CUMULATIVE FREQUENCY FUNCTIONS!

By Irvine W. Burr
Purdue University

1. Introduction. The traditional attack upon the problem of determining
theoretical probabilities and expected frequencies has been through the use of
the ordinary frequency function. Many such functions have been developed
for a wide variety of empirical and theoretical situations. The usual procedure
is to find the “best”’ function of an appropriate type, and then to integrate
(either infinitesimal or finite calculus) for the probabilities over the given class
intervals or other ranges.

The cumulative frequency function would seem to be theoretically much better
adapted to this problem. By definition the cumulative frequency function
gives the expected number of cases less than a given value. Hence expected
frequencies in any given range are found simply by taking the difference between
two values of this function. On the other hand, once the ordinary frequency
function has been determined, these expected frequencies must still be obtained
by an often times difficult integration. The aim of this paper is to make a
contribution toward the direct use of the cumulative function so as to utilize
this theoretical advantage.

Some properties and theory of the cumulative function will be presented and
the problem of fitting the function considered. A new cumulative function
possessing considerable practicability will be discussed and examples given.

2. Characteristics of the cumulative function F(x). Let F(x,) be the prob-
ability that * < z,. Since probabilities are non-negative, F(x) is non-decreasing
from F(— <) = 0 to F(») = 1. The two ordinary cases will be considered:
(1). F(x) continuous in (— «, «) and with F’(z) continuous except for a de-
numerable set of points in (— <, «©), (2). F(x) a step-function with all itsdis-
continuities at the points nh + d,h >d >0,n = --- | =2, —1,0,1,2, --- .

It is assumed that F(x) has high contact with its asymptotes. Specifically
for some j (commonly 3 in practice), there is to exist a k& > j 4 1 such that
F(x)-a2* and [1 — F(2)]2* are ultimately bounded as x tends to — « and +
respectively. These conditions are obviously satisfied when, as is often con-
venient, a particular expression is used for F(z) over a range, bounded in one or
both directions, while F(x) is defined =0 below, or =1 above such finite lower
or upper limits.

For the continuous case (1), the definition gives at once

(1) Pla < x <b) = F@®) — F(a).

1 Presented at the joint meeting of the Institute of Mathematical Statistics, the American
Mathematical Society and the Econometric Society at Chicago, Ill., September 2, 1941.
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216 IRVING W. BURR

Furthermore it may be shown that

@ F@) = [P, FE = 1@,
where f(z) is the ordinary probability function. Also

® Pa<z<b) = [ ) de.
Similarly for the discrete case,

@ Fa@) = Thf0),  AF@ =316,

(%) Pa<s<b) = Fb+h) — F@) = 3af0),

where a, b are among the values nk + d,and A is the usual h-difference. In both
h

cases the percentiles are given by the solutions of the equations
(6) F(z) = n/100.

Equations (1), (3) and (5) formulate the advantage to the direct use of F(z).
which was mentioned in section 1. Related to this is the fact that the process
of finding f(x) from F(z) is at least theoretically much simpler than conversely,
as (2) and (4) show. The directness of equation (6) is often an advantage also.

The main problems confronting one in trying to utilize these advantages are
(a) to find suitable cumulative functions and (b) to find methods of fitting F(z)
directly. These are next discussed.

3. Some special functions F(r). An obvious method of attack is to use (2)
or (4) on some f(z). The integration involved is precisely the difficulty the
writer wishes to avoid. The cumulative function might be sought directly in
probability theory. A differential equation incorporating some of the properties
of F(z) given in section 2 is

d
) d—y =yl — 9y, y), y=F@),
z
where g(z, y) is to be positive for 0 < y < 1 and z in the range over which the
solution is to be used. It is to be noted that (7) is very similar to the differential
equation
dy

2y = Ym — gz, v), ¥ = f@),

which generates the Pearson system if g(z, y) = (a + bz + c2”)™
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Equation (7) implies the non-decreasing property for F(z), while for many
choices of g(z, y), dy/dx will be zero at y = 0 and y = 1. When g(z, y) = g(z),
(7) becomes

(8) F(z) = [e/°9% + 117

Some functions g(z) whose integrals are such that F(z) increases from 0 to 1
on the interval —®o < z < « are ¢, ¢z, [(c — x)z]™’, ¢ sec’z and ¢ cosh z,
where ¢ > 0. Generalizations of their corresponding F(x) are given below in
(10)-(14) respectively.

Another method of attack is to simply consider functions which have the
properties given in section 2. The assumption of high contact provides for the
existence of certain integrals to be discussed in section 5. Many fupctions
having the required properties are to be found in tables of definite integrals,
particularly Bierens de Haan [1].

A list of particular F(x) is given below. In all cases the number of parameters
would be increased by two by letting x = vz’ + §, where v and § fix the origin
and scale. These parameters are determined by Z and . The range of z
over which the given expression is to be used is written to the right when it is
not (— «, «). Constants k, r and c are positive real numbers.

(9) F(x) =X, (0) 1)’
(10) Fx) ="+ 17,
(11) F(z) = (x_k + 1)_') (0’ °°))

— 1/e —r
12) Fo=[(539) +1], @,
13) F@ = e+ 07 (<5,3),
(14) F(z) = (ke™*™* 4+ 1),
(15) F(x) = 27°(1 4 tanh 2)",
(16) F(x) = (% arc tan e’)' R

2

an F@ =1 - faFer —0+2’
(18) F@) =1 —-¢), (0, =),
(19) F(z) = (:c - -2%_ sin 21rx)', (o, 1),
(20) F(Z) =1- (1 + xc)—k’ (0) °°)7

Most of these functions have unimodal probability functions f(z), and all of
the functions may be readily handled from the calculational standpoint. To
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check upon their suitability for practical work, the values of a3 and a4 for some
special cases were obtained approximately by evaluating F(x) at a convenient
regular interval, differencing, and using the results as frequencies of a discrete

TABLE I
Calculated a3 and a4 for special functions F(x)

Function Parameters a, a,
(15) r=1 0 4.01
(16) r=1 0 3.24
17) k=1,r=2 —.62 4.50
17) k=2,r=1 0 4.11
a7 k=27r=2 —-.54 4.22
(18)2 r=1 .63 3.25
(19)2 r=1 0 2.41

variable. No correction for grouping was made. The values of a3 and o4
for several of the above functions are given in Table I, where

W= [ drwan i

@ wi=[ @i Fal— Wy
aj = li::, o = .
o

It will be seen that a variety of values of a4 appear. The values of a3 vary
considerably in most cases as r varies. These functions show promise of being
useful after further investigation. The values of a3 and a4 for (20) are con-
venient and adaptable. This function will be discussed in detail in section 6.

4. Methods of fitting F(x). The problem of graduation of data by a cumula-
tive function involves three steps: (a) the selection of the type of function
(b) the determination of the parameters of the function, and (c¢) the graduation.
The first two are often determined by such moment characteristics as a3 and
a4, as in the Pearson system of frequency functions. The third step involves
integration or summation if f(x) is used, whereas, once F(x) is fitted, all that
remains to be done is evaluation of the function and differencing.

To fit F(x) by moments, it must be possible to determine the parameters of
F(z) from &, o, a3 and as. The cumulative moments described in the next
section, when they can be evaluated, will lead to the values of the &, o, a3 and a4
for various values of the parameters. If the relations between the parameters
and the moments are difficult or impossible to obtain, then tables may be con-
structed and interpolation used. The usual process would be to use the a3

2 The method of moments of section 5 was used for these values.
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and a4 tables to determine the primary parameters such as ¢, k and r in (9)-(20).
Then for the given values of ¢, k, 7, one computes the corresponding values of
# and ¢ from their tables, and these are used to obtain the parameters y and §
for x = vz’ 4+ 6. This procedure is illustrated in section 6.

Even when the cumulative moments cannot be evaluated, this method is
still possible. Graduation by a small interval is used to construct tables of 4
F, o, as and a4 for varying values of the parameters. Then the table can be
used as described above. Thus it is seen that in practice any F(x) can be fitted
by this technique.

The usefulness of a cumulative or a probability function depends upon how
wide a range of sets of values of the a; the function covers, and whether such
values occur in practice. In most of the functions (9)—(20), as and a4 are con-
tinuous functions of the parameters. If there is only one parameter then only
a3 (or as) can be fitted in the range of values of as which the function possesses,
but in the case of two parameters both ;3 and a4 can be fitted. Three or more
parameters permit as etc. to be fitted.

5. Cumulative moment theory for F(z). A moment definition for F(x) isnow
b

presented. Since for n > 0, lim [ z"F(z) dx = =, f 2"F(x) dz cannot be

b—w Ya
used. However, it was assumed in section 2 that for some &k > j + 1,
[1 — F(z)lz* is ultimately bounded. Hence, lim [l — F(z)]z’ = 0. Thus

I—+0

1 — F(z) can be used as a factor when integrating over any interval (a, »),
a being finite. But the factor F(z) must be used for an interval of the type
(—, b). Two integrals are needed, and we define the cumulative moment,

M j(a), by
@ e = [ " @ — o)l — F@)lde — [ " — o) Fl) dx,

which exists under the assumptions of section 2. The difference of the integrals
is used because, as will be shown, this leads to simpler results than could be
obtained by addition. If a = 0 in (22) then calling 2/ ;(0) = M,

0

(23) M; = fow Z[1 — F(z)ldzx — f ' F(z) dz.

/— 00

Definitions for the discrete case are similar:

@) M@ =h S G — QP — F@)l — h Xh G — 09 FG),

i=a+h i=—00
© 0
(25) M=k 241 — F@)] — h 24 i FG),
i=h 1=—00

where i”* = §(; — h) -+ ({ — j — 1k). This function is used because it has
simpler properties in the finite calculus than has 7’.
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Various relatlons between the cumulative moments M ;(a) and M ;, and be-
tween these and u;, u; and o of (21) are now developed. To express M j(a)

in terms of M/s, use (z — a)’ = Z iCix"*(—a)'. Thus,
Mia) = fm7 (x — a)’[1 — F(x)ldzx — [a (x — a) F(z) dx

L) 0 a
= [ @-o'll - F@)ds — [ @-a'F@ - [ @—aa
0 0
( a)1+l
e
One reason for the minus sign of (22) may be noted here, because in the contrary

case the last term would be f (x — a)’2F(z) — 1]dzx. By translating the
0

(26) Mi(a) = Z C—a)' My + -2

origin in (26) to £ = a, renaming the moments, and replacing —a by a, one
obtains

o7 u i ; a:'+1
(27) i= iCia" M;_i(a) +j i

To bring in ordinary moments, integration-by-parts and (2) are used.

M,-(a)=[(‘” 2 {l—F(x)}] +[ & €= 97 @) ae

(x — a)1+l (.’E a):+
(28) - [—*.—4_—1—' F(x)]—w + L. ] + 1 f(x) dx

- e- 9@ a,

the first and third quantities vanishing because of the contact assumption.
A second justification of the minus sign of (22) appears here, since if a positive
sign were used, the fourth term would have been subtracted and the integrals
would not combine into (28). Expansion of (z — a)**' in powers of z and
r — p yields respectively

1 i+1 ;
(29) Mi(a) = ]—_*_—-1 ;; 10— ) pisai,
i+l .

(30) Mi(a) = ]_:i-—_i Z; 1+10;(#1 - a)'#i+l—i .
Also setting a = 0,

1
(31) M;= j—-i—_l“;ﬂ

1 i+1
(32) M; = —— 3 iCip’ pivas.

133

+

o

J
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It may be shown that the existence of M (a) implies that of the u:
i = 1, -,7 + 1, and conversely if u; exists then so do the M;(a)
1=0,---,57— 1. The following formulas are obtained by the opposite inte-

gration by parts, taking two different forms for f f(x) dx: F(z) and —[1 — F(x)].
to avoid indeterminate situations.

fmx"f(:c)dx+[a P f(z) dv
—[2'{1 — F(@)}I7

’
M

+i [ #0 - F@li + @ F@E - [ #F@ e

The first and third terms vanish by the contact assumption. Then using
(x — a + a)™ for 2,

-1

(33) b =3 L iCia' Miaio) + o, >0,
Also in the same manner

pi=7J ;‘::; mCie — p) Miai@) + (@ — w)’,  §>1,
or

38 o= jg,_lc,-[—M.,(an‘M,._l_m + [-M@)F, > 1,

using (29) Mo(a) = u; — a. Letting a = 0,

(35) p; = jMia, j>0
=1 . .
(36) B = ]Eo i-1Ci(—Mo)' M + (—Mo)’, j> 1L

An interesting graphical property of F(z) may be seen from (35) j = 1 by
© 0
taking u, = 0. Then M, = 0 and hence _[ [ — Fz)ldz = [ F() d.
Thus the mean is that ordinate which equates the two areas bounded by (i)
y=F(zx),y=0andz = y;and (ii) y = F(z),y = land z = p; .

It is worth noting that the expressions (34) and (36) have the same coefficients,
independent of a. This is to be expected because of the invariance of u; under
translation.

If a = p; then (30) simplifies to M ;(u1) =
for a;'s in terms of the M;(a)’s are given.

_ 3My(a) — 6Mi(a)M(a) + 2M5(a)
®T 2M,(@) — M3(@)F"

1
i+

R Lastly, expressions
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_ 4Ms(a) — 12Ma(a)Mo(a) + 12Mx(a)Mi(a) — 3Mi(a)
37) * 2Mi(e) — M3 (@)

3 = Mo M) + [~ M)
%= [2M:(a) — Mi(a)}"

The discrete case has been carried through in an exactly similar manner, by
the use of finite rather than infinitesimal calculus. Only the results will be
stated here. The notation used is that of Steffensen [2].

M) = E Cizda + (r = DR (=1) M,

J+1
)
J+

(38)
rla+ G- DAY >0

(39) Mo(a) = My+ a

d (G+Da
(40) M,' = Eo ,,C' a(r)h ]‘/Ij—r(a) + (g_j—_L

J+1
i+1 i+ k N (—i—1)
@ M@ = g 5w 2 P - a0, >0
(42) Mo(a) = F-l —a
& & DF QP FH1—k k—r .
(43) Mi(a) _—"Z#rz r ( h) (1+h_a) ]>0
J + 1 r=0 k=r k'

j+1 i+ Dk 0(-—]—1 3
(44) ﬂh=———2 hm”gha o GV, >0
w0 -y .
’

(45) Mo = m
1 i+l i+1 D/c 0(—:--1

(46) M;= FFi& kEkC —————( W + B, §>0
’ j = —kA 0 (k=r—1)p
4N wi=d+ 2 M) ,,2 W= 1Cel = )@ — B
pi = [—Mo(a)Y
48 j—1 Ak
“8) +- ’Z M,(a) kZﬂ:ﬂ h* A—k,gkCr(k — n)[—Ma) — H*
j—1 ) k
4 = S 3 AOH gy
ra=0 kwmer4-1 k!

. i=1
(50) M= (—MO)J + ZO M, Z hJ—k Ak'o C, (’C T)[—Mo _ h](k—r—l)n.
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The writer has verified that under certain fairly general conditions the dis-
crete case (38)—(50) approaches the continuous case (26)-(36) as h — 0.

The following three propositions are merely stated without proof since they
follow so immediately from (23), (25), (31), (45), (21), (2) and (4).

ProrosiTION 1: Given a set of functions F; (x) and positive constants
kii=1,---,n for which le k; = 1, then for F(z) = Z kFi(x), M, = Zk,,M

if all the latter exist.
PropositioN 2. In the above notation, if all the u; are equal, then p; = 2 ki,
i=1

when the latler exist.
ProrosITION 3. If in addition to the above hypotheses, all the iz are equal,

then
(51) aj = 2 ki

=1

These propositions are sometimes convenient in forming a linear combination
of functions F(z), to obtain a function with desired properties. It may be noted
that Proposition 1 is still algebraically true even with negative k’s, but these
might give negative derivatives f(x) for F(x).

. . 1

6. An algebraic function, F(z) = 1 — T
ulative function will be discussed in detail. The a, can be calculated directly by
the application of (23), (36) and (21). The resulting a3 and a4 values cover a
broad range, within which those of many empirical and theoretical distributions
lie. A method of finding such cumulative functions with desired a; and ay
will be given. Several graduations are presented for illustration.

This function appears in Bierens de Haan [1] and has the desired properties.
The writer has not yet found a probability justification for the function. How-
ever, since the a; are so close to those of functions which can be so supported,
it seems that it may eventually prove to be at least some definite approximation
to a probability situation.

The complete definition is

This simple algebraic cum-

| 1 1
52) F(z) =1 T F 29 x>0

=0 <0,
where ¢, k > 1 are real numbers. The probability function

—1
kex®

’ — —_ _—
(53) F(x) f(v) (1 + xc)k+1’
c— 1\
EkTi) if ¢ > 1, and L-shaped if ¢ = 1.

is unimodal at v = (
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Use of (23) on (52) gives
2 dx .
(54) M; = f ¥ op j<ck—1.

But from Bierens de Haan [1]
@© xa—ldx _ (C _ g)[k—llcﬂ_

(55) (I + zo*  ¢*(k — 1)!sin (gr/c) g<6
where ¢ = a(a +¢) -+ (@ + r — 1c).
Hence
—_— e [k—l]c
(56) M= _=i=D + , j<ec—1
ck(k — 1)'s1n‘7 T

However, if j > ¢ — 1 then (55) can still be used through reducing the exponent
ofzby 2 ° (1 + 2°) — 27 ° = 2. (56) is only good for integral values of k.
A more general formula is obtainable by letting (1 + z°) = 1/s. Then

1 1 . 1 k(i _
M’, _ E (1 _ 8)(.H-l)/(: lSk (7+1) /e lds
0

S 1p(it1,-it)

c c

r(5)r (=)
cT'(k) ’

forj = 0,1, --- up through j < ck — 1, and ¢, k any real numbers > 1. To
determine the u; values the easiest way is to compute the values of the M;
by (56) or (57), and then to use (36):

= oM, — My, s = 3M, — 6M:M, + 2M;,
w = 4AMs — 12M,M, + 12M,M; — 3Mjy , ete.

Having these, definitions (21) are used for the o; .

The results for some integral values of k and ¢ are given in Tables II and III.
These computations were made from (56). Formula (57) shows that for a fixed
¢, M; for k + 1 is obtained by multiplying M; for k by ke =5 — 1 —kjc — 1 . This re-
cursion relation is very helpful in the computation, because it enables all of the
values of the M /s for a given ¢ to be found from those for the lowest value of &
for which M ; exists. The values which need to be copied down in the com-
putation for p;, o, as, as, by a calculating machine are Mo, My, M;, Ms,
M:, MY, M§, 6M,, 12M,, 12M5, p2, o, o', o', ps, s, ma, as. Because of
heavy cancellation, especially in u; and u4 , it seemed advisable to use eight signi-

(57) M; =
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ficant figures throughout. Eight-place sines were obtained from Gifford [3].
The values of the Af; for k = 11 were also checked by eight-place logarithms
These verify the values of the M ;for k¥ < 11 because of the recurrence cal-
culation.

[4].

Mean u: , and Standard Deviation o for F(z) = 1

TABLE II

1

- (1 + zo)*

(In each cell the upper number is u: and the lower number is o)

N 1 2 3 4 5 6 7 8 9 10
— : .

— |1.57080 |1.20920!1.11072/1.06896 (1.04720 {1.03438 |1.02617 |1.02060 [1.0166+
1 — — .97787| .58060| .42265-| .33552 | .27953 | .24019 | .21089 | .18815
1.00000 | .78540 | .80613| .83304| .85517 | .87266 | .88661 | .89790 | .90720 | .91498
2 — .61899 | .39533| .30239| .24794 | .21116 | .18433 | .16375 | .14742 | .13411
.500000] .58905~| .67178| .72891; .769657| .79994 | .82328 | .84178 | .85680 86023
3 | .86603 | .39118 | .20349) .24029' .20461 | .17852 | .15847 | .14253 | .12953 | .11872
.33333 | .49087 | .59714| .66817) .71834 I 75550 | .78408 | .80671 | .82507 | .84025
4 | .47140 | .30393 | .24784] .21077, .18344 | .16234 | .145557| . 13187 | .12053 | .11097
.25000 | .42951 | .54737 .62641i .68242 | .72402 | .75607 | .78150~| .802157 .81925~
5 | .32275 | ~25596 | .22070| .19269' .17028 | .15220 | .13743 | .12517 | .11487 | .10610
.20000 | .38656 | .51088 .59509i .65513 | .69989 | .73447 | .76196 | .78432 | .80286
6 | .24495- .22488 | .20220| .18010! .16103 | .14505-| .13168 | .12043 | .11087 | .10266
16667 | .35435-| .48250| .57029| .63329 | .68045-| .71698 | .74609 | .76980 | .78948
7 | .19720 | .20274 | .18851| .17064] .15403 | .13962 | .12731 | .118682 | .10782 | .10004
.14286 | .32904 | .45952| .51992) .61520 | .66425-| .70235 | .73276 | .75758 | .77820
8 | .16496 | .18599 | .17783| .16316| .14846 | .13528 | .12383 | .11394 | .10539 | .09796
.12500 | .30847 | .44038| .53274| .59982 | .65041 | .68981 | .72131 | .74706 | .76848
9 | .14174 | .17275 | .16918] .15704] .14389 | .13171 | .12095— .11156 | .10338 | .09623
J11111 | 29134 | .42407| .51794] .58649 | .63836 | .67886 | .71130 | .73783 | .75994
10 | .12423 | .16197 | .16197| .15190; .14002 | .12869 | .11851 | .10954 | .10168 | .09477
.10000 | .27677 | .40993 .50499{ 57476 | .62772 | .66916 | .70240 | .72964 ; 75234
11 | .11055 | .15297 | .15584| . 14749i .13669 | .12608 | .11640 | .10780 | .10021 i .09351

It will be seen from Table II that in most cases the values of a3 and oy lie
within useful ranges. The graph shows the general relationship between o3,

k and c.
a3 = G(C, k).

The curves are the traces of planes k = 1, 2, - - - upon the surface
Other traces would contain all pairs (c, k) giving a fixed as.



226

Skewness as and Kurtosis ay for F(z) =1 —

IRVING W. BURR

TABLE III

1

(1 + z)k

(In each cell the upper number is as and the lower number is as)

x 1 2 3 4 5 6 7 8 9 10
— — — 4.285~| 2.485 1.820| 1.458 1.225-| 1.060 .937
1 — — — —_ 29.56 14.77 | 10.36 8.342 | 7.215 6.510
— 4.086 | 1.589 .956 .635 .434 .204 .190 .109 .044
2 — — ]10.81 5.937 4.630 | 4.106] 3.859 3.736 3.673 3.646 -
— 1.909 .919 .513 277 .119 .005-| —.083 | —.152 | —.208
3 —  [12.46 5.132 | 3.871 3.485 | 3.358 3.329 3.343 3.376 | 3.418
7.071| 1.432 .682 .3357 .1257| —.019f —.125 | —.207 | —.271 | —.325
4 — 7.356 { 4.036 | 3.363 | 3.189 [ 3.169] 3.205| 3.263 | 3.327 | 3.393
4.648) 1.218 .559 .238 .040 | —.097| —.199 | —.277 | —.340 | —.391
5 73.80 | 5.832 | 3.604 | 3.154 3.070 3.098] 3.1657| 3.243 3.324 3.401
3.810{ 1.094 .484 178 | —.013 | —.147) —.246 | —.323 | —.384 | —.435
6 38.67 | 5.118 | 3.380 | 3.045 | 3.010 | 3.065 3.150~| 3.241 3.330 | 3.416
3.381| 1.014 .433 .136 | —.051 | —.181| —.279 | —.3557| —.415 | —.465
7 27.86 | 4.707 | 3.2457] 2.979 2.975 3.048] 3.144 3.244 3.339 3.430
3.118] .958 .396 .106 | —.078 | —.207| —.303 | —.378 | —.438 | —.488
8 22.73 | 4.443 | 3.154 | 2.936 2.953 | 3.039] 3.143 3.248 | 3.349 3.442
2.940, .916 .368 .083 | —.098 | —.226] —.322 | —.396 | —.456 | —.505~
9 19.76 | 4.258 | 3.091 | 2.906 2.938 3.033] 3.143 3.252 3.357 3.453
2.811] .884 .347 .065 | —.115~| —.242| —.336 | —.410 | —.470 | —.519
10 17.83 | 4.122 | 3.043 | 2.883 2.928 3.030, 3.144 3.257 3.364 | 3.462
2.714| .858 .329 050 | —.128 | —.254| —.348 | —.422 | —.481 | —.530
11 16.48 | 4.018 | 3.006 | 2.866 2.920 3.027| 3.146 3.261 3.371 3.470

The surfaces for ui , ¢ and ay are more irregular. The problem of determining
a cumulative function with a3 = a and a4 = b is equivalent to the problem of
determining a point of intersection of the curves

(58)

az = G(k; C),

ay = H(k) C),

a3 = @

oy =

b.

Direct algebraic solution of this system appears very difficult, and other tech-

niques must bhe resorted to.
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One method is to use only integral values of k, and then for each k interpolate
for the value of ¢ giving the desired az. For such pairs of ¢ and k, find a4 by
interpolation. Then choosing the pairs having a4 just above and just below the
desired one, the proper linear combination (51) is taken. This gives a combina-
tion function which has both az and a4 at the desired values. This combination
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will be an approximation to the single function with non-integral k, having the
given a3 and ax . This method of linear combinations might be extended to fit
as by using three integral values of k.

The interpolations may be done graphically by use of Figure 1 and others like
it. Or one may use Stirling’s formula [5]. The interpolation for ¢ from a3
is backwards, while that for a4 from c is direct. Sometimes it is more accurate
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to use Newton’s formula [5, p. 36] when the values in one direction increase
rapidly.

Use of a single function F(z) for a graduation is easily accomplished. First,
obtain the ¢ and k to be used so that a3 is correct and a4 is as close to the given
value as possible. Then determine y; and ¢ from Table II by interpolation.
Change the scale and origin of the original values of the variable X to those
2’s corresponding to F(z) = 1 — 1/(1 + z°)*, through
T — u X-M

={ =

(59) o s

where M and S are the mean and standard deviation of the given distribution.
Now compute the values of 1/(1 + z°)* for the various values of . The differ-
ences of these results are equal to the differences of F(x), which by (1) are the
probabilities for the given ranges of X. Multiplication by the total frequency
will yield the theoretical frequencies, if desired.

If the graduation is to be done by a combination of two functions, the work
is carried out for each as described above, and then the frequencies are combined
by the same linear combination as that by which the component a4's must be
combined to give the desired as . This may readily be seen by considering the
separate cumulative functions in terms of the standard variable ¢, whence the
means and ¢’s are 0 and 1 and (51) is applicable. Then the differences of
G(t) = kiGi(t) + koG.(t) are sought. But these can be found by taking the same
linear combination of the separate differences of the functions Gi(f) and Ga(t).
However, these values are merely computed from their respectivesets of z values.

For illustration, three graduations are given. The first is a highly normal
distribution of heights from Rietz [5, p. 98ff.]. For this distribution, M = .02085,
S = 2.5723, a3 = —.0124, oy = 3.149. The graduation was done by taking the

function F(z) = 1 — (—l———l-l-xT)“ which has the nearly normal characteristics
a; = —.019, s = 3.169. The object was to take a simple cumulative function

with integral k and ¢ to show how a satisfactory job can be done on a normal
distribution. For this function p; = .75550 and ¢ = .16234. Then

z = .063110X + .75418,

into which are substituted the X class-limits —11.5, —10.5, etc. From these,
8585
1 + 29
theoretical frequencies for the 8585 cases. The results are given in Table IV.
The fit obtained by use of F(x) is good. One comparison test is that of
x°. The eight classes —11, —10, —9, 9, 10, 11, 12, 13 were grouped together.
The results were

corresponding values of are calculated and differenced to give the

e = 21.210, xy¥ = 23.479,
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as compared to
P(x* > 22.31) = .10,
PG > 19.31) = .20,

for 15 degrees of freedom (18 classes minus 3 for linear restrictions). One
reason for the somewhat lower x’ for F(z) may be that its a; and oy are closer to

TABLE 1V

X Observed frequency [5] Graduatede(l-:‘e)quency by Gradua;:g;et%gitncy of
—11.0 .00 .163
—10.0 2 .43 .67
-9.0 4 3.23 2.84
—8.0 14 13.17 10.30
-7.0 41 39.81 32.11
—6.0 83 97.87 86.03
—=5.0 169 206.72 198.17
—4.0 394 385.34 392.43
—-3.0 669 639.55 668.11
—-2.0 990 941.98 977.92
—-1.0 1223 1216.47 1230.63
.0 1329 1353.98 1331.41
1.0 1230 1278.39 1238.41
2.0 1063 1013.80 990.33
3.0 646 676.12 680.86
4.0 392 384.41 402.44
5.0 202 190.83 204.51
6.0 79 85.19 89.35
7.0 32 35.24 33.56
8.0 16 13.87 10.84
9.0 5 5.33 3.01
10.0 2 2.01 .72
11.0 .77 .15
12.0 .30 .03

13.0 .198

Total............... 8585 ! 8585.00 8584.99

those of the observed distribution than are those of the normal function. This
gives a better fit in the tails of the distribution. Nevertheless, this example does
illustrate how one of the simplest of the cumulative functions with ‘“normal”
characteristics can be used without specifically fitting a3 and oy . It may also be
mentioned that F(x) for ¢ = 5, k = 6 has a3 and a4 cven closer to the normal

8 Total of stump frequency.



TABLE V

x Donency Fenkat | Fohasl | PO i | Type 1)
-8.0 3 .00 .00 .00
-7.0 9 .86 .00 .27 2
—-6.0 46 39.58 25.07 29.52 27
-5.0 167 180.78 175.27 176.96 142
—4.0 372 433.86 445.79 442.13 410
—-3.0 718 768.83 791.72 784.71 799
~2.0 1186 1116.06 1134.52 1128.86 1186
-1.0 1462 1383.06 1384.99 1384.40 1441
.0 1498 1492.04 1477 .86 1482.20 1502
+1.0 1460 1419.70 1399.70 1405.83 1385
2.0 1142 1205.81 1190.80 1195.40 1158
3.0 913 926.59 921.47 923.01 891
4.0 642 654.00 656.82 655.96 641
5.0 435 430.66 436.78 434.90 434
6.0 235 268.70 274.63 272.81 280
7.0 167 161.10 165.27 163.99 173
8.0 133 93.99 96.23 95.55 102
9.0 47 53.88 54.77 54.50 59
10.0 29 30.62 30.70 30.68 33
11.0 13 17.37 17.07 17.16 18
12.0 9 9.86 9.46 9.58 9
13.0 5 5.64 5.26 5.38 5
14.0 8 3.26 2.93 3.03 2
15.0 2 1.89 1.66 1.73 1
16.0 1.12 .93 .99 1
17.0 .66 .53 .57
18.0 .41 .31 .34
19.0 .24 .18 .20
20.0 .16 A1 .13
21.0 .27 174 . 204
Total........ 10701 10701.00 10701.00 10700.99 10701
TABLE VI
Observed [6] Type III [6] Type A 6] Edgeworth [6] F(x)
3 4 5 4 4
20 17 22 17 19
38 42 47 42 42
63 59 60 59 56
51 53 50 53 52
29 33 27 32 34
21 15 13 15 16
4 5 4 6 5
0 1 1 2 1
! 0 0 1 0
230 229 229 231 229
x? 4.54 7.55 5.86 4.03

4 Stump frequency.

230
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values, but it does not give quite as good a fit because it tends to decrease too
rapidly on the left.

The second example is also from Rietz [5, p. 108ff.]. For this distribution,
M = 68835, S = 2.9480, a3 = .583 and ay = 3.698. Two functions were used
with k¥ = 4 and k¥ = 5. By interpolation

p; o ag ay
k=5 c =294 .54200 22247 .583 3.655
k=4 c = 3.228 61577 .23823 .583 3.795

Because of the rather rapid increases for smaller values of ¢, Newton’s formula
[5, p- 36] yields better approximations than Stirling’s [5, p. 38 (12)]. The gradua-
tion for each function is carried out as above, and since

.3063-3.795 + .6937-3.655 = 3.698,
the linear form

.3063f + .6937f = f*,

is used.

Table V gives the component and combined frequencies, and also the fre-
quencies from a Type III. x” for both are very high even though the fit appears
reasonably good.on a graph. This result is due to classes 6 and 8 which tend to"
cause a high x” for any distribution function of a small number of parameters.
The example, however, does show that F(x) can be used to graduate a skewed
distribution.

It is to be further noted that the component functions were used only to
obtain an approximation to a single function with 4 < & < 5, for which a3 and a4
are simultaneously correct. When tables more complete than Tables II and
III are available, such a single function can be found.

The third example of graduations is from Elderton [6]. The measures were
treated as a discrete variable in computing a; and as. A single function
¢ = 3.102, k = 11 was used. This function had a; at the observed value of
.2936, while as was 2.973 as compared to the observed 2.986. The results along
with those by classical methods are shown in Table VI. The above x* were
obtained by grouping the first and the last three class frequencies. The values
are approximate because of rounding. However, they do show that F(x) does
a comparable graduation.

Besides aiding in the problem of graduation, this cumulative function should
prove of value in the approximation of known or population distributions, as
for example, (p + ¢)". However much more work needs to be done hefore this
can be more than a conjecture.

7. Conclusion. This paper has stressed the advantages obtained by thedirect
use of the cumulative function. A number of useful functions have been
considered. A general method for fitting any cumulative function by the
construction of a table has been suggested. A particular method depending
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upon the use of certain new cumulative moments has been given. Making use
of this theory a certain simple algebraic function has been discussed in detail,
and its use in graduations explained.

The writer wishes to convey his sincere thanks to Professor Harry C. Carver,
whose counsel was most helpful.
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