n — oo, to the Poisson-Dirichlet
distribution on v with parameter 1/2. This result establishes the limiting joint
distribution of the sizes of the m largest components.

Nevertheless, some information is not contained in Aldous’ theorem The
result does not yield the limiting distributions for the sizes of components of size
o(n). To recover this information we define, for each n > 0, a function X,:
[0,1] X T,, » R by letting X (¢, ¢) equal the number of connected components
in G, of size less than or equal to n’, where 0 < ¢ < 1 and ¢ € T,. The graph of
X,(:,¢) is an increasing step function with jumps occurring at In 2/In n for
k=1,2,...,n. The size of a jump at Ink/Inn is equal to the number of
connected components of size £ in G,. Thus, for any ¢ € T, the component
structure of G, is retrievable from the graph of X, (-, ¢). We define the normal-
ized functions Y,: [0,1] X T,, - R by

X,(t,¢) — (¢/2)lnn
/(1/2)nn

For fixed ¢ € T, the function Y, (-, ¢) is an element of D[0,1], the space of
right-continuous functions with left limits on [0, 1]. Thus Y, induces a measure
P,oY 'on (D[0,1], 2), where 2 denotes the o-algebra generated by the Borel
sets of D[0,1] with respect to the Skorohod topology on D[0,1] (see Billingsley
[3]). We now state our result.

Y(t’(i’) =

n

for0<t<1land ¢ €T,.

THEOREM 1. The sequence of induced measures P, ~Y, ! converges weakly to
Wiener measure W on (D[0,1], 2) as n — co.

REMARKs. This is a global result which complements Aldous’ theorem. One
consequence of this result is a central limit theorem, when ¢ is fixed, for the
sequence of random variables X, (¢, ), since Y, (¢, ) converges weakly to the
normal distribution N(0, ¢) with mean 0 and variance ¢. When ¢ = 1, we obtain
the central limit theorem for the number of components in G,; this was first
proved by Stepanov [12]. We also mention here that a similar Brownian motion
result has been proved by DeLaurentis and Pittel [5] for random permutations.
We obtain Theorem 1 by a different approach which can be generalized. In
particular, by an argument similar to the proof given below, we are able to
establish (see [7]) a functional central limit theorem for the Ewens sampling
formula (see Kingman [8]) which arises in population genetics. The result for
random permutations is then a special case of the result for the Ewens sampling
formula. _

To prove Theorem 1 we first define another sequence of functions Y,: [0,1] X
T,*— R such that
(1) lim sup p(Yn("¢)’ Yn(,¢)) =0,

n—0 4T,
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where p is the Skorohod metric on D[0,1]. We establish that the new sequence
of measures P, oY, ! converges weakly to Wiener measure. It then follows from
(1) that the original sequence of measures, P,°Y, !, also converge to Wiener
measure (see [3]). _

To show that the measures P, Y, ! converge to W we must check that the
finite-dimensional distributions of the measures P,oY ! converge weakly to
those of Wiener measure, ie., for any 0 =¢,<¢ <t,< -+ <t,<1 and
a,ay...,a;, € R,

nli__ngoPn(z(tl) < a,, Y;z(tZ) - ?n(tl) < Qy,..., ?n(tk) - ?n(tk—l) = ak)

(2)

a;
/ e~ W/ Ut gy
— 00

k 1
B t=l_Il y2m(t; — t;_,)

where Y,(¢) denotes the random variable Y,(¢, -) on T, and we must show that
the sequence of measures P,°Y, ! is tight on (D[0,1], 2). Given that the
finite-dimensional distributions converge, it suffices to prove (see [3])

©) E(Y,(2) - %.(4)) (%ta) - %(2))" < (F(8) - F(1))"

forany n € Z* and 0 < ¢, < ¢t < t, < 1, where F is a strictly increasing continu-
ous function on [0,1] with F(0) = 0 and « > 1.

To establish (2) and (3) above, we must compute expected values for certain
random variables on T,. In Section 2 we develop a tool for this purpose by
modifying a technique first used in Shepp and Lloyd [11]. We then prove
Theorem 1. We will often make use of Stirling’s formula, so we remind the reader
of the inequality

1
V2an"t1% " < nl < \2q n”“/ze‘"(l + 6—)
n
for all n > 1. We adopt some notational conventions. For a, 8 € R*, the symbol
Y2 . means the sum over all 2 € Z* such that a < k£ < B, and we interpret this
sum to be 0 whenever there is no 2 € Z* such that a < k2 < 8. Also, if
f(z) = £2_,f,2* is a power series, then [2"] f(z) = f,, the coefficient of the z” in

f(2).

2. In this section we construct a tool for the evaluation of the expectations
which must be computed in order to prove Theorem 1. For 2 > 1, define a,(¢) to
be the number of connected components of size % in G,, where ¢ € U%_,T,. Let
A, be the number connected mappings in T,. A straightforward counting
argument yields an expression for the joint distribution of a;, a,,...,a, re-
stricted to T, in terms of A, A,,..., A,. For m,, m,,..., m,, nonnegative
integers such that ¥}_,km, = n, .

n!l (A \™ 1
(4) Pn(al=m1""’an=mn)=n_].—[(_k_!) —_—:
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Note that P(a; = my,...,a, = m,) =0 if X¥}_ km, # n. The value of A, for
each n > 0 is given in Lemma 2.1, which we state without proof (see [4]).

LeEMMA 2.1. Foreachn e Z*, A, = (n— 1)\ n*/k!.

We now define an auxiliary system of sequence spaces. For 0 < z < 1, let
Q, = {(m,, m,,...): m; is a nonnegative integer for each i > 1} and let P, be the
product measure on 2, such that the distribution of the value of the kth
coordinate in the product space Q, is Poisson with mean (A,/k!)(z/e)*. Define
the random variable » on @, by v(m,, m,,...) = X¥_,km,. It follows from the
next lemma that » is finite P,-almost surely for 0 < z < 1.

LEMMA 2.2. For 0 < z < 1 and any nonnegative integer n,
p z\"n" 1
_ Z(V_n)_(e) n! S(z/e)’
where S(z/e) = X% _o(m™/m!)(z/e)™

Proor. We begin by computing the probability generating function of »
with respect to the measure P,. Since m,, m,,... are independent Poisson
variables with respect to P, for |u| <1,

[ 1 E,(u*™)
k=1

E(v)

I
: 18
[}
»
=]
—
—~~
&
_;
|
—
N
|
—_——
| N
~—
[
[ S—1

The last equality is obtained from the identity ¥¢_,(A,/k!)(2/e)* = In S(z/e).
This identity is established by a combinatorial generating function argument.
The series S(x) = L¢_(k*/k!)x* is the exponential generating function for the
number of mappings of {1,2,..., &k} into {1,2,..., k}. From this it is easy to
verify (see [1]) that exp(X®_,(A4,/r!)x") = S(x). Therefore,

P(v=n) = [u"]E(w) = [U”]S(u?z)/ s7)- (‘)% s<z1/e)

e e

for n > 0.0
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REMARK. Here is the idea behind the construction of this auxiliary system of
sequence spaces. For n fixed, the random variables ay,..., a, restricted to 7,
must be dependent since £7_,ka,(¢) = n for all ¢ € T,. Using the construction
given above we can avoid computational difficulties which arise from the depen-
dence of aj, ..., a, restricted to 7). Roughly speaking, in the space {2, with the
product measure P,, an infinite sequence (m,, m,,...) corresponds to choosing
m, components of size 1, m, components of size 2, etc., independently accord-
ingly to Poisson distributions with parameters (A,/1!)(z/e),(Ay/ 2A)(z/e)%...,
respectively. The random variable »(my, m,,...) = Zf_;km, determines the
random “size” of the “graphs” with component-type vector (m,, m,,...). By
letting the size of the graphs vary, we have gained independence of the variables
that count the number of components of each size. The probability measure P,
on Q, is related to the measure P, on T, as follows. For (m,, m,,...) € &, such
that ¥¢_,km, = n,

P((my, my,...) v = n)

_ g (Ay/R)™(2/e)"™ exp((= Au/kY)(2/)" )1/m!
(2/€)"(n"/n!)exp(~In S(z/e))

(5)

As we have noted, to prove Theorem 1 we must compute the expectations of
various functions on T, which are determined by the component structure of
elements of T,. To do this we use a transform which relates the expectations
of functions defined on €, to the expectations of functions defined on T,. Let ¥
be any function defined on £, then ¥ determiones a function ¥, on T,, as follows.
For ¢ € T,, let ¥, (¢) = ¥(ay(9), ay(d),..., 2,($),0,0,...). Let E(¥) denote
the expectation of ¥ with respect to P, and let E,(¥,) denote the expectation of
¥, with respect to P,. Using (5), we compute

E(¥) = ¥ B(r=n)E(¥p = n)

n=0

S By = n)E,(¥,) + P(v= 0)¥(D)

& b n’i 4 "En(\I’n) \I’((_))
- Ll 50t s
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where 0 = (0,0,...). Thus
00 n

© s(Z)m0 = £ 2 (2) Bw) + v0).

n=1
We note from (6), that E,(¥,) is the coefficient of z” in (e"n!/n")S(z/e)E(¥).

We now turn to the proof of Theorem 1.

PROOF OF THEOREM 1. The first step is to define functions Y,: [0,1] X T, —
R, each of which depends on a parameter z,, by

X,(t,6) — Tp_ Ay/kN (2, /)"

Y (t¢) = /1/2)nn

for 0 < t < 1 and ¢ € T,. The parameter is chosen so that z, € (0,1) and so that

no|Aek
> u ( ,,—1) <1
k=1
Thus, forall0 <t <1,
n! Ak 2, k t
—|—] - =1
,Z‘l k! ( e) g
U Ake no|Aget 1 | t
(7) <X (zf—l) + 2 ‘) ) - - (—)lnn
k=1 1| k! 2k a1 2k 2
n Ak 1
2+ S
= ,El k! 2k

To bound the right side of (7) we first note that

k=1 pip—k
= prob(U, + -+ +U, < k — 1),
j=0
where U,,..., U, are iid. Poisson random variables with parameter 1. It then

follows from the Berry-Esseen theorem [6] and Lemma 2.1 that for 2 > 1,

k-l kle~® 1

Ake‘k 1] 1 8
%o !

k' 2| k

2| = B2




FUNCTIONAL CLT FOR MAPPINGS 323

So the right side of (7) is less than 26 and
lim  sup p(Y;t( ’ d’)? Yn( ’ ¢))

n-o geT,

< lim sup sup |Y,(¢,9) - Y,(¢, )
= 4eT tef0,1]

llm sup Izz;l(Ak/k')(zn/e)k - (t/2)1n nl
n—w te[o,1] (1/2)nn
= 0.

Thus it suffices to show that the measures P, o Y, ! converge to Wiener measure.
We do this by showing the convergence of the finite-dimensional distributions of
measures P, oY ! to those of W and by establishing the bound

En(l_,n(t) - Yn(tl))z(?n(tZ) - l7n(t))2 = 640(t2 - t1)3/2 = (75t2 - 75t1)

foranyneZ*and0<t, <t<t, <1

3/2

Convergence of the ﬁnzte-dzmenszonal distributions. To show that the
finite-dimensional distributions of P, o Y, ! converge to those of W, we show that
forany 0 < t < ¢ <1 and any a, beR

@naﬁuwsmiﬂ»—fﬂ>sw

b e E/2E=0) g

\/27/ ,/2w(t'-t '/oo

The argument extends in an obvious way to the general case.

—u2/2t du

Case 1: 0 <t<t <1. Foreach n>0,let

@, = afli/20n + 3 (4y/k)(z,/0)

and let b, = b/(1/2)lnn + Zk>n:(Ak/k')(zn/e)” where z, is the parameter
which appears in the definition of Y,. Define the indicator function I, on
Un=1T, by 1,(¢) =1 for all ¢ € UZ_ _.T,, such that X7 ,a,(¢) < a, and I, (qb)

0 otherwise. Likewise, define I, on Um_lT by I,(¢) = 1if T ca(9) < b, and

I, (¢) = 0 otherwise. Extend I, to a function on Q, by letting I, oMy, my,...) =
1if ¥ m,<a, and I (ml, my,...)=0 otherw1se and s1m11ar1y extend the
definition of I, on Q, .

Observe that Pn(Yn(t) < a,Y(t) = Y(t) < b) = E(I, 1, ). It follows from

(6) that
L nle 2,
E (Ia,,Ib,,) = [(zn) ]_;l-n—Ezn(IanIbn)S(?)‘
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Furthermore, the functions I, and I, restricted to Q, _ are independent random
variables with respect to the product measure P, since they depend on disjoint
coordinates in the product space 2, .So
t
Y my<a )

B(L4) = EAL)E(5) = P,| &

Let p(n,z) =32 n_ (AR (2/e)* and p/(n, 2) = Zk>n¢(Ak/k')(z/e)k then it
follows from the construction of (£, , P, ) that the sums ¥ m, and £} .m,
are Poisson random variables with parameters w(n, z,) and p'(n, z,), respec-
tively. Thus

P(%,(1) < a,mt') - %(t) < b)

E,(1,)E(1,)8( 2

n

ka<b)

k>n'

= [(z)"] n,':,nexp(—u(n, %)~ (n, 2,))
) § (s § o
ngo g - m2=0 m! (_)

(-n(n, 2,) - w(n,2,)"

S )] § I

© 2 (p(n,2))" & (W(n, 2,))
w(n, z, b n,z, n m_"‘ m
% Py k! EO J! Z="' m! ( e )
+ [(Zn)n] nr!;n iT (_“(n’ zn)l!_ p’(n, zn))
(©)- o

Z J! e

k=0

& (u(n z,))" g (W(n, 2,))’ éo"ni_':(ﬁ)m,

where 0 < T < 1 — t’. To compute limn_HDO P(Y(t) < a,Y(t') — Y(t) < b), we
will show that the limit of expression (9) is 0 and that expression (8) converges to
the correct value as n — .

The absolute value of expression (9) is less than or equal to

nle” . (p(n,1) + w(n,1))" & 5 (u(n 1))

R =
n n" JELT . 1! s
b, ( ’ J n m,—m
p(n,1)) m™e
x Y . Y
j=0 J! m—o m!
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To estimate R, we first note that Stirling’s formula yields

Z:: m_m<1+ Z ‘/_s\/_

(1/k)LEZgk‘e™*/j! < 1/k, so for all n suffi-

We also recall that A,e */k!=

ciently large,
7 Aek nt
<% 7S 2¢'Inn.

p(n, 1) +p(n,1) = X —
=1

Using these two bounds, we have
(2¢'Inn)’ & (2¢Inn)* & (2¢'Inn)’

n

nle
R, < 3
-1/2
4 A Py k! j=0

n = n
n 1>nT
- nle® v (2t'h1n)ln4t,
n-1/2 ]
n 1>nT 2
@t'Inn)™ * (2t'Inn\’
< nit
VR Y5 TR WS

2et’'Inn

<on| T .

[nT] ’ l
© (2t'lnn "
n

) =0
The last inequality is obtained by using Stirling’s formula. Now note that for
sufficiently large n, (2t'Inn)/nT < (2et’'In n)/[n"] < }, so substituting this
bound into the above inequality yields

R, 520 (3)" T (1)< 4n'(

1)"T
",

Thus R, — 0 as n — oo, and hence the absolute value of the expression (9) goes

to0as n - 0.
To compute the limit of expression (8) recall that (8) is equal to
[(2,)")(nle”/n™)Q(2,)Lh-o(m™/m!)(z,/€)™, where
T (—p(n,2) - p(n,2)" ¢ Z (/J»(n z))'z & (w(n, Z))’
k=0 ; J!

- X
= I =

Y+ a,nt+ b,n', so for all large n,

The degree of Q,(z) is less than n'n
deg@,(2) < nT where T+ ¢t <T <1,since a, = O(n n) and b, = O(In n). If
% oCj, .27, where d, denotes the degree of Q,(2), then

we write @ (z)
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expression (8) is equal to E,so ) A(n = " enl /(n — j)n™). It follows
from Stirling’s formula that for 0 <j < d,,,

1< ((n=7)"7ent/(n—j)n") < yn/(n—n") 1+ 1/n).
Thus (8) is bounded between @,(1) = L% ¢, and Q,(1)yn/(n — n™) (1 + 1/n),

and the limit of (8) as n — oo equals lim,, , , @,(1).
To compute lim,, _, ., @,(1), we write

(u( 1))k b (w(n,1))

Q,(1) = exp(—p(n,1) — w'(n,1)) Z go 7
(10) "
& (=n(n, l)l'-u(n 1))’ @ 5 (n(n 1))" i (#(ljz' 1))’.
I>nT . k=0 Jj=0 :

The absolute value of the second term on the right side of (10) is less than or
equal to R, and goes to 0 as n — oo. The first term on the right side of (10)
equals P(Z < a,P(Z, < b,), where Z, and Z, are Poisson random variables
with parameters p(n,1) = X7 ,Ae */k! and w(n,1) = L} . Aze */k!, re-
spectively. So

lim Q,(1) = lim P(Z, <a,)P(Z,<b,)
Z,— p(n, 2z, - u(n,z,
_ s p| ot 2) w () 2)<b).

omn =°|F n\/(1/2)lnn =

To compute one of the limits above, we write

Z, — ,'L(n’zn) _ Zn_“(n’l) V""(n’l) " ,'L(n’l) —u(n,zn)
J/(1/2)nn Ju(n,1) J/@/2)Inn J(1/2)Inn ’

By the choice of the parameter z,,

n— oo

R )| 1
n—w y(1/2)lnn | n-w (1/2)nn

Also, from inequality (7),

<|p(n,1) = p(n, 2,)| + <27

p(n, z,) — (%)ln n

‘u(n,l) - (g)lnn

and so u(n,1)/((1/2)In n) - Vt as n > . Thus (Z, — u(n, 2,))/(1/2)ln n
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and (Vt(Z, — p(n,1))/ yu(n,1) converge in distribution to the same limit.
Since p(n,1) = o0 as n — oo, the normalized Poisson variable

(Vt(2, - p(n,1))) /fu(n, 1)

converges in distribution to the normal distribution N(0, ¢) and hence Z, -
w(n, 2,))/ {(1/2)In n converges in distribution to N(0, ¢). In particular

Z,— u(n, z,) 1 e,
—_—_—— < _ —u /2tdu
J@,/2)nn a) v
and by the same argument,
Z,—w(n,z, 1 . o,
lim P("_”(—l < b) fb e ¥/t gy,
n— oo — o0

J1/DIn n O

This establishes the limit for expression (10) and completes the proof for this
case.

n— oo

Case2: 0<t<t'=1 ForO0<e<1/2A1-tand n> 0, we have

P(Y,(t) <a,Y,(1) - ,(¢) < b)
(1) <P(T() <a, T -e) - T(6) < b+ k)

+B(|%(1) - T,(1 - ¢)| = V)
and

P(Y(t) < a,Y,(1) - T,(¢) <)
(12) > B(T(t) <a,T,(1-¢) - T(t) < b Ve)

~R[IT0) - Ta - o) > V).

Fixing ¢, we can compute, using Case 1, the limit of the first term in each bound
given above for P(Y,(t) < a, Y,(1) — Y,(#) < b). To bound the second term in
both cases we use Chebyshev’s inequality,

P(I70) - 7,0 - )2 ) « PO E0Z)

To bound E, (Y1) - Y1 - ¢)® we begin_by defining y; on Q, by
Ya(my, my,...) = Li, u-em,. We extend Y, (1) — Y, (1 — ¢) in the usual way to a
function on £, and note that Y,(1) — Y,(1 — &) = (v£ — p%(2,))/ {(1/2)lnn on
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Q, where pt(2) = T}, u- (Ak/k'xz/e)k Thus, by ©),

E(T,1) - %1 - )" = [(2)"] —E(T(1) - n(1-£))2s(%)

(13) = ()] o B ide))'s( 2
= () otz ).

The last equality holds since, with respect to P, , the function v, is a Poisson

variable on Q, with parameter p(z,). Using Stlrhng s formula and the bound
(A,/k)e * <'1/k, we have

2[(271) ]n'e
i Ma(22)S(z./€)
2n! 2 A, (n—-k)"*
Cntlnn, S k! (n— k)
2 D 427
<— )Y - +
lnnk>n1_,k n—=k Vvnlnn
4 | 341 LA n L
s—| ¥ z+z
Inn k>n“k 3 >3,1/4n‘/1 k/n
4 n +4 1 dx N 27
= n emn 3'[3/4\/1—x n
< b5¢

for all sufficiently large n. Substituting this bound into (13) and using Chebyshev’s
inequality we have limsup,_ P(|Y,(1) — Y1 —¢)| > ‘\1/;) < 5/e. Now take
limits in (11) and (12) to get

limsup B,(Y,(¢) < a,Y,(1) — Y,(¢) < b)

n— oo

b e /20—~ gy 4 5/e

1
27(1 —e—t) '/—oo

—u?/2t dy—mo——

V27r f
and
limiann(l_/n(t) <a,Y,(1) - Y,(¢) <b)
n— oo

e~ ¥ /2t gy, /’ —u?/21—e=t) gy, 5V .

1
iy \/27 f 2m(1 —e—t)

Let ¢ = oo to obtain the desired limit in this case.
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The bound for E(Y(t) — ,,(tl))ﬁ’( (t;) — Y,(1))%. We begin by noting that
there are two cases where E (Y (t) — Y,(,))%(Y,(t,) — Y,(2))? = 0. First, for n
fixed, if In(k — 1)/Inn < ¢, <t <Ink/Inn for some 2 < k < n then Y, (¢, ¢) =

Y, (t,, ¢) for all ¢ € T, and the expectation

E(T,(¢) - T(t)(Tuty) - T(2))" =

Similarly, if In(k —1)/Inn<t<t¢ <lnk/Inn for some 2 <k <n then
Y, (t,¢) = Y, (¢,, ¢) for all ¢ € T, and the expectation is 0. Thus the expectation
will be nonzero only if In(k — 1)/Inn <t <Ilnk/Inn and In(k + 1)/Inn < ¢,

for some 2 < k£ < n — 1. In this case

In(k+1)—Ink 1 1
> .
Inn “ klnn ~ 2ntlnn

(14) th—t, >

Thus, to avoid trivialities, we assume in the calculations below that inequality

(14) holds.
To compute the bound recall that

E,(Y,(t) - T,(t))(T,(t,) - T,(1))*

_ Waﬂ(m - %)) (Tt) - TS 7).

The functions Y,(¢) — Y,(¢,) and Y(t,) — Y,(¢) are independent random
variables on (£, , P, ), so [cf. (13)]

(G Inte” p (3 )~ 200 (B 0) - ORE

n

_ 4[(2,,)"] n!ze”E (
n™(Inn)

nt 2
Y my — pi(n, zn))

k>nh

(15) 2
> mk—nsé(n,z,,)) s(=)

k>nt

- A I o o, 2082,

where Bo(n, 2,) = T (A Rz, /) = E(TF, umy) and p(n, 2,) =
Zint(Ak/k')(zn/e)k zn(Z;;ti Mm;). We proceed to expand the right side of

(15).
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The first step is to bound the terms in the expansion by using Stirling’s
formula and the inequality A,e */k! < 1/k as follows:

z,)"|nle” z
%nﬁ(n, 2w (n, 2,)( 2

4 [ n n/ANR A A nl(n - — k)"

(Inn)® z JlkIn™(n — j — k)!

j>nt k>n'

SR VD Yy ey

j>nh k>n/4vnt

o A A (n — b —f)”_fk}

(16) 8 nt n/4An? 1
ST
(lnn) j>nt k>n

8 ‘nV:" (n—j—lz):An‘?—l 1 \/——ﬁ—;
+ TV T 5
(Inn)® konpavnt TRV M=~k

j>nh

8 2 V2min

* (Inn)® j(n=7)"

n

R n—j—k

j>nh
st.n—j>n/4

Next we bound each term on the right side of (16). First,
8 nt n/4An% 1 7

(In n)? L JkV n—j—k

j>nt k>n

82 r» n% 1

= (In n)2 j>z;:z‘l k>zn‘ }—I;
e

<72/2 (8, - )%
The last inequality follows from (14). Next,

8 nt n—j-lAn%-1 1 n
(In n)* J»E:,tl k>n§1Vn‘ YV n—j—k
g8  nf (n—j-DAnt-1 4 r
< Gy k?navn, n JI=j/n-k/n
’ 32 LA (1—j/n)A(n'2/n) dx

< — : —
(Inn)® qu J -/;;'/n yi-j/n—x
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32 B 1 ey du

< —7 .
(Inn)* ;Z5a J Intyn—j 1-u
64 1 n n'
< Y - \/1— - — /1= [1A 5
(nn)* 5 n-J n-J

64)t, —t 1
< any? B
642, —
(In n)3/2

192(¢, — t,)¥>.

To obtain this bound we have used the inequality v1 — x — /1 — y < /In(y/x)
for all 0 < x < y < 1. Finally

8 i RQan 3227 1

(In n)? jona J(m =) = Vn (In n)? Jj>nt

st.n—j>n/4

I/\

((t1 t)lnn + %)

IA

96V27 (t — t,)
< ——
Vntlnn

It follows that the right side of (16) is less than or equal to 640(¢, — ¢,)*/% This
establishes the bound for E (Y, (t) — Y,(t,)2(Y,(t,) — Y,(£))* and completes the
proof. O

<192V (¢, — t,)>.
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