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SOME LIMIT THEOREMS FOR FUNCTIONALS OF THE
BROWNIAN SHEET!

By Raisa EPSTEIN

Technion— Israel Institute of Technology

We study properties of functionals of the Brownian sheet: in particular,
we construct square-integrable functionals of R%valued Brownian sheets, so
that k-intersection local times on R% can be obtained as specific examples.
Results of central limit theorem type on sums of functionals of Brownian
sheets, give us new fields, and we investigate which properties of the Brown-
ian sheet (e.g., Markovianess, renormalizability) these limit fields inherit.

1. Introduction. In a previous paper [Adler and Epstein (1987)] we studied
the construction in law of generalized Gaussian fields and their functionals via
limit theorems for sums of functionals of Markov processes. The initial motiva-
tion for this came from the “well known” relationship in mathematical physics
between the free field of Euclidean quantum field theory and Brownian motion
[cf. Symanzik (1969)] as well as related papers in the probability literature [e.g.,
Dynkin (1980, 1983, 1984a, b), Wolpert (1978a, b) and Albeverio and Heegh-Krohn
(1984)]. Our primary aim, however, was not so much to develop this relationship
further, as to exploit it to study properties of generalized Gaussian fields of the
kind studied by Dobrushin (1979), Dobrushin and Kel’bert (1983a, b), Major
(1981), etc. The general approach of these (as, in fact, most) authors to Gaussian
fields was via the spectrum, which is often a clumsy tool leading to results which,
while correct, are unintuitive. (A spectral approach, of course, also limits one to
the study of stationary fields only.) In Adler and Epstein (1987) we showed that
via the Markov process—Gaussian field link it was not only easy to drop
stationarity assumptions, but that the exploitation of well known results on
Markov processes led to easy and natural results on Gaussian fields, related, for
example, to properties such as Markovianess, locality and renormalizability.
Related questions were further studied in Adler (1989), Walsh [(1986), Chapter 8]
and Adler and Epstein (1988).

Over the past few years the type of quantum field theory that was based on
the notion of random particles has moved to a base of random strings, and the
paths of particles have been replaced with the so-called “world sheet” of the
string, an object most easily understood in probability language as a random
surface [cf. Schwarz (1982), Polyakov (1981), Eguchi (1980), Gross, Harvey,
Martinec and Rohm (1985) and the Schwarz collection (1985)]. From this grew
the present paper and our interest in replacing the Markov processes in Adler
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and Epstein (1987) by random surfaces to see what would happen. In fact, we
shall concentrate on just one random surface, which is the natural generalization
to surfaces of the Brownian motion. This is the Brownian sheet, and is defined as
the R%valued two-parameter random field BY(t,s), (¢, s) € R%:= [0, 00) X
[0, ), whose d > 1 components Bf,..., B¢ are independent Gaussian random
fields with zero mean and common covariance function

(1.1)  E{BX(t,s)B#(r,0)} = min(s,0) - min(¢,7), (¢, 5),(7,0) € R%.

Note that BY=0 on the axes of R2, a condition akin to that of regular
Brownian motion starting at zero. Since this is a restriction that we do not want,
we shall work with the “randomly started” sheet given by

(1.2) W: We(t,s) =z, + B%(t,s), i=1,...,d,

where z = (z,,..., z,) is distributed on R? according to some initial measure
m(dz) = m(dz;) X -+ Xm(dz,), independently of B<.

The choice of m(dz) to be a Lebesgue measure on R? makes the calculations
on W very neat, and we work with it until the time for limit theorems comes.
At that point we introduce a sequence of independent Brownian sheets starting
at the points of a Poisson point process on RY that is typically used when
describing such phenomena as “randomly located points.” In this way we can
work with probability measures, and so are in the correct setting to state results
on weak convergence.

Our primary aim in this paper is, following the example of the link between
regular Brownian motion and the free Gaussian field, to first define, via construc-
tion, the square integrable functionals of several Brownian sheets, establish limit
theorems for sums of these, and then investigate the properties of the limit fields.
Of particular interest, although it turns out to be just a special case of the theory
that we shall present, is the local time and intersection local time of several
sheets, which is of interest in the study of interactions in string theories.

Our general method of construction of square integrable functionals for the
Brownian sheet is close to that of Dynkin for Markov processes [cf. Dynkin
(1981, 1984b) and Adler and Epstein (1987), Section 2]. In that theory, particles
must either “die” after a random, but finite, time or somehow have their
contribution to any functional dampened over time. Mathematically, both of
these procedures turn out to be equivalent. In the Brownian sheet theory,
“killing” is not so easy (primarily because of the lack of total order in the
parameter space) and damping is the order of the day. Consider a simple
example, the local time at x € R of the Brownian sheet, defined symbolically as

(1.3) L, = /R dsdt0(t,s)8(Wy(t,s) — x,) -+~ 8(W,(¢,s) — x4),

where § denotes the Dirac delta function and 6 remains, for the moment,
undefined.

We want L, to satisfy E(L2) < 0. It is easy to see, from the neighborhood
recurrence of the W, that this means that 6(¢, s) must be small for large s and ¢.
It turns out that § must be exponentially small. What is not so obvious is that
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there is also a divergence in E(LZ2) due to that part of the integral (1.3) where s
and ¢ are small. This comes from the fact that the W, are constant for s or ¢ = 0
and vary only slowly in the neighborhood of the axes. Thus, there too, (¢, s)
must be small. A convenient choice of § turns out to be

(1.4) 0(t,s) =se %%,

[Interestingly, the exponential factor st is simply the “area to the left below the
point (¢, s),” and area damping is a common phenomenon in string theories.]
Precisely why (1.4) is not only convenient but actually quite natural will become
clear in Section 5 when we consider problems of renormalization.

Previous studies of Brownian sheet local time [Adler (1981) and Rosen (1984,
1986), among others] avoided (1.4) in a number of ways. For example, both Adler
and Rosen restricted (¢, s) to lie within the unit square and thus required no
damping for large values of the parameter. Adler (1981) avoided the small value
problem by considering only (¢, s) for which min(s, ¢) > ¢ > 0. Rosen (1986), in a
study of self-intersection local time, handled the small (¢, s) problem with a
damping factor st [cf. also Imkeller (1984a, b) and Wong and Zakai (1974)].

The remainder of the paper is organized as follows. In Section 2 we construct
general square-integrable functionals of the Brownian sheet. Section 3 concen-
trates on some specific examples, in particular, intersection local times. Section 4
is devoted to limit theorems for the sum of the functionals of Section 2, based on
a general result of Dynkin and Mandelbaum (1983). In Section 5 we study the
limiting Gaussian fields that arise in this fashion.

To conclude our introduction, we return to the physics that motivated us (at
least partially), i.e., the study of the fields defined via the intersections of an
infinite system of Brownian sheets. The physics, built on interacting random
surfaces of the kind that we shall consider, falls under the general subject of
gauge theories. It is believed there, that the interesting cases are for space-time
dimensions 8 > d > 4 and that the Hausdorff dimensions of a random surface
are 4 [cf. Parisi (1979)]. However, by Adler [(1981) page 251], the Hausdorff
dimension of the Brownian sheet W: R% — R? is 4 for d > 4, and according to
results of this paper, the Gaussian field that arises from summing the local times
of infinite system of Brownian sheets is generalized for d > 4. Moreover, we can
build the theory of interactions of the two independent Brownian sheets only for
d < 8, the “magic” upper bound to most gauge theories [see Parisi (1979) for
details].

2. Functionals of independent Brownian sheets. We start with some
special functions, and some spaces of functions. Let C = 0.57721... denote
Euler’s constant, and let E,(7) denote the exponential-integral function

(2.1) E(r)= —Ei(-7) = [(e7'dt, 7>0

T

[see Gradshteyn and Ryzhik (1965) for definitions and properties of E;]. Define
(2.2) p(7) =e"p(1), p(7) =Int+ eE(7) + C, T>0.
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(This choice of function p will become clear in the proof of Proposition 2.1)
Let

p(x,y) =p(x—y) e xyP/2 x yeRY

 (2mt)?
be the transition density of the standard Brownian motion on R? and define the
function g that, for the Brownian sheet, will play a role analogous to that of the
Green function for Markov processes:

(2.3) g(x) = 'I:op(fr)p,(x) dr, x=(x,...,%;) € R
This function defines a bilinear form
(2.4) (1, k= [[{(x)g(x - y)h(y) dx dy

for functions from the class A
(2.5) M?=M%g) = {f: f integrable on R%and {|f|,|f]) < ©}.

The main result of this section will be an extension to the case of measures of

PROPOSITION 2.1. For f & M? the functional F, of the Brownian sheet
W: R2—> R defined by

(2.6) F=F (W)= [[ 006 5){(W(z,5)) drds
with function 6(t, s) = se e~ * is square-integrable and

@7) B(FF) = [[ dxi(xex-y)h(y)dy = (i, ),  fheM,

We shall establish the proof of Proposition 2.1 later.
Now we look more closely at the covariance kernel g that will play a major
role in our theory.

LEMMA 2.2. The Fourier transform of g is given by
In(1 + |k|*/2)
Ik|”/2)(1 + [k|?/2)’

K= (k)% + oo 4 (kP = (Buyene k) R

(2.8) &k) = (

Proor. Since

(2.9) puk) = fddx p(x)ei®ED = g-lkPe/2.
R

by straightforward computation and formulas (6.224.1) and (4.331.1) of
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Gradshteyn and Ryzhik (1965),

8(k) = ["e "% 7(C + eEy(r) + In7) dr
0

¢ + /ooe_lklzT/zE(T)d’T— 1 C+In|l+ ﬁ
(1+1k%2) " Jo ' (1 +k|?/2) 2
k2 2
- e ) - (e )
(1 +1k*2)  |k[>/2 2 (1 +k|%/2) 2
In(1 + |k|*/2)

T (kP2)( + kP/2) °

LEMMA 2.3. g(x) is finite for all x € R?, ford = 1,2,3. Ford > 4, g(0) = .
Proor. Note that

1 2
G < pl)
g(x) = [ p(r)p(x) dr < 8(0),

for every x € RY, and therefore, it is enough to consider finiteness or infiniteness
of g(0). An inverse Fourier transform and Lemma 2.2 give us

0) = ! k) dk
80 = )0

p(x) =

1 In(1 + |k|2/2)
" @ e A W)

1 In(1 + k|?)
" o e
Transforming to polar coordinates (for d > 1), this last integral converges or

diverges with [2r9 3[In(1 + r%)]/(1 + r?) dr and this is finite for d = 1,2, 3 and
infinite for d > 4. This completes the proof. O

dk

dk.

In the next lemma we prove that ( f, f ) > 0 for all functions in M? so that
the form ( , ) is an inner product on the space of functions M.

LEMMA 2.4. The function g(x,y) = g(y, X) = g(X — y) is positive-definite on
R? x R4

COROLLARY 2.5. There exists a Gaussian random field on M® with zero
mean and covariance kernel g(x,y).
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REMARK. Since for d > 4, g is not finite, we understand its positive-defi-
niteness in the sense that g(x) dx is a positive-definite measure on RY, that is
[cf. Argabright and Gil de Lamadrid (1974)],

(2.10) j;idg(x) dx(j;edf(y)f(y - x) dy) >0 forall feS,,

where S; denotes the Schwartz space of C* functions of rapid decrease. We shall
show that (2.10) holds for all f € M¢, so that (f, f ) > 0 for all f € M. (For g
finite this definition is equivalent to a usual one,ie, foralln =1,2,...,C,...,C,
real, X7 ;_,8(x; — x;)C,C; > 0.)

Proor oF LEMMA 2.4. By (2.3) and the Chapman-Kolmogorov equation for
the Brownian motion transition density

[ £ ax{ [ o)1y ) a|
= ffRMdyf(y)g(y - x)f(x) dx
@1) = ["o(r)dr[[i(¥)p(y, D) (x) dxdy
= [To(n)ar[ daf j5)p(v.2)dy [ [(x)p,a(z,x) dx

= j{;oop('r) deRddz(fRdf(x)p,ﬂ(x,z) dx)2 >0,

so the lemma is proven. O
LEmMMA 26. S, c M4

Proor. Use (2.3), the Fubini theorem and formulas (4.352(4)) and (6.223) of
Gradshteyn and Ryzhik (1965) to see that g(x) is in L'(R%). Then by Reed and
Simon [(1975), page 28], [fg(x — ¥)|f(¥)|dxdy < oo for every f< LY(R?).
Since all f from S, are bounded, it follows that [[|f(x)|g(x — y)|f(y)|dxdy <
o0, so that we are done. O

Lemma 2.6 shows that the class of functions f for which a square-integrable
functional F;(W) of a Brownian sheet W: R2 - R is defined by (2.6) is wide
enough to include all f € S;. However, we would like to extend the result of
Proposition 2.1 in two directions:

1. To define a functional of several independent Brownian sheets.

2. To define a functional on the space of measures, so that, in particular, the
local time L, considered in the introduction will be well-defined [for L_,
f(W,) = 8(Wii(2, s) — x1) -+ 8(W(2, 8) — x)]-
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Theorem 2.7 gives the construction of square-integrable functionals of %
independent Brownian sheets in its most general form.
Let NZ be a family of finite measures on R?, satisfying

oy =[x, dx )l - y)

(2.12)

xg(x, — yu)v(dyy,...,dy,) < o,
(2.13) y(dx,,...,dx,) = y(dx,,l, . dx,,k) on R%,
for each permutation (7, ..., m,) of the set {1,..., k}.

THEOREM 2.7. For y € Ng, such that
(2.14) vy(dx,,...,dx,) = f(x,...,X,) dx; -++ dX,, X,...,X, € RY,

define the following functional of k independent R%valued Brownian sheets
[living on some infinite measure space (2, F, P)]:

F,=F,=F,(W...,Wk)
(2.15) = fj;Ri)f(tl,sl) NN D

XF(WH(ty, 81),. .., WE(ty, 5)) dt, ds, -+ dt, ds,,

6(t,s) = se~%e*". Then F, € L%(P"). For y € N¢ that is not absolute continu-
ous with respect to Lebesgue measure on (R?)*, deﬁne the “smoothed” density

fy 8(XpseesXy)

=e ¥ +8’°)f Psl( X, Y1) 0 Pe(Xps Vi) Y(AYy, .., dyy).

Then, as 8= (3,,...,8,)10, the functionals F; , converge in L*(P') to a
functional, say F,, F € L%(P"), which satisfies

E(F;) = j;ezde(dxvuw dx,)g(x;, —y,) -

Xg(xk - Yk)Y(dyl,“ K dYk)
=)

To prove Theorem 2.7, we need to start with a technical lemma that provides
a conditional density function for one R%2 — R! Brownian sheet. We then look at
the simplest case, considered in Proposition 2.1, and finally the general case
follows easily.

Let W, be the Brownian sheet from R2 to R, as defined in (1.2), with d = 1.

(2.16)

(2.17)

LEMMA 2.8.
(2.18) P'(Wy(¢,s) € dx,Wy(7,8) € dy) = pr(x, y) dxdy, x,y€ R,
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where the density function pp(x,y) is the transition density function of the
standard Brownian motion on R}, i.e.,

1
(2.19) pr(x,y) =pr(x—y) = BT e @ x ye RLT>0,

and
ts — 7o, t>7,8>o0,
ts + 170 — 2to, t<rt,s>ao,
(2.20) T=
ts + 70 — 27s, t>1,s<o,
70 — I8, t<rt,s<o.

This result follows from straightforward calculations on Brownian sheets, and
we leave its verification to the reader.

PROOF OF PRroPOSITION 2.1. We get the formula (2.7) by straightforward

computation [remember that the components of the vector W = (W{,..., W¢)
are independent R2 — R' Brownian sheets] using Lemma 2.8; viz.

B(E ) = B{ [ 006, 5)H(Wi(t,),..., Wi(t, ) deds
Xf/R‘ia('r,o)h(Wfl(T,o),...,Wg('r,o)) d'rdo}
(2.21) =/ fR _dx f(x) dy h(y)
X [[, (¢ ) dedsO(r,0) drdapy(xy, 3) -+« Pr(%ar 22)

= f j;e L,dx f(x)g(x - y)h(y) dy,

where

(2.22) gx—-y)= /fRf(t,S) dtds0(t,0)drdo

Xpr(x, =) pr(%q— Ya)

and p;p is defined by (2.19)-(2.20). Note that pp(x; — y;) - pr(xg— Y3) =
pr(x —y), and then

gx—y) = 2{[[ dtdsdrdo8(t,s)8(7,0) D (X — )

+f / dtdsdfrdoo(t, $)8(7, 0) Prssro—21a(X — y>}

= 2{I + II}.
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To finish the proof we show that g can be written in the form (2.2)-(2.3). This
follows from straightforward manipulation of the integrals, as follows:

1. Apply the transformation s — 6 = oy, 6 = By, ts — 70 = @, o7 = B, |J Y| =
so = (a; + B,)B; to the integral I, to obtain

1
1= f dazf dﬁ2f dal/ﬁzal/az (al + B1)B,

+ B
Xﬂ(ﬁ,al+ﬁl (ﬁj,ﬁl)pa,(x y)-

2. We obtain a similar form for the integral II, using the transformation
s—0o=a;, 0=, ts+ 10— 2t = a,, to = f,, |J‘1|=02=Bl2:

© © © © Bz
II = fo da, /O dB, fo de, /BM dB,— R ( oot /31)
ay + Bo(1 — a/By) 8 )

X0

B PofX = ¥).

3. Rewrite g in the form (2.3):

g(x = y) =2(1+11) = [“p(ax)p, (x = y) day,

with
o) =2 [ [ [ ap o
o g o[ 5
o ol e+ o G )

4. Put 0(t, s) = se”%e* into p(a,) to get

] 00 -] 24
p(ay) = e“"2j(; e %k d,82f0 e ™ dalfpz , 2e‘231('8—l + 2) dp,

1

0
e_a2/ e_2ﬂ2 dB2
0

X/O ldal{al 2[ o /o 2,31 d(2ﬁ1) + 2f e ?h d(2.31)}

(s 8
— e[ e 2 ap, [Tes dal{2a1E1( 2B
0 0

)

) + 26—2(320‘1/“2)}

. 2
= e dﬁz{l(ﬁ” " TIM} '
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5. To calculate

1(8) - [ (oae- | 22

differentiate I(8,), recalling that (E,(2)) = —e™?/z [Gradshteyn and Ryzhik
(1965), page xxxiii] to get
—2(Bay /atz)

(-2) / ae W A

2 ( 9 2) 1
= — =(-2a)————.
Bs(1 + 2/32/0‘2)2 ? Bo( ey + 2B,)°

Therefore, I(8,) is given by

I'(Bz) day

g
I(B2) = (—2a§)fm + const.

1 1 ay, + 2B,
- (—2a§)( ag(ay + 2B,) - a—g B, )

6. Since I(c0) = 0, const. = —21In 2, so that we finally get
© 9 + 2
plag) = e[ e {2ln( By ) - 21n2} dB,
0 B,

=e {lna, + e2E(a,) + C},

and we are done. O

In + const.

PROOF OF THEOREM 2.7. Assume for a moment k& = 1. To establish conver-
gence in L? of a sequence {F, .} (we put Fy = F, for convenience, in this proof)
to some limit, we look at

E(F, - F)’ = E(KF,) - 2E(FF) + E(FF).

Then to guarantee E(F;— F,)* —;, 0, it is enough to show that E(F;F)
approaches some limit that is independent of the way that ¢ and & approach
zero. The last expectation can be obtained directly from (2.7), (2.16), (2.2)-(2.3)
and the Chapman-Kolmogorov equation:

E(F - F) = [[ 4% =8 = 9f, 5 dy
= ‘U;ezddx dye‘sfmps(x,u)y(du)e‘“
x [ 2y, v)(dv) [“e5(r) - p(x,y) d7

B fj;{zdy(du)y(dv)j(; e_(1+e+8)ﬁ(7)p‘r+e+8(u1 V) d'T-
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The function
p(r) =eE(7)+Int+ C

is monotone-increasing on R, since its derivative is positive:

d d 1

P = Z(CE(D) + S =¢E(r) >0, >0,
Then, fora = ¢+ 6 |0as § |0 and £|0 we have

00 [o ]
j(; e Tt OB(1) Py s rs(w, V) dr = f e 'p(u,v)p(t - o) dt

Tj;we_tpt(u,v)ﬁ(t) dt = g(u’ V).

So, by the Lebesgue monotone convergence theorem,

li F,-F) = -
Jim E(F,-F) = [v(dwg(u - v)y(dv),
and this finishes the proof for 2 = 1.

The proof for general & > 1 follows from similar arguments involving longer
formulas but no new mathematics and we feel free to omit it. O

3. An example—intersections of two independent Brownian sheets.
In the introduction we define a functional L, that “measures how much time
the Brownian sheet W¢ spends at point x.” Using Theorem 2.7 we can now
define this functional precisely, for d < 4, as a functional F, with y(dy) =
8(y — x)dy. To define an intersection local time for two independent Brownian
sheets, we have to consider the measure on R2¢, given by

(3.1) y(dx', dx?) = ¢(x!)5(x! — x2) dx'dx2, ¢ €S,

and to show that Theorem 2.7 can be applied to it. In this section, we shall show
that for d < 8, y € N§ and so F, can be defined. On the intuitive level this
means that the two independent Brownian sheets W', W2 R2 > R? have
nontrivial intersections for d < 8.

The subject of intersections of independent Brownian sheets is not new. It is
closely related to the problem of multiple points for a single sheet, as studied by
Rosen (1984, 1986). Rosen (1984), for example, showed that W¢ has nontrivial
double self-intersections, with probability 1, as long as d < 8.

Now we shall formulate and prove

PROPOSITION 3.1. The measure, v, defined by (3.1), belongs to the family Ng,
as long as d < 8.

COROLLARY 3.2. Two independent Brownian sheets have nontrivial intersec-
tions if d < 8. Their intersection local time, weighted by function ¢, is defined as
a functional F,, measure y given by (3.1).
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ProoF. Note that
= Uzr«fY(dxl’ dx?)g(x' — y')g(x* - y*)v(dy', dy?)
(3.2)
- [[ $@e"x = »)o(y) dxdy.

By Reed and Simon (1975), f* g = f * 8, where the sign * stands for convolution
of functions. Therefore,

(8.3) &2 =4+8
Furthermore, if & € L% R%), then from Proposition 0.2.1 of Butzer and Nessel
(1971) it follows that g2 is continuous and bounded, so that

[ 168172 (®) dk < co.

Then by a Parseval-type equality

1) = [[ 6% = ¥)o(y) dxdy

= [ 1()1°8°() dk < co.
Thus, to complete the proof, it is enough to show that g € L% R?) for d < 8.
By a straightforward calculation
In(1 + x)
(1+x)?

the last integral being finite for 1 < d < 8 [we use a comparison argument and
formulas (4.291) and (4.293) of Gradshteyn and Ryzhik (1965)]. So we are done.
O

(3.4) fRd|g(k)|2 dk = const./(;wxdﬂ‘?’

We conclude this section with the comment that, for d > 8, & is not in
L*(R%):

[ 18 dk = const. [~ 4242 "dx = oo ford = 8.
R

e—1

4. The limit theorems. In this section we study the behaviour of an infinite
system of independent Brownian sheets.

Let (2, F, P) be a probability space and I1* be a Poisson point process on R?
of intensity A. This means that the number of points in a Borel set A C R% is a
Poisson random variable with mean A|A| (we use |:| to denote Lebesgue
measure), and the numbers in disjoint sets are independent. The points of IT*
can be ordered by their magnitude and we shall denote them by W{,..., Wg,... .
We take W1, ..., Wi,... to be an infinite system of independent Brownian sheets
with initial values given by Wy, ..., Wy,... . This setting is similar to one of the
Poisson particle systems introduced by Martin-Lo6f (1976), although we consider
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an evolution of Brownian sheets instead of Markov processes. Walsh (1986)
studies a Poisson system of branching Brownian motions and Adler and Epstein
(1988) establish limit theorems for intersection local time for a Poisson system of
planar Brownian motions. Our aim in the current and the next section is to
study the limits of sums of functionals for a Poisson system of Brownian sheets.

Let us assume that the sheets are of two types by assigning a random sign to
each of them, i.e., we take o,,...,0;,... to be an infinite system of independent
random variables (signs) defined by P(o; = 1) = P(0; = —1) = % (the sequence is
independent of W¥’s and IT*).

We are interested in the limit behaviour, as A — oo, of the average amount of
time the system of Brownian sheets spends at a point x € R% That is, we study
the weak convergence, as A = oo, of the sum

oa(f) = A"2 Lo Fy (W)
(4.1)
N Zoif/}.ej(t, s)f(Wi(t,s))dtds, feS,,

where we sum over an infinite number of individuals in our collection.

In our intuitive interpretation, we have f = §, and F; = L, which works well
if d < 3. For higher dimensions we have to consider functionals F,vye N¢g, so
that we define also

(4.2) oa(y) =A"12 Z"iFy(Wi), y € N

ox(f) and ¢,(y) can be considered as random fields on S; and N¢, correspond-
ingly.
We now define the Gaussian field {¢(f), f € S;} with

(43)  E¢(f)=0, E{é(f) -#(h)}=(f k), f,heS,
and the Gaussian field {¢(y), y € N} with

(4.4) E¢(y) =0, E{s(y) -o(p)}={(v,n), 7v,pe€NZ

THEOREM 4.1. As A = oo, the field {¢\(v), Y € NZ} converges in the sense
of weak convergence of finite-dimensional distributions to the Gaussian field
{¢(v), ¥ € Nf}.

THEOREM 4.2. As A — oo, the field ¢,(f) on S, converges in the sense of
weak convergence of finite-dimensional distributions to the Gaussian field {¢( f ),

fesS;).

The proof of these theorems appears at the end of this section.
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We stated these two theorems separately because of their simplicity and
because for convergence to the Gaussian limit it is enough to show moment
convergence. For the general weak-convergence result, which includes Theorems
4.1 and 4.2 as a special case, we need to recall the Dynkin—Mandelbaum
construction of Wiener integrals on an arbitrary measure space (X, B, v). [See
Dynkin and Mandelbaum (1983).]

Define a Gaussian family {I,(f), f € L%(»)} with

(4.5) E{L(f)} =0, E{L(f)L(h)} =v(f,h)= fo(x)h(x)V(dx)-

Let H, = L%, (v X - -+ X») be a space of symmetric functions A ,(x,, ..., x3),
such that

(4.6) vh(hZ) = fhg(xl,...,xk)y(dxl) o w(dry) < 0.

The multiple Wiener integral of order %, associated with the Gaussian family I,
is defined as a linear mapping I, from H, into the space of random variables,
which are functionals of the Gaussian family I,( f). The mapping is defined
uniquely by the following conditions:

ConpITION A. For functions of the form

(4.7) RI(xy, .o, 2) = f(x1) - f(x), f € L¥(»),

we have

(4.8) 1(nf) = (»(£2))"’E,

I(f) )
v(£2) |

where E, is the Hermite polynomial of degree k£ with leading coefficient 1.
ConprTioN B. For h, € H,, E{I}(h;,)} = k\v*(h2).

THEOREM 4.3 [Dynkin and Mandelbaum (1983)]. Let X,, X,,... be indepen-
dent and identically distributed random variables taking values in (X, B), and
with distribution v. For A > 0 let N, be a Poisson variable with mean M\
independent of the X;. For k=1,2,..., take h, € H, and let I,(h;,) be its
multiple Wiener integral. If

© 1
(4.9) Y FE{hi(Xl,..., X,)} <o
r=1 R
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and

(4.10)  E{hy(x),..., % 1, X)) = fX Ry(xy, ..., x4y, y)v(dy) =0,

then the random variables

Zy(hy, hy,...) = Zxk/z Yoo.r  Rm(X,....X,)

k=1 1<i < -+ <ip<Ny

converge in distribution, as A\ - o0, to

00

1
Z(hv hz’-'-) = E EIk(hk)'
k=1F:

Remarks in Section 1.5 of Dynkin and Mandelbaum (1983) allow us to drop
the condition (4.10) by inserting the random signs o0, 6,, ... into the definition of
Z, and to view a sample of a Poisson size Xl, , Xy, asa P01sson point process.

Now we are ready to formulate the main result of this section. For v, € N¢
define

D) = AT T o 0, F (W, W),

1'1< <ik

THEOREM 4.4. As A - oo, the pair {$x(v), ¥x(7z)) on NZ X N converge,
in the sense of weak convergence of finite-dimensional distributions, to the pair
(d(v), A /R)Y(Y,)), where Y(v,) is the multiple Wiener integral of order k
associated with the Gaussian family {¢(y), v € N{}.

PrRoOF. We apply Theorem 4.3 to X; = W, X = (R4)F%; v is the probabil-
ity distribution W' induces on the Borel o-algebra of X. For every v, € NZ, let
F, be the corresponding functional of % independent copies of W*. Then by

Theorem 4.3 and remarks following it

Z Ua(ne) = E AR Yoy e o F (WL W)

l.l< . <lk

converges in distribution to X3_,(1/k!)[(F, ), provided X_,(1/E!){ ¥, Yz) < o0.
The Gaussian family I,(F, ), v, € N, is mean zero and

E{(L(F,))"} = (nom) = E{(s(n))’},

so that in the Gaussian case I,(F, ) =¢ ¢(v,). Then the functionals I,(F, ) of the
family {I,(F, )} have the same distribution as the k-multiple Wiener integral,
associated with the Gaussian family {¢(y,)}, that we denoted by y(y,). This
proves the theorem. O
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PRroOF OoF THEOREM 4.1. By the polarization identity
il 1 i m-—r m
Hai=_'Z(_1) )y (a; + -+ +a;)
i=1 m: ., 1<ij< --- <i,<m

it is enough to consider E{(¢)(v))"}, n = 1,2,... . But the calculations here are
virtually identical to those of the proof of Theorem 4.3 in Section 7 of Adler and
Epstein (1987) with m = n, F;,(Wi) instead of F(X;) and r, = (v, v) in (7.14).
Therefore,

(4.11) E{(¢x(v))"} =0, forn odd,
(4.12) E{(6:x(v))"} = (= 1)(n = 3)--- 1(¢v, v)",

as A — oo for n even.
Since the moments in the right side of (4.11)—(4.12) are exactly those of ¢(y) and
determine the Gaussian distribution, we are done. O

Theorem 4.2 can be proved in exactly the same way.

5. The properties of the limit fields. In this final section, we look at
some properties of the Gaussian field {¢(f), f€ S;} and its functionals

(¥ (), % € NZY.

Stationarity. From the field’s covariance representation

E(o(£)o(h)} = <1, ) = [[  f(=)g(x — y)h(y) dx dy

= [ ] (&)l ()2(k) dk,

(* means complex conjugation) we conclude that {¢(f), f € S,} is stationary
with spectral measure

In(1 + [k|%/2)

(6.1) - G(dk) = &k) dk = s oy e 9)

dk, ke R%

Markovianess. We observe that the function 1/8(A), where g(A) is the
spectral density of the field, is not a polynomial. The conditions of the theorem
in Rosanov [(1982), page 120] are violated and so {¢(f), f € S;} is not Markov
[in the sense of the definition of Rosanov (1982), page 112].

Self-similarity and renormalizability. Adler and Epstein (1987) discussed the
notion of self-similarity of random fields and introduced a new notion of
renormalizability.
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A family of random fields ¢¢ = {¢!(f), f € S;}, { > 0, is called renormaliz-
able with renormalization parameters («a, r), if for every n > 0

(5.2) o8 =gt
where
(5.3) D)= (3F),  Xf(x) =nf(x/m).

(For r = 0 we get the usual definition of self-similarity.)
To define the family of Gaussian fields {¢(f), f € S,}, consider, for every
¢ > 0, the function

(5.4) 6=0($)(t,s) =se 75,

It is an easy exercise to check that, for this function, Theorems 2.7, 4.2 and 4.4
hold, and, if we define the family of Gaussian fields {¢’®)(f), f € S,}, ¢ > 0,
with covariance kernels

(5.5) fm@m>=g%um«»nu—ynu

p(5,0(6)) = 7o {Inier) + C + FE(er))
(5.6)

p($r,0),

| =

and spectral density
1 In(1+|k?/2¢)
¢ (Ik?/28)(1 + |k|?/28)

1
(6.7) &'0(k) = Z;gé’(k/ ) =
then we have

THEOREM 5.1. The family of Gaussian fields {¢°®), { > 0} is renormalizable
with parameter (d/2 + 2, 2).

REMARK. A Markov process X(¢), that starts at zero, i.e., X(0) = 0, is called
self-similar if nX(n #t) =, X(¢) for all n > 0 [see Adler and Epstein (1987),
Section 6]. We can extend this definition for the random fields, defined on R?,
and starting from zero on the axes, by calling X: R?— R' self-similar with
parameters B if

(5.8) 7"X(n~Pt) =, X(t) forall n > 0.

Then it is easy to see that the Brownian sheet B: R%2— R, is self-similar with
parameter 2.
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ProoF oF THEOREM 5.1. We deal with mean-zero Gaussian fields. Therefore,
it is enough to show that the covariances match. For a = d/2 + 2, > 0,

E{$¢§"_2( ) .;4,{11'2(}1)} {¢§n 2( ) . ¢§n"7(;h)}
- [ 37 (03h* ()27 () ke
= e[ F(ak)he (k) (¥ ) @ ie/(fE ) dk

=.n-2““‘“““’Lf<k>ﬁ*<k>(:-2>g%k/¢f>dk

(5.9)

= [ f (A ()2°0(k) de

= E{¢"©(f)¢"®(n))}.
This proves the theorem. O

Renormalization of functionals of the fields. Let, for { > 0,

YO = (80(y,), y, € Nf©-4)

be the functional of the Gaussian field {¢?©)(y), y € Nf¢)»9} defined by Theo-
rem 4.4, with 0 = 6({) from (54) [to define N/® change g to g°¢ in
(2.12)-(2.13)].

THEOREM 5.2. The family of fields {¢°®), ¢ > 0} is renormalizable for the
pair ([k(d + 4)1/2,2) in the sense that for every y, € NY® ¢ and for all n > 0,
(5010) *PM) (Yk) =g ¢0(§"—r)($7k),
with
k(d+ 4)

(5.11)  Jy(A) =g "%*y(n'A) and a= 5

Il
g

ProoOF. Note that for y,(dx,,...,dx,) = ¢(X;,...,X,)dX, -+ dx,on R%,
the density function of y, is

(5.12) a(xy,..x,) =n7%(n 7%y, 170y,

so that the definition of renormalizability of the fields, defined on measures,
matches the definition (5.2)—(5.3). For the proof, we shall assume v is absolutely
continuous on R, with density q, since the general case follows by passage to
the limit. First we check that ¢%¢7 )( v;) is well-defined, that is, ;v, € NJ¢" nd,
Since p(x — y) in (6.5) is the transmon density of the Brownlan motlon i.e., of
the self-similar Markov process with parameter 2, it satisfies [cf. Adler and
Epstein (1987), Section 6]

(5.13) Py2(x,¥) = n'p.(nx,ny), n>0.
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Then, for the covariance kernel g’ we have

£Oxy) = [ °°p(f, 8(5))p.(x — y) dr [by (5.6)]
= f p(§7,0)p,(x — y)dr ({7 =1¢)
(5.14) = f ooEg;o(t,li)p;—lt(x— y)dt [by (5.13)]

- [ Suzp(t ,0)82p,(/x — \Ky) dt
- §/2 % (fFx, F).

Thus
-2
<zYk’zYk>()(§n‘2) = szdsz(xu---,Xk)gam (X, ¥) -

X" (R, ¥4 )3a (s> Vi) A%y - dXydy, +o- dy,
o _ ~ o \
- f./;gzdkn (I(Tl lxl’“-,'n 1Xk)(§d/2 21’ d+4)

x g’ (Ven "%, ty) -
(5.15) X&' (VEn %4 ¥ ys)n e
Xq(17Ye 1) dy o dpdy, - dy,
= n—2a—dk+4k+2dka2dhq(xl,-”,xk)(gd/2—2)k
xg'(Vex1,YEy1) -+ &' (%o V¥ )
Xq(yy,---,¥;) d%, -+ dx,dy, -+ dy,
= (Yo Yoy, fora = [k(d + 4)] /2.

Now, by Theorem 4.4, for A - oo the sum
ATRZY L Z o, oikpﬁk{n‘z)(wil,._.’ Wik)

i1<...<ik

converges in distribution to (1/&!)y%¢" 2)( ¥z), the k-order multiple Wiener
integral, associated with the Gaussian fam1ly ("61OCy)y = (Y€ I(Cy,)). But
by (5.15),

E{(#7G)) ) = G idaens

= (1 Ve = E{(6"9(1))’},
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so that ¢?¢7 )(y) =, ¢’€)(y), y € NY® ¢, and therefore also PIEI(y,) =4
$?®)(y,), the multiple Wiener integral, associated with the Gaussian family
{¢?®)(y)}. This proves the theorem. O
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