ON CARD MATCHING

By T. W. ANDERsSON
Princeton University

1. Introduction. Several authors have discussed the probability of obtaining
a given number of matched pairs of cards under conditions of random pairing of
two decks of arbitrary composition. The exact expression for this probability
(equation (6)) is ordinarily too complicated for use in computing significance
levels. This is especially true for certain practical applications. For example,
in a square two-way contingency table in which the categories corresponding to
rows are identical with those for columns, the sum of the entries in the diagonal
cells has this distribution. Intuitively one would suspect that the distribution
is asymptotically normal, as suggested by several authors. In the following
section proof is given that the number of matched cards is asymptotically
normally distributed when the total number of cards in each of the two decks
approaches infinity with the proportion of cards in each suit of each deck remain-
ing fixed. The form of the limiting distribution can then bhe used in computing
approximate significance levels.

A problem of some interest to psychologists is that of determining whether an
individual has matched two series of items better than could have been done “‘by
chance”; for instance, whether a graphologist has matched personality descrip-
tions with specimens of handwriting better than by chance. The problem can
also be phrased in terms of card matching under random pairing of two identical
decks each of a given number of different cards. This will be recognized as a
classical problem of probability theory: Let tickets numbered from 1 to n be
placed in a hat. If the tickets are drawn one by one from the hat, what is the
probability that the number of the drawing will coincide with the number drawn
a specified number of times? It is clear how the analagous problem of matching
cards of three or more identical decks of a given number of different cards arises
(e.g., matching appearance, personality, and handwriting). The latter part of
the present paper is concerned with this problem. Battin [1] has displayed a
generating function for the probability of obtaining a given number of matched
cards between any number of decks of arbitrary ‘composition. Battin’s generat-
ing function is used to derive explicitly the probability of obtaining a specified
number of matched cards and the moments of the distribution.

2. The Limiting Distribution of the Number of Matched Cards. Jn the
ordinary card matching problem one is interested in the number of matchings
when two decks, say D; and D,, are paired randomly. Let D, consist of ny ,

Nz, * -+, N cards of suits Sy, Sz, - -+, Sk, respectively, and let D, consist of
Nar, N2, + + - , Nax cards of suits Sy, Sy, - -+, Sk, respectively-(any n.; can be 0),
where

k k
D= Ny =m.

te=1 =1
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Letti; (2,5 = 1,2, - - - , k) be the number of pairings each involving a card from
D; of suit S; and a card from D, of suit S;. It is easily seen that the probability
of a set || ¢;;|| under random pairing is the same as that associated with the
entries || £;; || in a k by k contingency table [2] for which the row totals are fixed

as ny, N2, * - -, N, and the column totals are fixed as n21, N2, - -+ , N2k, 1.€.
k k
11 nat IT me!
1) P(t;) = ‘:‘__EL:I____ .
nl I.I1 t;!
[T

The probability of obtaining %~ matchings is the same a5 that of the sum of
diagonal terms in a square contingency table, i.e., h = th,-,- . In fact, in prac-
tical cases, the problem frequently arises in this manner: If two individuals each
classify n objects into k categories, k is the number of objects on whose classi-
fication they agree.

The distribution (1) has essentially (¢ — 1)* variables since there are 2k — 1
linear restrictions imposed on the £;;. It is easy to verify that, for fixed ny;/n =
mi; , say, and fixed nz;/n = my; , say, the distribution (1) approaches the normal
distribution in (¢ — 1)? linearly independent variables, as n approaches infinity.
Let us substitute

Li — MMy M
V1
use Stirling’s formula for each factorial in (1), and take the logarithm. The
argument proceeds in a manner similar to the classical case of the limit of the
binomial distribution.
Since there are imposed linear restrictions on the ¢;;

T = (":7j=1’27'°'1k)’

k
Ztﬁ=n'mli ('L’: 1’2’ "'1k))
je=1
k
2 b = nemy (G=12 k),

fe=1

there are also restrictions on the z;; , namely,

k k
Z.’Eij = _Ex.'j = 0.
=1 t==1

Hence there are (¢ — 1)° linearly independent z;;. If we choose x;; (¢, j =
1,2, -+, k — 1) as the linearly independent variables, the limiting probability
element as n approaches infinity, is

k—1
1 le

A % eone 1
(21!’) (k—1 (I’]i' M I'I m2i> i =
= 7

=]

@

dx,'j y
1
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where
k

2
. Tij
Q 321 My My
is written in terms of all the z;; with the understanding that the linearly depen-
ent variables are linear functions of the independent variables.
Now h — E(h) is simply a linear combination of z;;, namely,

h—E®R) = \fo.,

Hence, ‘it follows that
h — E(h)
Vnou
is asymptotically normally distributed with mean zero and variance unity. For
large n, then, it is possible to use the normal distribution to approximate signifi-
cance levels for h.

Of course, any other linear combination of the entries ¢;; is asymptotically
normally distributed. The quantity @ in (2) can be recognized as the Pearson
x” for contingency tables, and the above constitutes proof that it actually has the
»’ distribution with (k — 1)* degrees of freedom.

3. Matchings between three or more decks. There are instances, such as
the classification of n objects into k categories by 3 or more individuals, in which
one is interested in the matchings of three decks or more. For any number of
decks one can prove in a manner exactly analagous to §2 that the distribution
of the number of matchings is asymptotically normal. Here the demonstration
is indicated for three decks. Let us consider three decks D, (e = 1, 2, ) with
Naly Moz, ** * 5 Tak , cards of suits Sy, Sy, - -+, S, respectively. Let ¢,:; be the
number of triplets consisting of a card from S, of D, , a card from S; of D, , and
a card from S; of D; under random formation of triplets (i.e., laying down the
three shuffied decks side by side).

The probability law of the set {¢,:;} can be derived by the consideration of the
generating function,

@mna+ apza+ - +npa+ oo+t oo+ wyra)”

@®) = Z H tw aIJ.:: (o i 2) i

where the summation extends over all the partitions {¢,:;} of n. The number of

ways of deriving the set {f,:;} is the coefficient of H (2, 9:2)'"*!, namely,
9,87

n!

II tt?

A

where Z byii = Mg, E tyi; = e, and Z lij = 1
'8

01
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The total number of ways of getting the marginal totals n, , 72: , and ng; is the
coefficient of H 2719 yi* 27 in (3); that is, in

'A%

(S )’ = (S )5 w"(E 2"

“N z"li

=2 11 rmﬁ—:

The probability of getting the set {¢,:;} is the ratio of these expressions,

nl_ nl
Pltgis) = H tan I / [H s H s H naf!]

PEE)

@) H m,,!~H m.lH Ng;!
- 9 i j
(nl)2 H t,.','l

gr 4]

This formula is analagous to (1) and, indeed, reduces to (1) for ns = n, ng; = 0
(j =28, ---, k). This is the probability associated with a three-way con-
tingency table (k by k by k). For a contingency table, k& by I by m, this prob-
ability would be (4) with the limits on g of 0 and k; on 7, 0 and [; and on j, 0
and m.

For fixed values of the ratios nai/n = mai (@ = 1,2,3;7 = 1,2, --- , k), say,
the k* — 8k + 2 linearly independent variates in the set {ts5;} are asymptotlcally
normally distributed. To demonstrate this, substitute

toi; — MMy, Mos M3, ..
Tgij = Lkl \/;—Z i (gr :.7=112:"'yk)

into (4) and use Stirling’s approximation. There are 3k — 2 independent linear
restrictions on the z,;;, namely,

Zxﬂ'l Exﬂl)=zxgq-0

$yj=1 gri=1 gstwml

Therefore, there are k* — 3k + 2 2’s which are unrestricted. Using these vari-
ables, we find that the limiting probability element of these z,; is

1 ~ 10
(5) (21'.)‘(],8_3]‘.}.2) (I‘I M, II Mias H msf)!(ki_l) (4 H dxm'i ’
g : i
where
Q= > i

b
0,3, =1 M1y Mo Ms;
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and the product of differentials is of X — 3k + 2 variables. The number of
k

matched triplets u, say, is‘the sum 2 ¢, and we have
]
u — E(u) i
—_— = Tisi «
Vn =

From these facts it follows that u;\/_ii(l‘l is asymptotically normally distributed.
The above results may be easily generalized. In a ¢-way contingency table
with fixed marginal totals n-ma; (@ = 1,2, ---,¢;2=1,2, ---, k), the prob-

ability of a set {ty ... ;} is

q k
II II (n-mai)t

amm]l gl

. .
@)™ II t.4t
Gofyo e opfmml

The entries minus their respective means and divided by /7, namely,

byiooj — MMygMp; «+» My
Vn

are asymptotically normally distributed according to

k —}(k9—1-1)
(27)—§(k'1-¢k+¢—li (ﬁ H mm,) e—io,

Zgi...j =

aml fmml

where

k 2
Q = Zgs...f
0ofye e cijeml Mg Mg « o o Mgy

The generalization of Pearson’s x°, namely @, has the x’-distribution with
k" — gk 4+ q — 1 degrees of freedom. Finally,

k
8§ = Zl tiseoos ,

the number of matched g-tuplets, under random formation of g-tuplets is asymp-
totically normally distributed.

4. Matching cards of identical decks, each of n different cards. The prob-
ability of obtaining a given number of pairs of matched cards under random
pairing of two identical decks each of n different cards has been derived by Chap-
man [3] by a straightforward method and, of course, the solution of the classical
problem mentioned in the introduction is this probability. Another technique
involving the use of the general expression for the number of matchings of two
decks of arbitrary composition can be easily generalized to three or more decks.
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Before discussing this method, let us derive this general expression first by the
use of the generating function discussed by Battin. Consider the multinomial

(@ue’ + ziys. A -+ + 2 + zoe’ + oo + 2ye®)”

The coefficient of €"’z,™** - .. Pyt ... y** (where k is the number of suits;

n1; the number of cards of sult S; in the first deck; ns; the number of cards of
suit S; in the second deck; and n = 2Zny; = 2ny;) is the number of ways the
cards may be arranged so that there are h matchings. After expanding the
multinomial

[Z; ziyie’ + (‘Z x-')(; i) — ‘Z zoyl”

in powers of x; and y; , taking the proper coefficient, and dividing by the total
number of ways the cards can be arranged, one arrives at the probability law of
h [4],

©® PO = Eﬁg&if(W*{@@‘@h

(n!) - g
where

) T,=% - @)'(n — g)! ’
H [(ns — 8)! (s — 8)18l]

where the summation is extended over all s; , satisfying the following conditions:
Zsi=n—g, e — 8 2> 0, Ny ~— 8 > 0, 520
(i = 1)27 et ’k)-

From (6) one can easily derive the distribution of the number of matchings
when two identical decks of n different cards are randomly paired. Let n;; = 1,
ngi = 1,and n = k. Then T, as defined in (7) is

@)'tn— gt _
Ty= Z(O!O'l')”""(l!l!m)a = g,(n 1 @)'(n — g)!

for s; can equal 0 or 1 and there are ,C, choices of the 0’s. Hence, we find the
probability of the number of matchings v to be

® oy = L5

This result has been given by Chapman [3]. It is, in fact, a classical probability
law.
The moment generating function is

n»—v_jvo ” 0__ V'
ROEDIPIESILIGH) SRRy

=0 j=0 v!j! =0 g!
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From this expression it is easy to verify that
E@w =1, A=1, EW™) =1 (r < n).

It is interesting to observe that as n approaches infinity, the moment generating
function approaches

® 5€-r oo

It therefore follows that the limiting form of the distribution is the Poisson dis-
tribution with parameter unity, namely,
S _11

(10) z! e x!

If one writes the moment generating function as

[} 0 ‘

(Gt )
(11) 0(6) = 2
=0 g !

one can see that the first n powers of 6 in (9) are the same as in (11). Hence,
the first n moments of the distribution (8) are the same as those of the Poisson
distribution (10). In particular it is interesting to observe that in the random
pairing of any two series, such as the serial numbers and order numbers in the
Selective Service drawing, the expected number of matchings is exactly 1.

In applications of this method of matching (e.g., matching individuals and
handwriting), the experiment may be repeated several times. It would be de-
girable, therefore, to have the probability law of the mean of a sample. The
exact distribution, however, is too complicated to use. It follows from the cen-
tral limit theorem that the mean of a sample of N observations from this dis-
tribution is asymptotically normally distributed as N — «. It can also be
shown by using the moment generating function that if the observations are from
distributions with different n (i.e., the 7-th observation from a pair-of decks of
n; cards, n; > 2), the distribution of the mean of the sample is asymptotically
normal.

Now let us consider the analogue for three decks of cards. The generating
function [1] for the number of matchings of three cards, one from each of three
decks of arbitrary composition as defined in §3 is

(e’ + zyze + - + Tpr + -+ A Ty
+ oo+ sy’ + - + Bae’)™.

The probability of obtaining ¢ matched triplets found after expanding this ex-
pression is

3 k
P E ST YR

o=0 g
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where
yl [!_Il (Nas — &)l-se!]
where

k

2s=n—g, &0,
fam]

Nai — 820 (a=1,23;7=1,2, ’k)

To specialize (12) for the case to be considered here, namely, three identical
decks of n different cards each, we let

Nai =1 («=1,2,3;2=1,2,---,k),
n = k.
Then, observing that
T, = (gV'nl,
one finds that the probability of ¢ matchings is

1 DT 1 (=) =t — )
nltl ;s (n — ¢t — g)!  nltl 1= J! )

13)  P() =

The moment generating function is

1A (=1 -t — )
(14) TORTEPIDY e
_1 ~ (n — g)! 0 _ 1yo
= MZ:D - @ -0
One can readily verify that
1
(15) EQ) =,
s M —=n+1
¢ n¥(n — 1)

Since both E(¢) and o} approach 0, as n approaches infinity, by Tchebycheff’s
inequality we can see that the probability approaches 1 that there will be no
matched triplet as n increases without bound. As in the case of two decks, the
result that the mean of a sample from this population is asymptotically normally
distributed follows from the central limit theorem.

For the general case of ¢ identical decks each of n different cards we can gen-



434 T. W. ANDERSON

eralize (13), (14), and (15) immediately. First, let us note that the probability
of s matched cards for g decks of arbitrary composition is

o < B oy,

(n!)e a=0 \$ g
where
(gh4n — g)!
ﬁ (i — Si)!‘sil]

’

where

Esf=n—g, 8 =0,

tml
(nai_si)zo
(a=1727"’;q;i=1’27""k)-

The probability of w, the number of matchings when each of the ¢ decks consists
of n different cards, is

P(w) =

1 (=t —w— I
(nl)e Z 5! ’

The moment generating function is

L Sle=ol ).

(nh)? 02
Finally, the mean and variance are

1
E(w) = =2’

2 _ n"n — D24 0 — (n— 1)
Tw = nH@D(y — 1) :

6. Summary. Two distinct problems associated with card matching have
been considered in this paper. In the first place it has been shown that the dis-
tribution of the number of matched pairs obtained under conditions of random
pairing of two decks of arbitrary composition is asymptotically normal when
the number of cards in each deck approaches infinity and the proportion of cards
in each suit remains fixed. This demonstration was extended to the cases of
matchings between three or more decks. The second problem treated in the
present paper is concerned with the matchings between identical decks, each of
n different cards. The probability law for the case of two decks was derived by
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the use of a generating function. When n approaches infinity the limiting
distribution was shown to be Poisson. The case of three or more decks was
treated in similar manner, with the probability law and the moments given.

REFERENCES

[1] I. L. Battin, ‘‘On the problem of multiple matching”’, Annals of Math. Stat., Vol. 13
(1942), pp. 294-305.

[2] F. Yates, ‘“Contingency tables involving small numbers and the x?-test’’, Jour. Roy.
Stat. Soc. (Supple.), Vol. 1 (1934), pp. 217-235.

[3] D. Chapman, ‘‘ The statistics of the method of correct matchings’’, Amer. Jour. Psych.,
Vol. 46 (1934), pp. 287-298. .

[4] S. S. Wilks, Mathematical Statistics, Princeton University Press, (1943) pp. 208-213.



