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TIME INHOMOGENEOUS MARKOV PROCESSES AND THE
POLARITY OF SINGLE POINTS!

By T. S. MOUNTFORD
University of California, Los Angeles

Kesten (1969) gives necessary and sufficient conditions for single points to
be polar for Lévy processes. In this article we investigate when single points
are polar for processes obtained by adding functions to stable processes.

1. Introduction. Let {X(¢): ¢ > 0} be a stable process on R' with exponent
a € (0,2]. It has long been known that when a < 1 the single points are polar
while for a > 1 the single points are nonpolar. When a is equal to 1 (Cauchy
processes), the single points are polar in the symmetric case but not in the
asymmetric cases. Kesten (1969) gives necessary and sufficient conditions for a
Lévy process to have single points nonpolar and the above facts follow from
these [see Kesten (1969) or Bretagnolle (1971)]. If a nonconstant linear term is
added to a Lévy process the resulting process is also a Lévy process. Kesten’s
conditions show that all the processes obtained by adding nonconstant linear
terms to stable processes have singletons nonpolar except in the case of the
symmetric Cauchy process. In this article we examine the effect of adding
general functions to stable processes. For nonlinear functions, the resulting
process will no longer be a Lévy process so Kesten’s conditions will no longer tell
whether single points are polar.

Graverson (1982) showed that in two dimensions there exist functions which
when added to a planar Brownian motion result in a modified process for which
singletons are nonpolar. He further showed that for each 8 < 3, one could choose
the function to be Holder continuous of order 8. Le Gall (1987) showed that the
addition of any 3-Holder continuous function to planar Brownian motion results
in a process which has singletons polar. Throughout this article we will use the
term hits points to describe a process for which the single points are not polar.

In this article we show

ProPOSITION 1. Let {X (t): t > 0} be a stable process with a > 1 and let f
be any (possibly noncontinuous) Borel function. Then for any fixed x € R,
{(X, + f)(¢): t = 0} hits x with positive probability.

Single points are polar for the stable processes with a < 1, so Proposition 1
cannot hold when a < 1. We show
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PrOPOSITION 2. Let f: R, - R! be continuous and nonconstant and let X,
be a one-dimensional stable process of index a < 1. Then a.s. the range of
{(X, + f)(¢t): t = 0} has positive Lebesgue measure.

It will be shown that proving this proposition is equivalent to showing that
single points are not polar for the processes obtained by adding nonconstant
functions to stable processes with a < 1.

The Cauchy processes do not behave as might be expected given these results.
Since the singletons are polar for the stable processes with a < 1 and for the
symmetric Cauchy process, we might expect that the symmetric Cauchy process
would extend Proposition 2. However, as has already been noted, single points
remain polar when a linear drift is added to a symmetric Cauchy process. We
generalize this fact.

PROPOSITION 3.1. Let X be a symmetric Cauchy process and f a Lipschitz
function. Then for each singleton {x}, P(3t > 0: X(t) + f(¢) = x) =0.

There do exist functions which when added to the symmetric Cauchy process
result in a modified process having the singletons nonpolar.

PROPOSITION 3.2. Let X be a symmetric Cauchy process. For each 8 < 1,
there exists a function f*? such that:

(i) f? is Hélder of order B.
(i) The process {X(t) + fP(t): t =i 0} hits points.

Proposition 3.2 cannot be extended to the set of all functions which fail to be
B-Holder continuous everywhere for some fixed B.

ProposITION 3.3. Let X be a symmetric Cauchy process. There exists a
function f: [0,1] > R' such that at each point t € [0,1], f is not Hélder
continuous for any B > 0 and for which the process {X(t) + f(t): t = 0} does
not hit points.

Single points are nonpolar for the asymmetric Cauchy process. So one might
hope that this process could extend Proposition 1. This is not so.

PROPOSITION 3.4. Let X be an asymmetric Cauchy process. Then there exists
a function f such that P(X(t) + f(t) hits points) = 0.

In Section 3 we conjecture that for stable processes with a < 1, the modified
process

(X +(£): 2 0)
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will have single points polar if and only if the range of the function has positive
Lebesgue measure. In Section 5 we demonstrate that no part of this conjecture
can hold for arbitrary Lévy processes for which single points are polar.

PROPOSITION 4. There exist a Lévy process {Z(t): t > 0} which does not hit
points and a fixed nonrandom function f whose range has zero Lebesgue
measure such that {0} is nonpolar for the process {Z(t) + f(t): t = 0}.

2. The stable process with a > 1. The following lemma gives a criterion
for there to be no exceptional points which are not polar.
LEMMA 1. Consider a process {Z(t): t = 0} with the properties

(i) Z(t) has a strictly positive density at strictly positive times.
(ii) Z(t) has independent increments.

Then P(Z(t) = 0 for any t > 0) = 0 if and only if P(Z(t) = x for any t > 0) = 0
for all x in R .

Proor. P(Z(t) =0 for any ¢t > 0) = 0 if and only if P(Z(t) = 0 for any
t > 8) =0 for all § in R'. By the independent increments property, it follows
that for fixed & > 0, this last expression equals

ffs(x)P(Z's(t) = —x for t > 0) dx,
where the process {Z%(¢): t > 0} is equal to the process {Z(¢ + 8) — Z(8): t > 0}

and fy(+) is the density of Z(8). Since fy(+) is strictly positive, the above integral
is zero if and only if

fP(Zs(t) = —xfort>0)dx = 0.
This integral equals
fP(Zs(t) =y—xfort>0)dx
which is zero if and only if
/fs(x)P(Z's(t) =y—xfort>0)dx

is zero [using the strict positivity of fy(-) again]. This last integral equals
P(Z(t) = y for any t > 8). This shows that V 8, P(Z(t) = 0 for any ¢ > §) = 0 if
and only if P(Z(t) =y forany ¢t > 8) =0. O

Any process {Z(t) = X(t) + f(t): t = 0}, where X(¢) is a stable process and
f(-) is a fixed nonrandom curve, satisfies the hypotheses of Lemma 1 except when

X is a one-sided stable process. But in this case {Z(¢) = X(t) + f(¢): t = 0}
satisfies the hypotheses below.
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LEMMA 2. Consider a process {Z(t): t > 0} with the properties

either

(1) Z(t) has a strictly positive density on {x > g(t)} at strictly positive times
for some g(t)
or

(") Z(t) has a strictly positive density on {x < g(t)} at strictly positive times
for some g(t)
and

(i) Z(t) has independent increments.

If P(Z(t) = x for some t > 0) > 0, then P(Z(t) =y for some t > 0) > 0 for all
y > (respectively <) x.

The proof is similar to that of Lemma 1.
Using Lemma 1 or 2 and Fubini’s theorem, we see that for {Z(¢) = X(t) +
f(t): t = 0}, where X is a stable process,

P(A({X(¢):¢=0})=0) =1 ifandonlyif P(Z(¢) = x for some t> 0) =0,
Vx € R,

where A denotes the Lebesgue measure of a set. If either (and hence both) of
these conditions fails, then by the strong Markov property and the 0-1 law,
P(A({X(t):t=0})=0)=0.

PROPOSITION 1. Let {X (t): t > 0} be a stable process with a > 1 and let f
be any (possibly noncontinuous) Borel function. Then for any fixed x € R,
{(X, + f)t): t = 0} hits x with positive probability.

Proor. We use an argument from Kahane (1968) to prove that the Lebesgue
measure of the range of X, + f is positive with probability 1. By the remarks
above this will be sufficient to prove the proposition.

Define the (random) occupation measure p of X, +f by p(A) =
Ao,13((X + f)7!(A)), where Ap,,; is the Lebesgue measure restricted to the
interval [0,1]. If as. p is absolutely continuous with respect to the Lebesgue
measure, then (since the range has full y-measure) the range must have positive
Lebesgue measure. This sufficient condition will certainly be satisfied if p has a
square integrable density a.s., which by Plancherel’s theorem will hold if

1) a.s. f_oow|ﬁ(u)|2du < o,

where p(-) is the Fourier transform of p; condition (1) holds if

(@) E[” p(w)®de= [~ Bi(u)f*du < co.

We complete the proof by showing (2).
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The Fourier transform of p is given by
i(u) = f Loiu( 1)+ X(0) gy
0
S0

— 1,1 . .
i(u)? = fo fo o U (D + X ()= iu( () + Xs) ¢ ds

- f Lot F()~ 1N is X )~ X)) Gp s
0 Y0

Hence

1,1 . .
E|ﬁ(u)|2=j;j;e”“f(”‘f(s»E[e‘“‘X«(”"X«("‘»] dt ds

1,1
< e Icul®lt=sl gt ds.
ki
Integrating with respect to u, we get

j_";EIﬁ(u)l2 < jo ' jo ' f_wwe-'wl"lt—sl duds dt
SKaj:j(;llt_ﬁdtds<oo. ]

3. The stable process with a < 1.

PrOPOSITION 2. Let f: R, — R' be continuous and nonconstant and let X,
be a one-dimensional stable process of index a < 1. Then a.s. the range of
{(X, + f )X(t): t = 0} has positive Lebesgue measure.

REMARK. The proof to be given assumes that X, is two-sided but with
obvious modifications can be made to deal with the one-sided case too. In the
two-sided case, given the continuous density of X, at positive times, the
proposition states that X, + f hits 0 with positive probability at some strictly
positive time.

ProoF. We prove that for X, started uniformly on [0,1], the process
{(X, + f)(®): t > 0} hits any fixed point x with positive probability. By the
remarks in Section 2, proof of this statement is sufficient.

We shall prove our result if we can show that given x, during some fixed finite
time interval, X, + f hits the interval [x, x + 27"] for each n with probability
bounded away from 0. Our strategy is to find about 27" time points
{81, 895+ ++» Sm(ny} SO that the events

A= {(X,+f)s)elx,x+27"]}, O<is<m,
are almost independent. We then consider the random variable W, = X7, I, . If

we can show (I) E(W,) is bounded away from 0 and (II) E(W,?) is bounded away
from oo, then P(W, > 0) is bounded away from 0. This will complete our proof.
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We shall take 0 as the fixed point and without loss of generality assume that
f(0) =0 and f(1) = 1. Let ¢, = inf{¢: f(¢) = i/2"} for i = 0,1,...,2", and T =
U{(¢;}. We define a subset S of T as follows:

so=1¢t,=0.

Given that Si = tj’ SH_I = inf{tv > tJ: tv - tj < 2(0 _j)/2n}.
We continue to define the s; until either

1. s; is equal to £y or
2. 1—s;>2(1 — f(s;)). In this case s,, = 1.

Let S = U ({s;} and B (for bad) = T \ S. We now notice:

(a) The interval [0,1] contains U y! [s;, 8;,,], 80 1 > X7 (s;,, — ;).

(b) In each interval [s,, s;, ], the number of elements of B is less than or
equal to 2™(s;,, — §;)/2.

(c) Every element of B is contained in some interval [s;, s;,,].

These observations imply that |B| < 2"~ ! so |S| > 2"~ 1. The crucial property of
S is

Vji>i, f(sj) - f(s;) = %(sj -s;)
with the possible exception of j = m. As it makes no difference to the essentials
of the argument, we shall assume that this property also holds for j = m.

We now show the A; are independent enough. Recall A; = {(X, + f)(s;) €
[0,27"]} for i < m. As we assumed that X, was started uniformly on [0, 1], it is
easy to see that for each j, P(A;) is of the order of 27", so L2, P(A,) is
bounded away from 0. This completes the proof of (I); it only remains to show
(IT). For fixed i, we wish to bound ¥, P(A |A;). It is easily seen that this
expression is bounded by

2n
T P(X,(j/2™) € Lien (G + 1)/27)),
J=1
which by the stability of X, is equal to
2n

¥ P(X,1/2) € [z (G + /2n) 7))

Jj=1
this in turn is bounded by

2"
27y G e
Jj=1

o
=277 ¥ (/)"

j=1

2"
=2 ey ()"

Jj=1
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As this last expression is clearly bounded in a way not depending on rn, the proof
of (II) is complete. O

An examination of the above proof shows that much the same arguments
would work to prove the above proposition when f is a function from R, to R!,
such that there exists a closed set E C R, on which f is continuous, increasing
and has range of positive Lebesgue measure. We use this observation to extend
the above result.

LEMMA. Let f be an increasing function on R', whose range has positive
Lebesgue measure. Then there is a closed subset E of R on which f is
continuous and has range with positive Lebesgue measure.

ProorF. We may without loss of generality suppose that f maps [0,1] to
[0,1] and that its range on this interval has positive Lebesgue measure. Define
the measure on [0,1]p; by p;(A) = A(f(A)) [A(-) is Lebesgue measure]. We
form the set E by taking the intersection of a nested sequence of unions of
intervals. First pick disjoint intervals I, I,,... of length at most ;; so that
p(f7YUL)) > ||lnsll/2. We may choose compacts K, K,,... so that

(@) for all iK, c f~X(I)),
(i) pi(UKY) > |Ipsll/2.

Now successively choose the intervals I, , . and compacts K; ; . ; so that
(a) the length of every I, , . is <1077,
®d K, .o S i
© K, ... €K i i oL o CLi i s
D pi (UK, 4,00 > llrgll/2.
Now as the K; ;  ; are compact and disjoint d, is strictly positive where

d, = inf{|x — y|: x € K; Y EK; o oand iy g i F Sy Jr)e

[ 7Y Ju
Take E equal to N, U, ; K, . . By condition (d) above p,(E) > 0 and

by the definition of d, if x, y € E satisfy |x — y| < d,, then |f(x) — f(¥)| <
107" O

This lemma and the remarks preceding it give the following corollary.

COROLLARY 1. Let f: R, — R! be increasing on a set E on which its range
has positive Lebesgue measure and let X, be a one-dimensional stable process of
index a < 1. Then a.s. the range of {(X, + [ )(¢): t > 0} has positive Lebesgue
measure. ,

The proofs of Proposition 2 or Corollary 1 do not carry over to arbitrary
functions with range of positive Lebesgue measure. But it is difficult to see how
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the extra wildness of discontinuous nonmonotone functions should upset the
above conclusions. We therefore conjecture:

CONJECTURE. Let Z(t) = X(¢) + f(t) where X is stable of order a < 1.
Then the range of Z a.s. has positive Lebesgue measure if and only if the range of
f has positive Lebesgue measure.

4. The Cauchy processes. In this section we first look at the symmetric
stable process of index 1 and then at the asymmetric processes. We can summa-
rize the behavior of the stable processes of index 1 by saying that they do not
behave as might have been expected given Propositions 1 and 2.

PROPOSITION 3.1. Let X be a symmetric Cauchy process and f a Lipschitz
function. Then for each singleton {x}, P(3t > 0: X(t) + f(t) = x) = 0.

REMARK. The following proof uses ideas from Le Gall (1987); see also
Dvoretzky, Erdos and Kakutani (1961).

Proor. 1t suffices to prove the following: For fixed x, P(X(t) + f(t) = x for
some t € [1,2]) = 0. Define p, = PAt e [1,2]: X(¢t) + f(t) € (x — 277",
x + 27")); the proposition will be established if we can show p, tends to zero as
n— oo.

At time ¢, the process X + f has density

1 t
T2+ (f(2) —x)*
which is bounded for ¢ € [1, 3], so

3
E,=E [/1 L x+iyne@samydt

satisfies E, /27" < C for some C and all n. Let T, = inf{¢t > 1: (X + f )(¢) €
(x — 27", x + 27")}, s0 p, is simply the probability that T, < 2. Let F be the
o-field generated by events preceding 7. As in Le Gall (1987), we have

E|E,|F;,]

_ fmax(Tn,3) fx+2_" t Tn @ dt
7, 22 (6= T)" + (y = Z(T,) + {(T,) = f(1))" 7

On (T, < 2}, this quantity is greater than

1 tdt

K2—" 5 = K'n2™",

e t? + (27" + Mt)

from which we easily obtain the desired result,
E C

Pu= RIET, <2] = kn’
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In fact this proof shows that if f satisfies the weaker condition

Vs, t,  If(t+s) - f(£) < a(s),
where
sds

=w’

then X + f does not hit points.
The following proposition shows that Proposition 3.1 cannot be improved
much.

PRrOPOSITION 3.2. Let X be a symmetric Cauchy process. For each B < 1,
there exists a function f? such that:

(i) f# is Holder of order B.

(i) The process {X(t) + fA(¢): t > 0} hits points.

REMARK. Here we use ideas from Graverson (1982).

Proor. Following Kahane (1968), one can see that Va < 1, there exists a
Gaussian process Y, which satisfies:

1. Vs, t€[0,1], E[(Y(s) - Y (£)*] = |(¢ — s)|*
2. E[(Y(t) — Y(s)]=0.

Separable versions of this process are necessarily Hoélder continuous for all
a’ < a. Consider a symmetric Cauchy process X defined on a probability space
(2, F, P) and the Gaussian process Y, defined on a separate probability space
(2, F’, P’). As in Graverson (1982), we define the process X + Y, on the product
probability space to be

(X + Y)(t,(w,0)) = X(t,w) + Y (t, o).

By the standard argument used in Proposition 1, we will have shown that a.s.
the range of this process has positive Lebesgue measure if we can show

[ ElRw)?] du < co.

As before this quantity is equal to
f ! f ! f * B[ X0~ XoNgiuYu) = YD | du ds dt.
0°Y0 Y-
By the independence of X and Y,, this expression is equal to

/lflf” E[ X=X E[ Y- YN du ds dt,
0 Y0 Y—o0
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which is majorized by
11 [ ;
El Y= YN | du ds dt
/0 / f_ |E[e 11

</ff e~ W1e=s*/2 g, de dr

101 dt dt
Cf L T for some C.
Since this last quantity is clearly finite for @ < 1, we establish that a.s. the range
of X + Y, has positive Lebesgue measure.
By Fubini’s theorem, P’ a.s. the range of the (2, F, P) process {X(¢, w) +
Y (¢, w'): t €[0,1]} (here o is considered fixed) has positive Lebesgue measure.
We also know that for ¢ € [0,1], Y (¢, »") is Holder continuous for all 8 < aP’
a.s. So P’ as. the function Y (¢, ') satisfies conditions 1 and 2 of Proposition 3.2.
O

We now establish that the lack of suitable Holder continuity conditions is not
sufficient to cause the symmetric Cauchy process to hit points.

ProposiTiON 3.3. Let X be a symmetric Cauchy process. There exists a
function f:[0,1] - R! such that at each point t € [0,1], f is not Holder continu-
ous for any B > 0 and for which the process {X(t) + f(t):t > 0} does not hit
points.

Proor. The plan of the proof is to construct a suitable sequence of functions
f; which converge uniformly to a function f having the property claimed. We
assume that all the small numbers (g;, ;) are reciprocals of integers and fix
x # 0.

Let f, be defined by fi(t) =¢ on [0,1]. We first choose 8, such that
P(f,(t) + X(t) hits (x — 8,, x + 8,)) < 272, Next we choose ¢, such that &2 <
10~28, and define the function g, by

g,(t) = 10""81 if t = ie, with i even,

g,(t) = if ¢ = ie, with i odd,
and g, linear elsewhere. On [O 1] the function f, = f, + g, is Lipschitz, so by
Proposition 8.1 we can find §, (< 10725,) such that P(f(t) + X(¢) hits

(x — 8y, x + 8,) < 272'%, Now choose &, such that ¢272% < 10728, and define
83 to be

85(t) = 10725, if ¢t = ie, with i even,

&g(t)=0 if t = ie, wth i odd,
and g, linear elsewhere. As with f,, the function f; = f, + g; is Lipschitz on
[0,1]. Again by Proposition 3.1, we can find 85 (< 10~ 282) and continue defining

,¢, and 8 in this manner, always ensuring 272" < §,,6,,, < 10725, and
P(fi(t)+X(t)e(x 8, x + 8,) for t € [0,1]) < 272",
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This method of defining the f; ensures || f;,; — f;|| < 10728,. So f; converges
uniformly to some function f. Since by design || f — f;|| < §,/99, we have

P(f(t) + X(t) € (x — 0.998;, x + 0.998;) for ¢ € [0,1]) < 272",

which easily yields the polarity of {x} for X + f. However, it is easy to see that
at no point in [0, 1] is the function f Hoélder continuous for any a > 0. O

We now turn to the asymmetric case.

PROPOSITION 34. Let X be an asymmetric Cauchy process. Then there exists
a function f such that P(X(t) + f(t) hits points) = 0

ProoOF. Consider an independent Cauchy process Y which has the same
distribution as X. Then the process {X(t, w) — Y(¢, w’): t > 0} is a symmetric
Cauchy process. Accordingly, for almost all paths of Y(:, w’), the range of the
process {X(t, w) — Y(¢, w’): t > 0} has Lebesgue measure 0. Letting f be one of
these fixed paths Y(¢, ") gives the result. O

5. On the conjecture of Section 3. In Section 3, we conjectured that when
a function whose range has positive Lebesgue measure is added to a stable
process of index a <1, the range of the resulting process a.s. has positive
Lebesgue measure. However, the conjecture cannot be extended to arbitrary
Lévy processes which do not hit points. We give an example of a Lévy process
which does not hit points but which can be made to hit points by adding a
deterministic function to it whose range has zero Lebesgue measure.

PROPOSITION 4. There exist a Lévy process {Z(t): t > 0} which does not hit
points and a fixed nonrandom function f whose range has zero Lebesgue
measure such that {0} is nonpolar for the process {Z(t) + f(t): t > 0}.

PROOF. Our method of proof is to exhibit two independent Lévy processes Y
and Z, neither of which hits points but whose sum is a Lévy process which does.
We then let f be an appropriate path Y(-, ).

Let {X(%):t> 0} be a symmetric stable process of index a > 1. It is well
known that X hits points. The Lévy measure of X is given by

dx c dx
BLx ( ) - 9 | x|a+l N
We will henceforth take ¢ to be equal to 1. By suitably dividing the Lévy

measure, we create two Lévy processes Y and Z which sum to X. A Lévy process
{W(¢): t > 0} has characteristic function given by

E[eW®] = ¢~ tow,

For the process X, the function ¢y is given by

w1 — cos(ux)
dx(u) = j(; e =
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Kesten (1969) proved that W hits points if and only if

RefL<w
B+ ¢(u)

for each real B > 0. This fact will be crucial in our division of p x.
Consider the function
o 1 — cos(ux)
¢, (u) = f1 e
We choose u, greater than 2, it is easily seen that for u,, ¢,(u) < C/ug, so we
can find u/ such that

(1) [

—_— > 2.
Uy 2 + d’uo(u)

We can also find v, so large that

)

for all u < u{. We may also ensure that v, > u{. Obviously, the procedure giving
v, and u}, from u, does not uniquely define them but abusing notation, we write
vy, = 8(u,) and uf = h(u,) and then recursively define u,,, = g(v;), v} = h(v;),
and v; = g(u;), u! = h(u;). We now define the Lévy measures of Y and Z to be

Jw X

a+1 dx<1

fl/vol — cos(ux)
0 X

1 dx 1 dx
by = 5 Wlﬂxlzl/uo} + i§0§ |x|a+1I(IxIE(l/u;H»l/')z)}’
dx
— 1___
I.LZ - Zo 2 |x|¢x+1I('-x'E(l/”nl/“:)).
>

Note that py + pz = px.
As a consequence of our definition of {%;} and {v;}, we know that if

oy(u) = [1 — cos(ux)py(dx),

then for u € (u;, u}),
(1 — cos(ux))
oy(u) < f a1 de +1

1/u; X

and so

fu'l du >1
w, 1+ oy(u)

for each i, so

du
I+ oy(u)



TIME INHOMOGENEOUS MARKOV PROCESSES 585

Similarly, if
1 — cos(ux)

¢z(u) = /Tﬂz(dx),
then
/ du
—_ - %
1+ ¢5(u)
By Kesten’s condition, neither Y nor Z hits points, but the sum of independent
copies does. So almost all paths Y(:, »’) of Y have the property that the range

has zero Lebesgue measure and a.s. the range of the process Y(¢, ') + Z(¢t) has
positive Lebesgue measure. Taking Y(-, »’) as f completes the proof. O
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