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Let {X,) be a Markov chain on a bounded set in R? with E.(X;) =
fn(x) = x + Byhy(x), where x, is a stable fixed point of fy(x) = x, and
Cov,(X;) = 06%(x)/N in various senses. Let D be an open set containing x,,
and assume Ay(x) = h(x) uniformly in D and either By =1 or By = 0,
By > y/log N/N . Then, assuming various regularity conditions and X, € D,
the time the process takes to exit from D is logarithmically equivalent in
probability to e"¥~, where V > 0 is the solution of a variational problem of
Freidlin-Wentzell type [if By ~ 0 and d =1, V = inf(2 [26™%(u)|h(u) du|:
y € dD}]. These results apply to the Wright-Fisher model in population
genetics, where {X,,} represent gene frequencies and the average effect of
forces such as selection and mutation are much stronger than effects due to
finite population size.

1. Introduction and main results. The purpose here is to consider a class
of Markov chains which are strongly attracted to a stable fixed point, and obtain
results such as (i) the amount of time required to escape a fixed neighborhood of
the stable fixed point, and (ii) the equilibrium probability that the process is
found away from the fixed point. Specifically, for integers N > 1, let {X,} be a
Markov chain on a bounded convex set @ in R such that

(11) E (X)) = fy(x) = x + Byhy(x), hyn(xy) =0,
' Cov,(X,) ~ 0%(x)/N as N > oo,

in various senses [see (1.11) below]. Let D be a connected open set containing x,,,
and assume A y(x) — A(x) uniformly in D. We also assume

[ fa(x) — 2ol < (1 = kBy)|x — xol, k>0,

or a similar discrete Liapounov condition for {fy}. Let T, = min{n: X, ¢ D}.
Then, given sufficient regularity conditions on {X,}, we show that there exist
constants V > 0 and wy — 0 such that

(1.2) im P(eMnV=om < T, < eMnvV+en)) =1, allx € D.
— o0

With additional conditions, we can also show
(1.3) loguy(E)= —NByo(E)(1 +0(1)) as N > oo, v(E) >0,
for open sets £ C @ such that x, & E, where p, is the stationary distribution of
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{X,}. Two cases are considered, 8y — 0 and B8, = 1. If 8y — 0 and the dimen-
sion d = 1, the constants V and v(E) can be expressed in terms of integrals of
h(x) and o%(x). Our results for 8y — 0 are extensions of results for solutions of
the stochastic differential equation

(1.4) dX, = eyo(X,) dW, + h(X,) dt

with 1/¢% in place of NBy in (1.2) and (1.3) [Freidlin and Wentzell (1984),
Freidlin (1985) and Varadhan (1984); see also Kipnis and Newman (1985) and
Day (1987)].

The conditions on {X,} given below simplify for Markov chains of the form

1 N
(1'5) Xoi1= 5 Z Yzl\{w given X, = x,
N

where {YN: 1 <i < N} are i.i.d. random variables. Our motivating example is
the Wright—Fisher model in population genetics, for which
(1.6) X, = M, given X, = x,
N

where B(N, f) represents a multinomial random variable with frequencies
fe A? for A= {x € R*%: x,> 0, Lx; < 1}. Then X, gives the joint frequencies
of d + 1 alleles in generation n, and (1.1) with N8y — oo models a situation in
which the average effect of forces such as selection and mutation are significantly
stronger than random effects due to the finite population size N. Nagylaki (1977)
and Ewens (1979) are good general references for population genetics models.

If NBy = B < o in (1.1), {X,} can be approximated by solutions of the
stochastic differential equation

1
dX, = V—ﬁo(X,) dw, + h(X,) dt, t = nfBy,
for bounded intervals of ¢ [Trotter (1958) and Ethier and Kurtz (1986); see
Ewens (1979) for biological examples]. If N8y — oo, the deterministic forces act
on a shorter time scale, and under additional assumptions

(1.7) anaN},t'FZt, tanN’ 5N=1/VN N>

where {Y,} is a mean-zero Gaussian process and {Z,} is a deterministic solution of
Z'(t) = h(Z(t)) [Norman (1975) and Nagylaki (1986); see also Kurtz (1971, 1981),
Barbour (1976, 1980) and Ethier and Kurtz (1986)]. The relation (1.7) suggests
that {X,} spends most of its time near {Y,} in the time scale ¢ = nBy, but this is
difficult to quantify since (1.7) is often only proven for nf, = O(1). Sawyer
(1983) has a population genetics model in which an approximation of the form
(1.7) for n > N is crucial [note 1/8y = o(N) in (1.7)], and for which {X,}
remains near {Y,} for times of order O(N?) for all b < co. Barbour (1976) has
similar conclusions for a continuous-time random walk model. An unpublished
manuscript of Darden (1983) has large deviation results for the Wright—Fisher
model with two alleles and heterotic selection.
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Note that a Markov chain {X,} satisfying (1.1) can be written as
1
(1’8) Xn+1zXn+BN hN(Xn) + B_(Xn+1_fN(Xn)) ’

where E (X, ,|X,) = fy(X,). Ventsel’ (1976a, b, 1979, 1982) and Azencott and
Ruget (1977) consider Markov chains of the form

(1.9) Zy=2Z,+ 1V, + o(tr) ast -0,

where, given Z, = z, the term V, has a fixed distribution p, independent of
[see also Freidlin and Wentzell (1984), Chapter 5]. The models of Ventsel’ (1979,
1982) are more general, but are still essentially of the form (1.9). Their arguments
imply (1.2) with the scaling 1/7 in place of NB,, but are not sufficient to imply
(1.2) for the Wright-Fisher model (1.6). Note that the scaling NB, appears in
(1.2) for (1.8) rather than 1/8y, and By =1 is possible. Also, if 8, — 0, the
constant V' in (1.2) turns out to be the same for (1.8) as for the approximating
diffusion (1.4), while (1.9) generally leads to different formulas for V' [Kushner
(1982) and Freidlin and Wentzell (1984), Chapter 5, page 160]. In particular,
Markov chain models with the same infinitesimal-variance diffusion approxima-
tions (1.4) can satisfy (1.2) with different large deviation constants V.

The proofs of our main results will essentially follow the outline of Ventsel’
(19764, b) and Freidlin and Wentzell (1984). However, new arguments for { X, } in
(1.8) have to be introduced in many places, and the details of the dependence of
the estimates on N and B, are crucial. We proceed by linking certain tightness
arguments (Propositions 3.1 and 3.2 below) with uniform upper and lower large
deviation bounds (Propositions 4.1 and 4.2) for the Markov chains {X,}. The
arguments in Section 3 are the most novel from the point of view of large
deviation theory, since the processes (1.8) do not have natural self-scaling
properties. The proofs of our main results are given in Section 5. Section 2 is
devoted to some preliminary lemmas.

We now state our main assumptions. Let {X,} be a Markov chain depending
on a parameter N defined on a bounded convex set @ C R% Let D be a
connected open subset of @, and assume D,, D, C @ for fixed 0 < & < n where

= {x € R% |x — D| <¢}. In the following, doubly subscripted expressmns
such as E, (®(X;)) and Cov, ,(X,) denote expectations and covariances with
respect to the associated or Cramer-transfonned distribution of X;, for example,

(1.10) E, (2(X,) - -%l

Our basic assumptions for 8, — 0 are ,
(111) @) fp(x)= E(X))=x + Byhp(x),  hn(x5)=0, x, € D.
;‘», (ii) For =%(x)= Cov,(X,), there exist ¢, > 0, C < oo such that

£ C
O<N$22(x)sﬁ<oo, all x € D,.
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(iii) There exists w > 0 such that
|t + NBy
34,#) = Cow, () = 34(x) + 0 P,

uniformly for |¢| < wN and x € D,.

(iv) hAy(x)— h(x) and NZ3(x)- o%*(x) uniformly for x € D,
where 6%(x) and Ah(x) are continuously differentiable functions on
the closed set D,.

If d=> 2, (1.11)(ii) means with respect to the natural ordering of Hermitian
matrices; that is, it holds for the minimal and maximal eigenvalues of =%(x). By
choosing smaller values of w, €, and so forth, if need be, we can assume (1.11)(ii)
holds for =% (x) for |t| < wN and sufficiently large N. A crucial tool will be the
use of the Legendre function

A(N,x,u) = sup (tz, — log Ex(etxl)), xueD,
(1.12) lERd
= t(lv, X, u)u —_ ].Og Ex(et(N,x,u)Xl)’

which we assume is finite and uniquely attained for N> 1 and x,u € D,.
Uniqueness follows from (1.11)(ii); a sufficient condition that the supremum be
attained is

D, c int(conv.hull(supp(X,))), given X,=x€D,, N>1

[see, e.g., Azencott and Ruget (1977)]. We also assume
(1.13) sup |¢(N,x,u)|< CN < o0, all N>1,

x,ueD,,

which is a uniformity condition in N and x. In particular by (1.12) and (1.13)
(recall that X, € @ for a bounded set @)

(1.14) sup |A(N,x,u)]<C,N < 0, all N>1.

x,MED,,

ever f = fy(x)issuch that f; > ¢ > 0and ¢, f; < 1 — ¢ for all x € D, for some
e > 0. See the remarks at the end of the section. We also assume

(1.15) |fn(x) = x| < (1 — kBpy)|x — 2, x €D,

for some k > 0. The condition (1.15) can be replaced by a more general Lia-
pounov condition for { f5} in Theorems 1.1 and 1.2 below; see (3.4) in Section 3.
If B — 0, we assume that D is asymptotically stable for solutions of u’ = h(u);

that is, .
u(0) e D, u'(t)=h(u(t)) for0O<t<L,
(1.16) implies u(t) € D,0 < t < L.

If D = {x: |x — xo| < r} C D, for some r > 0, then (1.16) follows from (1.15) (see
Lemma 5.3 in Section 5). If (1.16) fails but the other conditions still hold, (1.2)



1128 G. J. MORROW AND S. SAWYER

and Theorems 1.1 and 1.2 below follow for initial values X, € B where B is the
largest spherical neighborhood of x, contained in D.
We also need that for all M < oo there exists C,; < oo such that

(117)  |log E(e*™) — log E,(e™)| < Cyltl|x — 3|, |t < MN,

for x, y € D,. If (1.17) holds with C,,|¢| replaced by C,,MN for complex ¢, then
(1.17) holds as stated by the Schwarz lemma. However, we only require (1.17) for
real ¢ If {X,} is multinomial [ie., (1.6)], (1.17) is equivalent to a uniform
Lipschitz condition on { fy(x)}. Finally, assume

2

. . N .
. = =1
(1.18)(i) Aim Tog N o ifd=1,
or
NBY,
1.18)(ii lim ——— = if d > 2,
(1.18) i) Nevso log(N + qy) 1
where
(1.19) gy = sup E (M= X[( X, € Dy)).

x€D

In general gy = O(N) if d =1, and gy = O(N%/%) for multinomial {X,)} for
d>1 (see the remarks in Section 4 below). In these cases (1.18)(i, ii) are
equivalent. Note that the conditional variance of the terms inside the large
parentheses in (1.8) is proportional to 1/NB3, so that a condition like (1.18) may
be essential.

For discrete trajectories [u] = (u,: 0 < n < T') C D;, define

T-1
S(N,T,[u]) = X NN, u,,u,,1),

n=0
V(N,x, y) =inf(S(N, T,[u]): T > 1,[u] € Dy, uy = x, up = y},
Ayn(x) = inf V(N, x, ),
y&D

(1.20)

Ay = An(x,),

for A(N, x, u) in (1.12). The function S is called the action of [u]; V(N, x, y)
and Ap(x) are the action potential and minimal action. The asymptotic behav-
ior of V(N, x, y) for B, = 0 depends on

V(x,y) = inf{%fL(u’ — h(u), 0 %(u)(u' — h(u))) dt:
(1.21) 0

L>0,u(0) =x u(L) =y, {u(t)} Ds}.
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If d = 1, (1.21) can be evaluated in closed form, and is

V(x, y) = 25%"

If d > 2, we need a regularity condition on the boundary of D. Specifically, if
By — 0, we assume that for each y, € D such that

(1.22) V(xy, %) = V= inf V(x,, y),
yeD°¢

there exists a right circular cone C C @ with vertex y,, height 2 > 0 and interior
angle a > 0 such that C N D = {},}. This condition is satisfied if the boundary
dD is C, and is sometimes described by saying that each solution y, € dD of
(1.22) can be touched by a “well-sharpened pencil” from the outside of D. We
suspect that our results are correct as long as each y, in (1.22) is a regular point
for the Dirichlet problem in D, but we have not proven this. Theorems 1.1 and
1.2 below are false without some conditions on dD for d > 2.
Our main results are

THEOREM 1.1. Assume By — 0. Then, under the above assumptions, there
exist constants V > 0 and wy — 0 such that

(1.23)(i) lim P,(eMvV-em < T, < eMnv(Vten) = 1
N-oo
and
1
(1.23)(ii) lim —log E(T,) =V

for all x € D, where V satisfies

Ay
1.24 1 —_— = V = 1 V
(1.24) A}l_r’nw NBy yglafp (o, 7) > 0

for Ay in (1.20) and V(x, y) in (1.21).

If By = 1, we assume instead of (1.11):
(i) fa(x)=E(X,) satisfies fy(x,)=x, € D.
(ii) For each w < oo, there exists C(w) < oo such that

o )
(1.25) 2N, (x) = Cov,, (X)) < N’

uniformly for |¢| < wN and x € D.

(iii) Nlim fa(x)= f(x) exists for all x € D, where
— 00

(iv) f: D - D.

We assume A(N, x, u) is defined and the supremum in (1.12) is uniquely attained
for all x € D and u € Q, and similarly (1.13)—(1.15) holds with x,u € D,
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replaced by x € D, u € Q. We also assume

. AMN,x,u)
(1.26) lim ————— = A(x,u) existsforallx € D, u € Q.
N- oo N
If {X,} are of the form (1.5) with {Y;"} identically distributed in N, then
(1/N)X(N, x, u) = Mx, u) and (1.26) holds automatically. When B, = 1, condi-
tion (1.16) is replaced by (1.25)(iv), and (1.17) is assumed to hold with “C,,|¢|”
replaced by “Cy MN.” We also assume that (1.18) and (1.19) hold with g in
(1.19) replaced by
(1.27) q4 = sup E (eMV:x X0),
x€D
If By =1, the “well-sharpened pencil” condition is replaced by the weaker
assumption that any solution y, of (1.22) is in the closure of the mtenor of the
complement of D. Then we have

THEOREM 1.1. Assume B, — 0. Then, under the above assumptions, there
exist constants V > 0 and wy — 0 such that
Ay

V= lim =~
Nl—I>nooN

T-1
(1.28) = inf{ Y Mup,upey): T>1,

n=0
Uug=x4,u;,€D0<i<T), uTeQ—D}
for Ay in (1.20) and A(x, u) in (1.26).

As in Friedlin and Wentzell (1984), there is a corresponding result for station-
ary distributions. Let E C @ be an open set such that x, & E._Assume the
hypotheses of either Theorem 1.1 or Theorem 1.2 with D = @ — E except that
(i) (1.15) is required for all x € @, (ii) (1.16) or (1.25)(iv) need not be assumed,
(iii) A(N, x, u) is defined and uniquely attained for x, u € @, with g, in (1.18)
and (1.19) replaced by

(1.29) qf = sup E ()= %),
x€Q

(iv) (1.25)(ii) is required for all x € @ for some w > 0 [in addition to either
(1.11)(iii) or (1.25)(ii) as stated] and (v) for each N, the Markov chain {X,} is
ergodic on some set @, C @ with stationary distribution u, on @,. Then:

THEOREM 1.3. Assume By — 0 or By =1. Then, as N — oo, under the
above assumptions,

(1.30) logny(E) = —NByo(E)(1 +0(1)), o(E)= }IE]gV(xO, y) > 0.
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REMARKs. If X, ., = 1/N)L]L Y}, given X, = x, where {Y,} are i.i.d. as
in (1.5), then

1
E?v, (x) = 'N'OI%I, t/N(x)’

where oN «(x) = Cov, (Y}") is the covariance of YN with respect to the associ-
ated distribution of Y with weight e®Y:. Since YN € @ are bounded, oN (%) =
o2(x) + O(|s|) umformly in N and x. Hence, (1. 11)(11) holds if Cov, (YN) > >0,
and (1.11)(iii) holds for arbitrary w < co. Assume

N(N,x,u) = sup (tu — log E (™))
teR?
= tY(N,x,u)u — log E (e .= w¥")
is defined and uniquely attained for N > 1 and x, u € D,. Then for A(N, x, u)
in (1.12)
(1.31)  A(N,x,u) = NN(N,x,u), ¢(N,x,u)=NtY(N,x,u).
If {Y;",} are identically distributed in 7 as in the Bernoulli case (1.6), conditions
1. 13) and (1.14) hold if sup{|¢¥(1, x, u)|: x,u € D, .} < co. In the Bernoulli case
(1.6), (1.11)(ii, iii) and (1.13) and (1.14) are equlvalent tof,>e>0and T¢,f, <
1 — e for f = fy(x) for all x € D, (see the remarks in Section 4), and (1.17) is
equivalent to a uniform Lipschitz condltlon on { fy(x)}.

2. Some preliminary lemmas. The following lemmas are essential for
Sections 3-5. The first lemma is a bound on the oscillation of {X,} with respect
to associated distributions. Lemmas 2.3 and 2.4 are only needed if 8, — 0.

LeEMMA 2.1.  There exist constants ¢ > 0 and w, > 0 such that for 0 < r < w,,
(2.1) P, (1%, = E, (X)) > r) < 2de™ N7, x € D, |t| < w,N.

Proor. For all v € R¢,
(22) P, (v(X,-E, (X,))>r) <exp(—(0r— ¢, ,(60v))), alld>o0,

for

(2’3) ¢x, t(u) = lOg Ex, t.(equ) - uEx, t( Xl)'
Since ¢, (0) = v,, (0) = 0, by Taylor’s theorem

1
9, (00) = S6%(0, v %, (v60)v)

(2.4) .
= 50%(0, 2} rp0u(2)0) < 02|v|2 c<1,

by «(1.11)(iii) if |¢ + yfv| < wN, where 0 < y < 1. Applying (2.4) and (2.2) with
[v| =1, |t| < 3wN and 8 = Nr/C, where 0 < r < w/2, and letting v range over
unit coordinate vectors in R“ we obtain Lemma 2.1 with ¢ = 1/(2Cd) and
wy=w/2. 0
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LEMMA 2.2. There exist constants a > 0 and C, < oo such that for x, z, x,,
2,€D,and N 2 1,

(i) A(N,x,z) = aN|z — fy(x)%
(ii) |>‘(N’ Xy, 21) - }\(N, X9, zz)l < CzN(le = Xo| + ]2, — zzl)-

Proor. By (1.12)

A(N,x,z) = sup (uz — log E,(e*%))
(2.5) ueR?
> u(z — fy(x)) — ¢(u), u=yN(z - fy(x)),

where ¢, = ¢, o in (2.3) and y > 0 is sufficiently small so that |u| < wN for all
x,z€ @ and yC < 1 for C in (24). Then ¢ (u) < 1y2CN|z — fy(x)|? by (2.4),
and Lemma 2.2(i) follows from (2.5) with a = v/2.

If M (t) = E (e'*), then by (1.12)

IA(N, X1, zl) - }‘(N’ Loy 22)|
(2.6) = Isup(tz1 — log Mxl(t)) — sup (2, — log sz(t))l
t t

by (1.13) with M = C; and (1.17), which implies Lemma 2.2(ii). O
The next two results are more delicate, and assume 85 — 0.
LEMMA 2.3. There exist constants w, > 0 and Cy < oo such that if x, z € D,
D, |x—2|<w, |y—2<w and By < w,,
(1) |t(N’ y’z)|SC9N(BN+|y_z|)’
(ii) IA(N,x,2) = A(N, y,2)| < CN|x — y|(By + |x — 2| + |y — 2]).

PROOF. Let M(t) = E(e*®) for y € D,. Then

N
B”), 1] < N,

t+
(2.7) v log M(t) = 2} (¥) = 2}(y) + O(I—l—NT—

by (1.11)(iii). Since v, log M (#(N, y, 2)) = z for y, z € D, by (1.12), {(N, y, z) is
analytic for z € int(D,) and

Vzt(N’ Y, Z) = 2:I?/,Zt(N,y,z)(y)
=23%(y) + O(|¢(N, y, z)|) + O(NBy)

by (1.11)(ii) and (2.7) whenever |{(N, ¥, 2)| < @N and o is sufficiently small.
Since z € D;, B, = {u: |u— 2| <n— 8} C D,. Similarly, fy(y) € B, for suffi-
ciently small W, smce |fN(y) —-zl<|y—z2|+ O(,BN) < Cw,. Hence t(N y,u)is
defined and analytic for u in an open set containing the line between fy(y) and
z,and t(N, y, fn(¥)) = 0. If |&(N, y, u)| < wN for |u — fy(y)| < w, as well, and

(2.8)
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if |z = fn(¥)] < @y, then
(29) [N, y,2)|=1¢(N,y,2) = t(N, 5, fxn())] < CN|z — fy(y)|

by (2.8) and (1.11)(j, ii). Thus |&(N, Y, 2)| < wN is guaranteed by continuity if
|z — y| < w, and By < w, for a perhaps smaller value of w, > 0, and Lemma
2.3(i) follows from (2.9) and (1.11)(i).

Finally, let A = max{|t(N, x, 2)|, |t(N, ¥, z)|}. Then by (2.6)

IA(N, x,2) = M(N, y, 2)| < sup{flog M,(¢) — log M,(¢)|: |¢| < A}
< CgAlx — y|
by (1.17), and Lemma 2.3(ii) follows from Lemma 2.3(i). O

LEmMMA 2.4. If By — 0, there exists w, > 0 such that
MN, x, 2) = (2 = fy(2), ZF%(x)(2 = fn(2)))(1 + O(vy)),
uniformly for x, z € Dy with |x — z| < vy, where By < Yy < w,.

PrOOF. As in the proof of Lemma 2.3, if yy < w,, (N, x, u) is defined and
analytic for z in an open set containing the line between fy(x) and 2. By
assumption, |z — fy(x)| = O(|z — x| + By) = O(yy). Since V,A(N, x, 2) =
t(N, x, 2) by (1.12),

(2.10) VAN, x,2) = V,t(N, x,2) = 23%(x) + O(Nyy)
by (2.8) and (2.9) whenever |z — fy(x)] < w;. Since A(N, x, fy(x)) =
V. A(N, x, fy(x)) = 0, by Taylor’s theorem
AN, x,2) = 3(z = fy(2), V.V AN, 2, 2,) (2 = fy(x)))
(2.11) = 3(z = fn(2), ZR*(2)(2 - fn(x)))
+O(Nyylz — fn(x)1?)

by (2.10), where z, = 0fy(x) + (1 — 8)z for 0 < § < 1. Lemma 2.4 follows from
(2.11) and (1.11)(G). O

3. Tightness properties. In this section we prove two basic tightness
results. The first is a uniform bound on the amount of time that an arbitrary
trajectory can spend away from the stable equilibrium point before building up a
large value of the action S(N, T,[u]). The second result finds the asymptotics of
the minimal action Ay if 8y — 0. In the following, “for sufficiently large N”
will usually be understood.

PROPOSITION 3.1. There exists a function c(e, T) with limy_, c(e, T) = o
for each ¢ > 0 such that

(3.1) S(N, T,[«]) = NByc(e, ByT)

for all T > 2 for all trajectories [u] = (u,: 0 < n < T) C D; with |u, — x,| >
e>0forl<n<T.
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ProoF. ForO<n<T-1,
|un+1 - xO' < Iun+1 - fN(un)l + IfN(un) - xOl

3.2
( ) < Iun+1 - fN(un)I + (1 - KBN)lun = X

by (1.15). The inequality
1
(x+y)°<(1+a)x?+ (1+ ;)yz, alla >0,

summed in (3.2) yields

T T-1
2 u, = %ol < fug — xp)2 + (1 + a)(1 - xBy)* X Ju, — 2,2
n=0 n=0

1\7T-1
+(1 + ;) Z |un+1 - fN(un)l2
n=0

T-1

= |up — xo|% + (1 - «By) Z u, — xo|?
n=0
1 T-1
+ E ngolun+1 - fN(un)|2

if @ = kBy/(1 — kBy). Hence
T-1 T
2ty — Fy(uy)® 2 "BN("BN 2 (1, = xgl? = Jug — x,/?
(3.3) n=0 n=0
> kBy(kByTe - Cp)
since |u, — xg| 2 & for 1 <n < T and u,, x, € Q. Proposition 3.1 follows from
(3.3) and Lemma 2.2(i) with c(e, T) = ax(xTe? — Co)- O

REMARK. The contraction condition (1.15) in Proposition 3.1 can be general-
ized by assuming that there exist a sequence of functions {Gn(u)} on sets
Dy(N) 2 Ds U fn(Ds) such that:

() Gy(u)20,  Gy(xy)=0.
(ii) Gy(u)=n, > 0 uniformly for |u — x4| > & > 0.
(i) [vGy(u)| < C uniformly for N > 1 and u € D;.

(iv) There exists y > 0 such that
Gn(fv(u)) < (1 - ¥By)Gy(u)
for N> 1and u € D,

(3.4)

We now compute the asymptotic minimal action. Define
Q(L,x,y) = inf{fL(u’ — h(u), 07 %(u)(u’ — h(u))) dt:
(335) 0
u(0) = x, u(L) = y, {u(t)} < Ds}

so that V(x, y) = inf, , \Q(L, x, y) for V(x, y) in (1.21).
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ProprosITION 3.2. If By — O, there exists y, € 0D such that
(3.6) inf V(x,, ¥) = V(xg, %) = V>0
yeD°¢

for V(x, y) in (1.21), where if xy = x,,
N

An(xy) A
lim ——— = lim —— = inf Q(L —V>0.
dm —oe = MmN = nf QL %o, %) = V>0

for Ay and V(N, x, y) in (1.20).
The proof depends on Lemmas 3.1-3.3 below. Since D; is open in RY, the first
lemma can be proven by adjoining linear path segments with |u'(¢)| = 1 between

pairs of points that are close, and by using global bounds for pairs that are not
close. Assume B, — 0 for the rest of Section 3.

LemMA 3.1. _For each x,, y, € int(Dy), there exists ¢ > 0 such that for all
X9 Y € Ds:

(i) V(xg, ¥2) — V(xy, »)| < clx; — x5 + ¢y — Xl
andif L>0and L' = L — |x; — x5| — |3, — %] >0,
(ll) Q(L: x29 y2) < Q(Ll’ xl: yl) + clxl - x2| + clyl - y2l'

Since every continuous path from x, to y € D° must exit through a point of
0D, Lemma 3.1(i) implies that inf ¢ ,V(x,, ) is attained at some point y, € dD.

LEMMA 3.2. Assume {Ty} satisfies
ByTy = ©, BTy — 0 and
(3.7) BTy sup (fy(x) = B(x)] + INZR(x) - o?(x)]) = 0.
xe€

Then, for any sequence x, — x,, there exist paths [uN]= (u,: 0 <n < Ty)
with T, < Ty, Uy = xy, U, € D for 0 < n < Ty, and uy, = yy € 3D such that
|,., — u,| < CBy for some absolute constant C and
i S(N, Ty, [uN])
m sup
N- o NBN
Proor. If Ly = ByTy, then Ly — oo by (3.7). Choose y, € dD such that

V(xo,%) = infye ap V(%o, ¥). Since h(xy) =0, Vixg,%) = inf; . (@Q(L,x0,%) =
lim; _,  Q(L, x,, Y%)- Hence by Lemma 3.1(ii)

V(xg, 2%) = Nli_fflw Q(Ly, xy, Y%)

< V=V(xg, %)-

\;(3.8) > limsupinf{%j:'(u’ — h(u), 0 %(u)(u’ — h(u))) dt:L < Ly,

N—- oo

u(0) = xy, u(t) e DO < ¢ <L), u(L) € ap}
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by stopping functions (u(t): 0 < ¢ < Ly) in the definition of Q(Ly, x Ns Yo) at
their first exit from D. Since each Ly < oo and the first exit time is lower
semicontinuous with respect to uniform convergence, the infimum in (3.8) is
attained for each N at functions (uy(¢): 0 < ¢t < L}) where L} < L. Since
h(xy) = 0and xy — x,, it is sufficient to assume L}y — co and that L},/B8y = T
are integers. The Euler equations in canonical form for the variational problem
in (3.8) [see, e.g., Courant and Hilbelrt (1962), page 114] are

uw =Lyv,u)=h(u) +e*(u)o,
v = _Lu(v’ u) = _(Vuh(u)’ U) - %Vu(o2(u)v’ U)
for the Lagrangian

(3.9)

L(v,u) = (h(u),v) + {(e*(u)v,v).

Since (d/dt)L[v(t), u(t)] = 0 by (3.9), there exists C, depending only on the
implicit constants in (1.11) such that for any solution of (3.9)in D for 0 < ¢ < A,

(3.10) Cilo(0)] = Cy < |o(t)] < Cylo(0)| + C;, O <tx<A.
Since by (3.8)
limsup%th(o“’(uN)vN, oy)dt < V< oo,
N- oo 0
where L} — oo, it follows from (3.10) and (1.11)(ii, iv) that v(0) is bounded in N.
Thus, again by (3.10), v(¢) is uniformly bounded in N, and by (3.9)
(3.11) lug(t)| + lupy(t)| < Cs< o0, 0<t<Li,all N>1.
Define sequences [u™] = (u,: 0 < n < Ty) by
un=uN(nBN)’ OsnSL;V/:BN=TI\,ISTN'
Thus |u,,, — u,| < C;By by 3.11), ug=uy(0) =xy, u,€D for 0 <n < Ty
by (3.8) and ury, = uny(Ly) = yy € dD. Thus by Lemma 2.4, (3.11), and (3.7)

1
FB;S(N’ Ty, [u™])

1 T—-1

2NB,, Y (per — Fu(uy), 252(un)(un+1 — fn(#,)))(1 + O(By))

n=0

Ty —1
éliZNv (ufv(n:BN) - h’N(un)’ 2;,2(u,,)(u1’v(nBN) - hN(un)))
n=0

+0(B3Ty)
[ ke = hluy), o~y (u = hluy))) dt + o(1)

< V(xo, %) + o(1)
by (3.8), which completes the proof of Lemma 3.2. O

o
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LEMMA 33. Let xy — x, and {yy} € Ds — D. Then, for any ¢ > 0, there
exist L < o0, x, € D andy € Dy — D such that |x, — x,| < € and
V(N’ XN yN)

(3.12) l}vnllng = Q(L,xl, y) > 0.

PROOF. Choose [u™] = (u,: 0 < n < Ty) C D, such that uy = xy, ur, = yy
and

(3.13) S(N, Ty, [u"]) = V(N, xy, yy) + O(By27V).

Define k, = max{n: |u, — x| < &} for some ¢ >0, and set v,=u,,,, for
0<n<My=Ty—ky Thus |v, — xo| < ¢ |v, — x4| > € for 1 < n < My and
Op, = Ur, = Y- Since there is nothing to prove if the left-hand side of (3.12) is
infinite, and A(N, u;, u;, ;) = 0, it is sufficient to assume

S(N, My,[vV])  S(N, Ty, [u"])

<
NBn NBy

Since |v, — xo| > € for 1 <n < My, S(N, My,[vV]) > NByc(e, ByMy) by
Proposition 3.1, and c(e, ByMy) < S by (3.14). Since lim,_, c(¢e, T) = o0

(3.15) LN= BNMNSL(E, S) < 00.
Define piecewise linear functions {vy(¢): 0 < ¢ < Ly} with nodes
on(nBy) =v, for0<n< M,.

Since A(N, v,, 0,,,) < S(N, My,[v"]) < NByS by (3.14), |v,,, — v,| < C/By
by Lemma 2.2(i). By Lemma 2.4

(3.14) <S<ow, al N>1.

My—1
N'BN (N MN,[U ]) N[)’N ngo A(N Un+1)
By M
= EV— n§0 (Ullv(nBN) - hN(vn)’

S3%(0,)(oh(nBy) = hy(v,)))(1 + O(/By )
and by (3.14) and (1.11)(ii)

(3.16) [“op(e)*dt = 0(1).
0
Hence by (3.15) and (3.16)

:BN (N MN’[” ])

= 3 ["*(oh = Aow), 070w (vk = (o)) dt + o(1).

Choosing a subsequence if necessary, we can assume L, — L < oo by (3.15),

(3.17)
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on(0) = x, where |x;, — xg| <&, yy = ¥y € Dy — D and vj(t) = v'(¢) weakly in
L?[0, L], where v(0) = x, and v(L) = y. Then by (3.13) and (3.17)
o V(N’xN’ yN) 1 L , 9 ,
(3.18) hﬂlgf-—%— > 5./(; (v — A(v), 07 2(v)(v' — h(v))) dt
>Q(L,x,y).

Since L < oo, there exists (w(t): 0 < ¢ < L) C D; with w(0) =x,, w(L) =y
such that the integral on the right-hand side of (3.18) (with w in place of v)
equals Q(L, x,, y). If Q(L, x,, y) = 0, then w'(t) = h(w(t)) for 0 < ¢t < L with
w(0) € D but w(L) ¢ D, which violates (1.16). Hence Q(L, x,, y) > 0 and
Lemma 3.3 follows. O

ProOF oF PROPOSITION 3.2. By (3.18), Q(L, x,, ¥) = V(x,, ¥) = V(x,, ¥) +
O(¢) by Lemma 3.1(i), while V(x,, ¥) > V by definition. Hence Proposition 3.2
follows from Lemmas 3.2 and 3.3, with V > 0 by (3.18) and Lemma 3.2. O

The argument of (3.18) applied to Lemma 3.2 yields the following corollary.

CorOLLARY 3.1. Let {[uMN]} be the sequence of paths constructed in the
proof of Lemma 3.2. Then

_ S(N, T, [wM])
(3.19) am NBy

and V(x,, y;) = V for any limit point y, of yy = Uy

=V

4. Upper and lower large deviation bounds. This section derives uniform
upper and lower bounds for the Markov chains {X,,} for 8, = 0. We begin with
results for the upper bound. Recall T, = inf(n > 1: X, ¢ D}, and let [ X ] be the
(random) trajectory (X,: 0 < n < T).

PROPOSITION 4.1. For qy in (1.19) and all s > 0 and T < oo,
sup P(S(N,T,[X]) 25, X,€D(0<k<T), X, € D,)
(i) xeD
<e gy’
and
sup P(S(N, T,,[X]) > s, X, € D}, T, < T)
(ll) x€D

<Te*(1+ gqy)".

Proor. The probability in Proposition 4.1(i) is bounded by
T-1 - T-1
e® supEx(exp( > MN, X, X,.,)| [11(x, € D)I(X, € Dy)
x€D k=0 k=0

<e *supE (eMV® XX e Ds))T =e~%q\"
x€D
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by the Markov property. For Proposition 4.1(ii), write {T, < T'} as the union of
the events {T, = n} for 1 < n < T and apply Proposition 4.1(i). O

REMARKs. If d =1, gy = O(N). If {X,,} is multinomial, gy = O(N?/?) for
d > 1. If Dy= @, then gy ~ C;N%/2, and in particular log g = O(log N) can-
not be improved. The first statement follows by adapting a standard argument
[Freidlin and Wentzell (1984), Chapter 5, Theorem 1.1]. Fix N > 1 and x € D,
assume d = 1, and set m(t) = log M(¢t) for M(t) = E(e'®). If x € D, fy(x) is
in the interior of Dy for sufficiently small 8 if By — 0; since f: D — D, where
fy — f uniformly in @ if By = 1, fy(x) € int(D;) in all cases. Since A(N, x, u) is
convex in u,

(u € Dy M(N, 2, 4) <5} = [w(s), us(s)], anys >0,
where u,(s) < fy(x) < uy(s). Since t,(s) <0 < ty(s) for t,(s) = &N, x, u(s)),
u,(8) < u < uy(s) if and only if ¢(s)u — m(t,(s)) <s for i=1,2 and u € D;.
Hence by Chebyshev’s inequality
P(A(N,x, X,) > s, X, € Dy)
2
(4.1) < Y P(t,X, — m(t;) > s) < 2sup P,(tX, — m(t) > s)
i=1 ¢

< 2supe °E(e'®)e ™" = 2¢7°.
t

By (1.14), [\(N, x, u)| < C,N for x, u € D,, so by (4.1) and integrating by parts
E (M= WI(X, € D,))

= [“e*B (AN, %, X,) € ds, X, € D;)
0_

<1+ [PeP(A(N,x, X,) > s, X, € Dy)ds <1 +2NC.
o x ()

Hence gy <1+ 2CN ifd=1.
If {X,} is multinomial for d = 1, and if

P(Y=1)=f, P(Y=0)=1—f, where0<f<1,

the Legendre function of Y is
N(w) = ul (“)+(1 )1 (1_“)
u) =ulog| = | — u)lo .

The Legendre function of X, in (1.6) is A(z) = NAY(«) by (1.31), and

]

I A

k

=0
N

N
\/;“m

Nz /2
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by Stirling’s formula, where (’;’ are binomial coefficients. In particular, E(e*V)
is independent of f for 0 < f < 1. Note that (1.11)(ii) excludes singular values of
f. If Y is multinomial for d > 2, that is,

P(Y=ei)=fi, ISiSd’
d
P(Y=0)=f4,,=1- Z frs
k=1
the Legendre function is T9:1u;log(u,/f;), where u,,, =1—X% u, By a
similar argument E(e™*V) is independent of {f;} if f;> 0,1 <i<d + 1, and
E(eM*) ~ C;N9? as N - o0.

In particular g, = O(N??) for multinomial {X,} for any D; C @, and ¢} ~
C,N?? for g} in (1.27).
The next proposition is the large deviation lower bound.

PROPOSITION 4.2. Assume By — 0, and let [u] = (u,: 0<n < T)C D; be
a trajectory with |u, ., — u,| < CBy for 0 < n < T — 1. Then

T
(4.2) Px( max |X, — u,| < r) > (1 — 2de°N*)" ¢~ SN T, [u]) + O(TNrBy)
1<n<T
for |x — uy| < r < CBy and c > 0 in Lemma 2.1.

Proor. By the Markov property
P( max |X, —u,| < r)

\1<n<T

> Px( max |X,—u,| < r) inf  P(|X, —up| < r).

1<n<T-1 ly—up_y|<r

Since S(N, T,[u]) = LIZIN(N, u,, u,. ,), it is sufficient by induction to prove

n=0

P(X, —zl<r)>(1 _2de—ch2 —A(N, x, 2) + O(Nr8y)
(4-3) y(l 1 I ) ( )e

uniformly for x, z € Dy, |y — x| < r and |x — 2| < CBy.

The proof of (4.3) will be via the standard Cramér transformation. Let B =
{u: lu—2|<r}and M(¢) = E(e™). Since x € Dy and |y —x|<r, y€ D,
for sufficiently large N. Using the associated distribution (1.10) with ¢ =
KN, 3, 2),

P(|X, - z| < 1) = P(B) = E, (15¢™")M,(¢)
(4.4) > Py;t(B)li}lfle“‘”"“)My(t)

=P, (B)e N7 lr ¢t =¢(N,y,z),
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since A(N, y, z) = tz — log M (¢) by (1.12). Since
Ey,t(Xl) = thogMy(t(N’ yZ)) =z
by the choice of ¢,
(4.5) P, (B)=1-P, (IX,- E, (X,)|>r) 21— 2de~M"

by Lemma 2.1 if r < w,. By (4.3), x,z € Dy and |x — 2| + |y — 2| = O(By), and
Lemma 2.3 implies |¢| = O(NBy) and |A(N, y, 2) — A(N, x, z)| = O(NByr) for
sufficiently small B8,. Thus (4.3) follows from (4.4) and (4.5), and Proposition 4.2
follows. O

5. Conclusion of proofs. In this section we put together the arguments of
Sections 3 and 4 to prove our main results. It is useful to think of the escape time
T, from D as analogous to an exponential variable with mean e~ *°M) for A
in (1.20). Recall that Theorem 1.1 assumes 8, — 0.

LEMMA 5.1. Under the hypotheses of Theorem 1.1,

() | E(T,) < eAnt+o
and
(ii) P(T, > e4v*1) = O(e~™n~/2), allr >0,

uniformly for x € D.

Proor. Note that (ii) follows from (i) by Chebyshev’s inequality. For (i),
choose T, = oo and then &y — 0 such that 8Ty — o and

NBZ 1/3
log(N + qy) ’

ey — 0, c(ey, ByTy) — oo,

(8.7) holds, BTy = 0

(5.1)

for ¢(e, T') in Proposition 3.1. Set B = {x: |x — xo| < &y} and 7, = min{n > 1
X, € B U D°}. The key step in the proof of Lemma 5.1 is to show

(5.2) sup P(T, > 2Ty) < 1 — e~ Av(+o),

x€D
By the Markov property
(5.3) P(T,<2Ty) = P(m, < Ty) inng(Te <Ty).
zEe

THe first step is to show
(5.4) lim sup P(m, > Ty) = 0.

N—-oo x€D
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By Proposition 3.1
P(m > Ty) = P(X,€ D, |X, — xy| > ey forl <n < Ty)
=< Px(S(N7 TN’ [X]) 2 NBNC(EN: BNTN)’ Xn €Dforl<n< TN)

< e—NﬁNC(BN»BNTN)qNTN
by Proposition 4.1(i). Since c(ey, ByTy) = o and Ty log g5 = o(NBy) by (5.1)
(5.5) sup P(m, > Ty) = O(e ™n), all C < oo,
xeD

and (5.4) follows. For the second factor in (5.3), set Ay = (NBZ/log N) /2
Then by (5.1)
NBR Ny
-

log N
Let [uM] be the trajectories guaranteed by Lemma 3.2, where {xy} is an
asymptotically minimizing sequence for the second factor in (5.3). Choosing
a subsequence if necessary, we can assume yy = ug, — ¥ € dD, where
V(x4, 1) = V by Corollary 3.1. By the “well-sharpened pencil condition” at y,
[see the remarks after (1.22) in Section 1], there exist zy € D; such that
|2y — D| = 2ByAy and |2y — ¥1| < CByAy. Define [oV]by v, = u,, 0 <n <T),
vp =2y for T =Ty. Since |N(N, ur_,, »1) = MN, up_y, 2y)| < C\NByAy by
Lemma 2.2(ii), {[v"]} also satisfies

S(N, Ty, [vV])

N N8y

Hence by Proposition 4.2 and (5.1)

inf P(T, < Ty) = B, ( max |X, - v, < Byhy)(1 +o(1))
z€B Mi<n<Ty

=V>0.

(5'7) > (1 — 2de-CNB%1A2N)Tﬁe—S(N»T;(/»[DN])"'O(TNNB%J}‘N)

= e~ MBN(V+o() = o=An(1+0(1)

by (5.6). Note Ty = O(/N) since ByTy = O(/NBZ) by (5.1), and similarly
NBy = VN . The relation (5.2) follows from (5.7) and (5.5).

We complete the proof of Lemma 5.1 as in Freidlin and Wentzell (1984). By
(5.2) and the Markov property, P(T, > 3nTy) < (1 — e~ Av(*°M)" uniformly
forx € Dand n> 1, so

® 00 .
E(T,) < 3Ty Y, P(T, = 3nTy) < 3Ty Y (1 — e~An+oM)
n=0 n=0
= 3TyeANa+oM) = gAn(+o),

This implies Lemma 5.1(i), and since Lemma 5.1(ii) follows from Chebyshev’s
inequality, the proof of Lemma 5.1 is complete. O
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LEMMA 5.2. Under the hypotheses of Theorem 1.1, uniformly for x € K for
any compact set K C D,

) E(T,) > etvirom
and
()  P(T,<eM0)=0(e ), 0<r<a(K).

Proor. Let Ty, ey and B be as in the proof of Lemma 5.1. As in Freidlin
and Wentzell (1984), define stopping times {7,} by 7, = 0 and by induction

_ [min{n>7,+1: X,€e BUD} if5,<T,
1T T if 7, = T,.

e

Then 7, < 7, if and only if 7, < T,, and

0 e}
T,=m+ X (u—m) 21+ X I(n<T,),
k=1 k=1
where I(A) is the indicator function, since 7,,, — 7, > 1if 7, < T,. Hence by the
Markov property

[e ]
(5.8) inf E(T,) > inf P(r, < T,) ¥ inf P(r, < T,)".
x€K x€K r=12€B
The first step is to show
(5.9) sup P(m, =T,) = O(e™**), a=a(K)>0.
x€K

For x € D and {Ty} in (5.1)
Px(”'l =T,) <P(n=T, <Ty)+ P(r,>Ty)
(5.10) < P(T, < Ty, X; € D;) + P(T, < Ty, Xy, & D)
+Px(”’1 > TN)'
The last term in (5.10) is O(e~ ™) for all C < oo by (5.5). Also
P(T, < Ty, Xp € D;) < TNsull))I-';(Xl & D;)
xe

(5.11) =< TNSUII))Rc“Xl — fn(x)] > 8 — O(By))

— O(Q—chf)

by Lemma 2.1 and (1.11)(i) for sufficiently small 8, > 0.
For paths [u] € Dy with u, = x € D and u, € Dy — D, S(N, T,[u]) > An(x)
by definition. Hence the first term on the right-hand side of (5.10) equals

P(S(N,T,,[X]) = Ay(x), T, < Ty, X;, € D;)
< Tye ™ 4v@(1 + gy)™

= exp[—NBN(A—]:;I%)- + 0(1))]
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by Propositions 4.1(ii) and 3.2, since Ty log(1 + g5) = o(NBy) by (5.1). As in the
proof of Lemma 3.3,

1
liminf inf >a(K) = EQ(L,xK, %) >0

Apn(x)

N-o x€K BN

for some xx € K U {x,} and y, € dD, and (5.9) follows.
By the same argument

(5.12) supPz(q-l = Te) = O(e“AN(1+0(1)))

z€B

since
An(z
lim inf v )=V>O
N—->o z€B NBN

by Proposition 3.2. Hence by (5.9) and (5.12)

00
inf E(T,) > inf P(7, < T,) ¥ (1 — e~ Av(+om)® = pAya+om)
x€K xeK k=1
which implies Lemma 5.2(i). Finally, if My = e4v1=" then P(T, < My) <
P(r, < T, < My) + P(r, = T,). The second term is O(e~*4~) by (5.9), while the
first is bounded by

P(7y, = T.) < Mysup P(r, = T,) = O(e "~ +om)

z€B

and Lemma 5.2(ii) follows. O
ProoF oF THEOREM 1.1. This follows from Lemmas 5.1 and 5.2. O

Proor oF THEOREM 1.2. The first step is to show lim _, ,Ay/N = V > 0 if
By = 1. Since A(N, x, u)/N — A(x, u) pointwise for x € D and u € Q,
limsupy_, ,Ay/N < V by (1.28). Choose paths (v;: 0 < i < M) (depending on
N) such that v, = x4, v, € D,0 < i < My, vy, & D and

ﬂ _ S(N, My, [v]) _ Myt M(N, 03, 0141) o
6.13) —=—7 — to@ EO —x T

Set u; =v;,,, for 0<i<Ty=My—ky for ky=max{i: |v; — x| < ¢} for
fixed ¢ > 0. In particular, |uy — x| < € and |u; — xo| > € for 1 < i < Ty. Hence
by Lemma 2.2(i, ii)) and the proof of Proposition 3.1, c(e, Ty) <
S(N, Tx,[u])/N < Ay/N + o(1) < C, + o(1) by (5.13), (1.14) and the non-
negativity of A(N, o, w). In particular Ty < C(¢) < oo by Proposition 3.1.
Since A(N, x, u)/N are equicontinuous on D X @ by Lemma 2.2(ii),
liminfy , Ay/N >V follows within terms of order & by (5.13), Lemma
2.2(ii) and compactness [recall u; depends on N for 0 < i < Ty < C(e) < oo, and
|ug — x4 < €]. Similarly, V > 0 by arguing as in the proof of Proposition 3.2 and
(5.13), with f: D — D or (1.15) replacing (1.16).
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For the analog of Lemma 5.1, let (z;: 0 < i < T') be a path such that u, = x,,
u, € D for 0 < i < T, uyp =y, where y, satisfies (1.22) and

T-1
(5.14) V< Y Muguy,) < V+e/2
i=0

Since (5.14) will be used instead of Lemma 3.2, conditions (3.7) are not needed in
(5.1). Since {A(N, x, y)/N} are uniformly Lipschitz, it is sufficient in (5.14) to
assume |uy — D| > 2\, for {Ay} in (5.6). Since P=(u;: 0<i<T)C D is
finite and independent of N, also |P — D¢| > 2XAy for sufficiently large N. The
proof of Proposition 4.2 now carries over for u; if 8y = 1 and r < Ay — 0, since
then |#(N, y, z)] = O(N) by (1.13) and |A(N, y, 2) — A(N, x, z)| = O(Nr) by
Lemma 2.2(ii). Since g} is used in place of gy in the analog of Lemma 5.2, only
two terms are needed on the right-hand side of (5.10), and (5.11) is not required.
The rest of the proof of Theorem 1.1 extends to the case By =1 without
modification. O

PRrOOF OF THEOREM 1.3. For ¢y, Ty and B as in the proof of Lemma 5.1, let
6,,; = min{n > o, + 1: X, € B}. The conditions stated just before Theorem
1.3 imply (5.5) for ¢, and hence

(5.15) sup E,(0,) = O(Ty) = O(VN)
x€Q

by (5.1). The constant o(E) > 0 in (1.30) providing that some open set contain-
ing x, but disjoint from E is stable in the sense of (1.16). Hence v(E) > 0 by
Lemma 5.3 below. The proof of (1.30) then follows from (5.15) by proceeding
along the lines of Freidlin and Wentzell (1984), Chapter 4, Theorem 4.3. O

LEMMA 5.3. Given (1.15), the stability condition (1.16) holds if By — 0, and
(1.25)(iv) holds if By = 1, for any set D = {x: |x — xo| <r} € D, forr>0.

Proor. If By =1, | f(u) — xo| = (1 — k)|u — x| implies f: D — D directly.
If B -0, (5 — x4, fu(u) - ) < (1 — kBy)Xu — X, u — x,) by Cauchy’s in-
equality and (2170 = (U — Xy, Un(8)) < —k(u — xo, u — X,) by (1.11)(). This
hold+ fo= t1.. i function A(u) as well, so if w'(¢t) = h(u(?)),

d
(—i;|u(t) — x2 = 2(u(t) — xo, i{u(t))) < —2k[u(t) — x> < 0.
This implies |u(t) — x,| < e *Iu(0) — x,| for ¢ > 0, so u(t) € D for all ¢ > 0 if

u(0) € D. O

\:4dded in proof. The martingale arguments of Ventsel’ (1976a, b) and Darden
(1983) may allow (1.18) to be replaced by NBy — co and a uniform Lipschitz
condition on N2%(x) in (1.11).
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