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Introduction. If n real variables z;, zs, - - - , z, are subject to a probability
distribution with the element dV,(z;)dVa(xz) - -+ dV,.(x,) one can ask for the
distribution of any function f of z;, ., -+ - z, . We are primarily interested in
statistical functions, i.e.in functions that depend on the repartition' S, (x) of the
n quantities @, , 2», - -+ @, only. The simplest case is that of the linear statis-
tical functions

) 7= [¥@ a8.@) = W) + 9@ + o + il

The so-called Central Limit Theorem of Probability Calculus states that the
distribution of a linear statistical function, if n tends to infinity, approaches
more and more the normal (Gauss) distribution if some very general conditions
linking ¥(x) and the V,(x) are fulfilled. It has been shown, ten years ago, [2]
that the restriction to linear functions here is immaterial. Much more general

1 The function S.(z) is called the repartition of the real quantities z;, z2, -, z, if
nSn(x) is the number of those among the z, , z2 , - -, z. that are smaller than or equal to z.
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310 R. V. MISES

statistical functions tend towards normalcy with increasing n, for example the
variance of mth order

) f= M, = f @ — Q)" dS.(), a= f 2 8. (%)

and, likewise, such combinations as the Lexis quotient M;/a(1 — a/N) or Gini’s
disparity measure 1 — f (1 — 8,.)’dz/a or, in the multidimensional case, the

correlation coefficient, etc. On the other hand, statistical functions are known
whose distributions assume, asymptotically, a form different from the Gaussian.
One example is Pearson’s Chi-square, another the test function «’, introduced
by H. Cramér [1] and the author [4]:

®) =o' = [ (@IS0 - V@I ds
where ¢'(x) > 0 and
@ Tal@ = Vi@ + Va@ + -+ + Va@).

N. V. Smirnoff [7, 8] computed the asymptotic distribution of w® for the case
that all V,(x) and, therefore, V,.(z) equal one and the same distribution func-
tion V(x). The result differs widely from the Gaussian distribution.

In order to understand all this it is necessary to consider f as a function de-
fined in the space of distributions V(x) (or in a sub-space of it). Then, the vari-
able f whose distribution is sought is the value of f{V(x)} at the “point” S,(x)
and should be written as f{S.(z)}. Such “functions of functions” were first
introduced by Vito Volterra (1887) and are today a familiar topic of higher
analysis. The first statement that can be made is that the asymptotic dis-
tribution of f{S.(x)} depends mainly on the behavior of f{V(x)} at the point
Va(x) defined by (4).

Volterra also introduced the notion of derivatives and of Taylor development
for a “fonction de ligne.” Using these concepts a more specific statement can
be pronounced: The type of asymptotic distribution of a differentiable statistical
function f{S.(x)} depends on which is the first non-vanishing term in the Taylor
development of f{V(x)} at the point V,(x); if it is the linear term the limiting dis-
tribution is normal, under restrictions that can easily be derived from the Central
Limat Theorem; in other cases higher types of asymptotic distributions result.

The present paper tries to establish this theorem and to furnish preliminary
information about the asymptotic distribution of the second type.

If both the function f{V(x)} and the sequence of distributions Vi(z), Vi(z),
Vs(z), - - - are defined independently of each other, it cannot be presumed that
the derivative of f vanishes at V,(x). In this sense the normal distribution ap-
pears as the ‘‘general case” of an asymptotic distribution while the higher types
represent certain ‘‘singularities.” In the case of type m, (m = 1, 2, 3, ---),
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the distribution of the expression
5) n™f{(Sa(@)} — i Va@)}]

tends towards a function of bounded mean value and variance. For m = 1
it is a Gauss function with mean value 0 and finite variance. For any uneven
m the distribution is symmetrical with respect to the zero point. If fis given,
the limiting distribution ¢s essentially determined if in addition to V,(x) one func-
tion of two variables, U,(x, y), is known,

M-

U.(z, y) V.(x) — V() V. ()], (z =y

I
LR

:

(6)

S 3

-
I
-

™M

[Vv(y) - Vv(x)Vr(y)]; (x g ’!/)~

For instance, in the case of the linear function (m = 1) defined in eq. (1), the
(second order) variance of (5) is found as the Stieltjes integral

™ [ ¥ av.z, v)

and no mean values of higher order are required for computing the moments of
any order, whatever m is.

For m = 2 the complete expression for the characteristic function of the asymp-
totic distribution of (5) is developed in Part III of this paper. It has the form

1
®) D(uz)

where D()) is in general the Fredholm determinant of a symmetrical kernel that
depends on the second derivative of f{V(z)} at V = V., on ¥, and on U, .
If the V,(x) are discontinuous distributions with saltus at & distinct points only,
D is the determinant of a quadratic form of k variables. This happens to be
the case with Pearson’s x> while the ’ distribution found by Smirnoff represents
a fairly general case of the asymptotic distribution of second type.

PART I. PRELIMINARY THEOREMS

1. Asymptotically equal distributions. Let K,, Kz, K3, -+ be an infinite
sequence of collectives, k. the number of variables in K, and A, , B, two func-
tions of these variables, (n = 1, 2, 3, ---). The cumulative distribution func-
tions of 4, and B, will be denoted by P.(zx) and Q.(x) respectively,i.e.

(1) P.(x) = Prob {4, < z}, Q.(x) = Prob {B, < z}
and the expectation of | A, — B, | by
(2) En{lAn—Bnl}

all these quantities being taken with respect to the distribution in K, .
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Two functions F,(x) and G,(x) both depending on the parameter n are said
to be asymptotically equal if

3) lim | Fo(x) — Gu(z) | = 0 uniformly in z.

N =00

If this is the case for the cumulative distribution functions P,(x) and Q,(x) of
A, and B, we shall also say that A, and B, have the same asymptotic distribu-
tion. Eq. (3) will also be written as F.(z) ~ G.(z). The following can be
proved: .

Lemma A. If with increasing n the expectation of the absolute difference be-
tween A, and B, tends towards zero and if one of the functions P,(x) or Q.(z) s
asymptotically equal to a function F.(x) that has a uniformly bounded derivative,
i.e.

@ lim E,{| A, — Ba|} =0, |ang£x)

d <M foralln

then A, and B, have the same asymptotic distribution.

This statement, in a slightly different wording, was proved in an earlier paper
[2] and the proof will not be repeated here. If one of the various definitions for
“stochastical convergence” is used, one can also say that A, and B, , under the
stated conditions, converge stochastically towards each other.

The Lemma A can be extended and modified in various ways. First, it is
obvious that the expectation of | A, — B, |can be replaced by that of any
positive power | A, — B, |*. With respect to F, one could ask for the existence
of a bounded derivative in all points except for a zero set only. Then P, and
Q. would still converge everywhere except for this zero set and the definition
of asymptotically equal distributions could be extended to this case. In the
present paper this will not be done as it is not our purpose to strive for results
of the possibly greatest generality.

2. Special class of statistical functions: quantics. Preliminary to the study
of general statistical functions a special class which corresponds to quantics
(homogeneous polynomials) of mth. order must be discussed. Let Vi(x), V,(x),
Vi(x), - - - be the cumulative distribution functions in a sequence of one-dimen-
sional collectives C; , Cy, C3, - - - and S,(z) the repartition of a sample drawn
from the n-dimensional collective K, , with the distribution element

AVi(2))dVa(wz) <+« dVa(xn).

We introduce

(5) Tn(x) = Sn(x) - Vn(x); Vﬂ(x) = }Iaé Vv(x)-
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Here, nT,.(x) is obviously the excess of observed values = x over their expected
number. Quantics of first, second, third, - - - order are then defined as

iisa@) = [¥@ dTu@)
©) 8@ = [ [ v, para@ar.w)

Aisa@) = [ [ [ Wz, 4, 2) dTu(@ aTa) aTa(2)

all integrals to be extended over the total range of z. Of course, only such ¢
for which the respective integral exists are admitted. The first, f , is obviously
a linear statistical function and the asymptotic distribution of \/n f; is, under
well-known conditions, a Gauss function with the mean value zero and the
variance given in eq. (7) of the Introduction. In f;, f3, :-- the ¢ may be
supposed to be symmetrical with respect to their variables. It will be seen
later (Part II, sec. 2) that the first derivative of f , the first and second deriva-
tives of f; , etc. vanish at the point V,(x).

All the above functions fi , f2, fa, - - - can be considered (if the ¢ are continu-
ous) as the limits of ordinary quantics in k variables. Choose k disjoint inter-
vals I, I, - -+, I, on the z-axis, and call I;;; their complement. Denote the
increment of V,(x) within I, by p,« and the increment of S.(x) by pnc. Ob-
viously p,. is the probability, within C, , of « falling in the interval I; and npn,
is the number of observed sample values in the same interval. We introduce
the excess values &, :

(7) éx = pux — Pk

3"—‘

and form the sums

k 1eeok 1.4k
(8) fl = Elkl’xsxy f2 = Z}\ ‘px)\gxg)\) f3 = Z)\: ¢KN‘E~£XEM!’ S

By selecting suitable sets of intervals I, I, -+, I, and appropriate values
for the constants ¢, , ¥, -+ , one can approximate the integrals (6) by sums
of the form (8).

Our next task will be to find asymptotic values for the expectation and for the
moments of the quantities defined in (8). Clearly a formula for the expectation
of a power product ££5¢7 - - - where «, 8, v, -+ - are positive integers, is the
only thing we need. To arrive at such a formula we replace each of the one-
dimensional collectives C, by a k-dimensional C; in the following way.

In CJ the chance variable is a k-dimensional vector which can take (k + 1)
distinct values only: it can be zero or coincide with the unit vector parallel to
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one of the k axes. To the latter values of the variable we assign the probabilities
D1, P2, -+ * , Pui and to the zero the probability

(9) Pvk+1 = 1 - D1 — Pv2 — *°° — Duk

This quantity, of course, may vanish. The mean value of C is the point with
the coordinates p,1, P, - -, Dok -

If the n collectives Cf , Cs , - - - , O are combined, the sum of the n observed
vector values is a vector with the components np, , npm, -+, npa. If in
each C) the origin is shifted to the mean value and the coordinates with respect
to the new origin are called 2, , 2, - - - , 2, , the sums of the observed z;,, 2, , - -,
zi-values will be nfy , ng, , - -+, ng; rather than np, , npne, -+, Npae. Thus
it is seen that all questions concerning the distributions of & , &, £, - -+ can
be answered on the basis of the well-known rules on the addition of n independent
chance variables. This leads to the symbolic formula for the expectation:

n a n B n v
10) B0 08 00" ) = (33 2) (5 2) (5 2) -,
where on the right-hand side each term
1y VAV /R

has to be replaced by
1) [#z - avi.

Here, obviously, ¥, (2) is the distribution function in C¥ and the expressions
(11') are in fact sums of (k + 1) terms, for example

f 212dV; (@) = pa(l — p2) (=) + Pa(—pn) (1 — p1o)
(12)

k+1

+ Z; pw(—pvl)(—pﬂ) = —PuDw .

It will be seen in the next section that only very few of these sums are needed
for computing the asymptotic value of (10). Note that the value of (11’) can

be expressed in terms of p,1, P2, Pis, - - - aloneif &, ¢, &, - - - only appear in
the product.

3. Asymptotic expectation of excess-power products. We first consider the
case where the sum of exponents «, 8, v, - - - is an even number
(13) at+B+vy+ - =2m.

On the right-hand side of (10) stands a sum of #°™ terms, each a product of 2m
factors Z,,. It follows from (11’) that the absolute value of a product cannot
surpass 1. The second subscripts are the same in each term: first a ones, then
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B twos, v threes, etc. The first subscripts are in each term a combination of
2m digits out of » = 1,2, 3, - -- , ». The number of those combinations which
include s different »-values, (s = 1, 2, --- 2m), is

o (e = (- (omvm ()]

Obviously, the K{™ are bounded (independent of n).
If s > m the combination of first subscripts must include at least one »-value
that appears only once. All those products vanish since

(15) f 20V*2) = 0 for all x, »

due to the fact that the origin in the z-space coincides with the mean value of
the distribution V) (z). Note that

lim [(Z) :n"‘] =0 (s < m)

1
m!

(16)
(s=m).

It follows that the sum of all terms in (10) that correspond to any s < m are
of the order o(n™) or smaller.

Thus, we arrive at an asymptotic expression for E, by dividing both sides of
(10) by n™:

17) n" B B8 -} ~,;lrn2 (IIz.)

where only such products on the right-hand side are retained which include
exactly m different v-values each appearing twice.
In analogy to (12) we compute

f 22dVY(2) = —DyDoe (e 5 x)
(18)

= p.(1 — pu) (L=«
and write, for the sake of abbreviation
(19) P = puduc — popo = P

with the usual meaning of §,, (= 0if ¢« # xand = 1if « = k). Then the sum
to the right in (17) includes (2m!)/2™ terms, each a product of m factors P, .
If each of the m couples ¢, « consists of two different figures, the respective prod-
uct appears a! 8! y! - - - times; if r couples are doubles (¢« = x) the multiplicity
of the term is 27 7a! Bl 4! --- . Therefore, (17) takes the form

m a a!B!'y!”' —T 14 14 v
@)  A"EfggE ) ~— a2 2 PIRPGL - PR
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In this sum the upper indices are any set of m digits out of 1, 2,3, -+, n
and the subscripts are all sets of m couples including o ones, 8 twos, v shrees,
etc. To each such set of m couples belong () terms of the sum. The number
of sets of couples is bounded (independent of n). The exponent r is the number
of doubles (¢ = «x) among the m pairs.

The expression (20) admits of a transformation which renders it much more
suitable. Assume that a sct of couples ¢, x has been chosen according to the
conditions and consider the product
2) (Sre)(Erm - )(Zre.)

Among the n™ terms which we obtain by developing (21) are all terms appearing
in the sum (20), each of them repeated m! times and, in addition,

(22) = (m!=n"—nn—1n —-2)---(n —m+ 1)

other products of m factors P. Since the difference (22) divided by n™ goes to
zero with increasing n and each | P |is smaller than 1, the additional terms
have no importance. We therefore introduce the quantities

= 1 ’ 1<
(23) Ptx = Z Pfx) = 6:1:_'2 DPve — ;i E pv: Dx -

v=1

Then (20) can be written as
m « IR _ —
(24) n" En{ & Eg & - b~ 6 7 Z 27" P g Py o Pk

Here we have a sum of a finite number of terms. It will be supposed in all that
follows that the P.. as defined in (23) do not vonish identically as n increases in-
definitely.

Since in the sum (24) no upper indices appear, equal terms repeat themselves.
We can, therefore, rearrange it, using the polynomial coefficients and absorbing
at the same time the factor 27". The final form of (24) is given in the following
Lemma B, , which also includes a statement for the case of an uneven sum of
exponents @ + 8+ v + ---. In fact, it is easily seen that if again half the
sum is called m, no group of terms on the right-hand side of (10) exists that
would supply a finite limit when divided by n™. Thus we arrive at

Lemma B, . If nf. is the numerical excess of observed over expected quantities
fallmg in the interval 1., the asymptotic expectation of the excess-power product
EfER el -+ - is given by

WVn) P BB ) ~0 fa+ B+ v+ - uneven

a!ﬁl'yl'.. D ¢ D \° D %12 D 91
@25) ~2 (P (3Py)2 - P Pyt -

2 0'11!0'22! 0'12!

fa+ B+ v+ - even
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the sum to be extended over all sets of non-negative integers oy, o2, **+, 012, * **
that fulfill the conditions

(25") on = 3(a — o2 — 013 — ), o2 = %(5 — g — o — )y e

The P, as defined in (23) depend on two groups of mean values only, namely on

(25”) p = ’;1: Z; D and P P = — Z Dy Dok «

Some properties of the matrix P,, will be dlscussed in the next Section.

For practical computation, instead of (25), a recursion formula may be used
which follows immediately from (24). Writing simply (e, 8, , - - *) for the sum
in (24) the formula reads

(a,B,'Y,"’) =%(a_276’7)°")1_)11+%(a;6_ sy Yy * )P22+
+ (a -L8—1Ln, "')P12+ (a:B_ 1,y — 1)) "')P23+ e

If all the original distributions V,(z) are equal, this recursion formula, and from
it (25), can be derived almost immediately from the theorem on the multiplica-
tion of characteristic functions with the addition of chance variables.

Note that the expectation of the product £.& is P../n for any value of n.

(26)

4. Asymptotic expectation and variance of quantics. We first state a char-
acteristic property of the expression (25) for the expectation of an excess power
product. Let us denote by Cag,y.... the right-hand side of (25) in the case
ofevena + B8 + v + +--. Then,if Cyg,,... is expressed in terms of P,.and each
time the subscript 2 is changed into 1, we arrive at the value of Caig,0,4,. ...
This would not be the case if C4p,,,... Wwere expressed in terms of p. , since e.g.

Cu=1_)11=;)—1—171;1y CI2=I—DE=_ITZ72-

In order to prove the statement we observe that the Cq,y,... can be derived
from the coefficients in the development of the mth power of a quadrie:

(27) (ZZPutt)"‘ =m! > '5"’7 triaty -

It follows that

1

r _._—____.__
@7) Capivee =1 ats 6t2 aty -

[(2 Z Put t)m]
If in the subscripts of P,, the ones and twos are identified, the quadric becomes
a function of &, + &, &5, &4, - - - and the derivative with respect to 8 #' at equals
the derivative with respect to 8 {f°. On the other hand, the latter derivative
corresponds to the value of Cayg,0,y.... in the form (27').

Takingm = 2,a = 8 =y = § = 1, eq. (25) supplies

(28) n2En{£tEn£)\Eu} ~ I_)uzp)\u + Pt)\Plu + Pml—)d .
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According to the above statement this is correct whether «, «, A, u are or are not
different from each other. Thus, if Y.a, is a symmetric set of constants, we
have

(28,) ann{ Z .'l’m)‘pg; gx 5)\5#} ~ 3 E \bm)\ypup)\p-

In general, the numerical factor to the right, i.e. the number of sets of couples
drawn from 2m figures, is (2m)!/2"m! = 1-3 .-+ (2m — 1). Thus we can
state:
LemMA B, . If a quantic fam is defined according to (8) with symmetric coeffi-
cients, ils asymptotic expectation is given by
(29)  n"En{fam} ~ 185 - (2m — 1) YugeeianPusPisu *** Pramyiam -
Before applying this to the continuous case defined in (6), let us consider some
characteristic properties of the matrix P,,. According to the definition (19)
of P we have

1...k k k 2
(30) E P:(.:) i, tx = Epw t? - (E Do tu)

=1 =1
and using (9) one easily derives from Schwarz’ inequality
zpw.t? - (zpnts)2 g pv,k+12pwtf .

Since P, is the arithmetical mean of the P it follows that the matrix P
is at least semi-definite and is positive definite except when all p, ;1 = 0
In the latter case (if e.g. the % intervals cover the whole z-axis) one has

1ok

n k k 2 r
(31) E Pu = l Z I:Z Dy — (E pw) :l = ‘1‘ Z pv,k+1<1 - pv,k+1) =0

LK N y=1| =1 =1 n v=1
which shows that here the reciprocal matrix P}, does not exist.

In the “complete” case, that is, with all p,4; = 0, the elements in each
horizontal or vertical line of the matrix P,, have the sum zero. It follows that
the k& homogenous equations ZP,x, = 0 have the solution z; = 7, = +-+ = 2,
and, therefore, that the cofactors of all elements of P,, have one and the same
value. For each single » the determinant of P{? can be computed:

IPf:) I = DPuDw2 *** DukPr.x+1

If this is applied to the principal minors of the same determinant in the case
Pve1 = 0, one finds the characteristic equation of the matrix P{% to be

d
|8 — AP | = — o =) (1 = Apys) +-+ (1= Apa)].

This shows that (¢ — 1) characteristic roots separate the abscissas 1/p,,
1/pw, +++, 1/ps (one root being zero).

The number % of intervals has nothing to do with the preceding argument
leading to the egs. (25) to (28). Also can the entire computation be repeated
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in terms of dT.(x1), dTA(xs), dTn(xs) , «++ instead of & , &, &, + -+ if appro-
priate differentials are substituted for the P... To find the latter ones we note
that p,. stands for the increment dV,(x). Thus, using é(x, y) in analogy to
8., (= 1forz = y and = 0 for z = y) we set

dU(z, y) = 3z, y) dVy(x) — dV.(z) dV,(y)
= i(z, y) AV, (x) — dW,(z, y)
which is equivalent to the definition of a function of 2 variables:
Uz, y) = Vi) — V.@)Vi(y) = V,(@) — Wiz, y) (x = y)
= Vily) — V.(@V.(y) = Vi(y) — Wiz, y) (x z .
Then P,, has to be replaced by

(32)

(33)

80 dle9) = - 3 U = 6a,9) dPs@) — a0,

" This dU,(x, y) is the expectation of dT(x) dTx(y)/n.
The function

5) Tu9) =y 2 Uy

is the difference of two cumulative distribution functions, one corresponding to
a distribution along the straight line + = y with the element d¥.(z) and an-
other distribution over the whole plane with the element

35) AWz, y) =L 3 av.@ av.@).
n y=1

To each one-dimensional distribution V,(x) belongs one ‘distribution excess”
Uz, y) as defined in (33). The P} are the increments of U,(x, y) within
the product interval dzdy. It is seen from the preceding argument that the
asymptotic moments of any quantic (6) or (8) depend only on the average U.
of the distribution excesses U, .

If a quantic is defined by (6) and the integrals on both sides exist, the asymp-
totic expectation of f;» may be written in formal analogy to (29) as

n'"E,.{fm}~1.3.5.--(2m—1)ffmf¢(x1,x,,---,x2m)

(36) - — -
X dUn(xl y L2 ) dUn(x3 ) x«l) v dUn(x2m—1 ,%m)-
This formula is identical with (29) if ¢ has constant values in a finite number
of intervals and vanishes outside these intervals. But it will be seen in the next
section that (36) can be used in more general cases also.

For the sake of practical computation one may develop the righthand side



320 R. V. MISES

of (36) into terms explicitly depending on the given averages V,(x) and W.(x, y).
For example, in the case m = 3:

n3E,.{fe} ~ 13.5 f/f (e, o1, 22, 22, 23, x3) an(xl) dvn(xz) qu(xs)

— 3y(xy, &1, 2, @2, T3, Ta) AV, (21) AV a(22) AWalas , 23)
+ 3!//(131 y X1, T2, X3, T4, .’175) dV,.(xl) dW,.(m 5 xs) de(CIM , 1135)
— Y(2, y X2, X3 , %4, X5, s) de(xl ) %) de(xs y xs) dI/_V,,(xg,, 1‘6)]

@7

In the general case, the numerical factors in the m-tuple integral are the binomial
coefficients of order m.

The higher moments of quantics f,» can be computed in the same way as
E.{fn} since any power of f,, is a quantic again. The formulas, however, be-
come more involved since the coefficients of f,, are not immediately given in a
symmetric form. It will suffice to show here how the (second order) variance
of f; can be found. The second moment is the expectation of

G 5t = [[[] v vt v aTu@) aTa) AT dTu0).

Applying here eq. (28) we have

BAf) ~ [[v@, et W1aTG, v) a0,

“+ dﬁn(x, Z) dljn(y, u) + dUn(xy u) d[j”(y) Z)].

The first term in the brackets leads to the square of n E,{f.} while the second
and third terms, due to the symmetry of ¥(z, y), supply two equal integrals.
Thus

(40)

Var (nfs) ~ 2 [[ ¥(z, )9tz w) ATa(a, 2) ATaly, ) =
2| [[ v oun) 7.0 a7.0) =2 [ o ww, 2 7.0 a2

+ ff Yz, Y)Yz, u) dWa(z, 2) AWa(y, w) ]

In the same way moments and variances of any order can be computed for any
quantic fp, .

5. Final statement on the limit of expectation of quantics. We shall prove
the following:
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Lemma B;. Given a sequence of distributions Vi(z), Va(z), Vs(z) , - -+ and a
quantic of order 2m

J= [ [ W,z - 2w dTu@) dTu@) - AT )

assume that there exist a continuous functivn ¥ (x) and a distribution V(x) such that
(12) | Yz y &g, ot Tom) | < V() Ylxo) -+ V(2om)
dV,(z) £ dV(x) for lz| > X, y=1,23, -

and that the iniegrals

(42" [v@av@, =12 2m),
have finite values. Then, for any § > 0
(43) lim 7" °E,{fam} = 0.

This lemma, on which the main theorem of Part II is based, will be estab-
lished if it is shown that the formula (36) holds true for functions ¢ satisfying
the conditions (42).

In the transition from the complete expression (10) for the expectation E,
to the asymptotic value (25) two essential steps were made. First, certain
products of the form (11) have been omitted and, second, certain products
of P ag definad in (19) have been arbitrarily added. This was allowed be-
cause each of the products was seen to be smaller than 1 and their number was
of the order O(n™™"). If a quantic in integral form (6) is considered which
involves an infinite number of expressions like (10), a sharper estimate is
necessary.

It is easily seen that each integral (11’) is a polynomial in p,, including the
product: pip.epss - - - and another factor which is certainly bounded whatever
the p,.are. Thus, if the expectation of £1& - - - &n is computed, each term of the
form (11) consists of a finite factor and the product p,ps2 - -+ Py2m . In passing
to the expectation of the quantic, the p,« have to be replaced by dV,(z.) and
each neglected term in (10) leads to an expression like

@) [ [ m, e ) dVa) Vo) - AV,

According to the assumptions of Bs this integral has a finite value. The num-
ber of neglected terms being of the order O(n™ ") the omission of these terms is
justified.

On the other hand, products of P, equal, except for the sign, products
of P,y as long as . # « and, except for a finite factor, products of p,. as often
as. = k. Again it is seen that the arbitrarily added terms sum up to integrals
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of the form (45). This shows that here too, if the conditions of Bj; are fulfilled,
the procedure leading to (25) may be applied.

It follows that, under the conditions (42), if the integral (42") has a finite
value, eq. (36) is correct and (43) is an immediate consequence of it. On the
other hand, it is obvious that weaker conditions than those given in B; would
suffice to establish (43).

6. Theorem on products of n functions. The principal source of all explicit
formulas on asymptotic distributions lies in certain properties of products of a
great number of factors. Laplace devoted a part of his fundamental Treatise
of Probability to these problems, but a complete outline of all results from a
modern point of view is still lacking. In the third part of the present paper, a
rather simple statement on this line will be used which may be formulated here as

Lemma C. LetFy(z1,2, -+ ,21), (» = 1,2,3, --+), be a sequence of analytic
Sunctions of k complex variables and G, the product F1\F, -+ F,. Suppose that
at the point 2, = 2z, = - -+ 2, = 0 all F, have the value 1, vanishing first derivatives,
and the second derivatives

O'F
(v) — v
(46) A 92,92,

Then
L )

uniformly in each bounded region | z,| < Z in which the absolute values of the third

derivatives of all F, have an upper bound M.
In fact, the Taylor development of F, supplies under the conditions stated:

(48) Foer, 20, ,2) =1+ 32, A%%2 + 0(Z)

and, therefore,
(48" log Fu(e, 22, -+ , o) = % 25 A2z + 0(Z°).

If here all z, are replaced by z,/A/n and the equations added for» = 1,2, - -+ ,n
we obtain

Y &\ _ 1 o z )
(49) lOg G <,\/,ﬁ7 '\/’;I,’ tee "\/’;&) = o L’%’Am 22 +n0(n’\/;L

and this shows that the brackets on the left-hand side of (47) are O(Z/A/n).—
It is obvious that (47) would still hold if the condition concerning the third
derivatives is replaced by a somewhat weaker one.
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PART II. DIFFERENTIABLE STATISTICAL FUNCTIONS

1. Definitions. We consider a one-dimensional cumulative distribution func-
tion V(x) as a point in the V-space. If two points Vi(x) and Vi(x) are given
the functions

¢y Vi(@) + Va(z) — Va@)], 0=¢=1

represent the straight segment between Vi(z) and Vy(z). A subset of the V-space
that includes all segments determined by its elements is called a convexr domain.

Now, assume that a sequence of collectives with the distributions Vi(z),
Va(z), Va(x) , - - - be given. We shall consider functions f{V(x)} defined in a
convex domain that includes particularly: (1) all average distributions V.(x)

© V@) = %2 V.(z)

at least from a certain n on; (2) all repartitions S,(x) that can occur, i.e. the
repartitions of n quantities that belong to the label sets of the given collectives
(e.g. positive z, ete.). If V'(x) and V(x) are any two points of the domain, the
quantity

3) F@) = fiV'@) + V@) — V'@, 0=¢=s1

is a function of the real variable {. It will be supposed to admit derivatives
with respect to ¢ up to the order r 4 1.

Following Volterra [9, 10] we define (in a slightly modified way) the derivative
f' of a statistical function f in analogy to the set of partial derivatives of a func-
tion of several variables. If V(x) would stand for a set of distinct variables
Vi, Vs, Vs, -+ and V°(z) for their initial values Vi, Vs, V3, -+ one would
have

LIV + V@) = V@l = T 7L ¥, = V)

where 8 /9 V, is the partial derivative of f with respect to V, taken at the pomt
V, = V,. Thus we write

@ LIV + @ = V@l = [ 117@, )dV - V@)

dt

and call f/ which depends on V°(x) and on a scalar variable y, but not on V(z),
the (first) deriative of f{V(x)} at the point V’(x). Only if a relation (4) is
fulfilled for any two points of the convex domain, f is called a (one time) differen-
tiable function.

The derivative of a linear function

®) 4=[a@av), B=[p@ava),-
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is simply the factor a(y), 8(y) --- respectively, independent of the point at
which the derivative is taken. If fis given as a function of A, B, - -- one has

©) 7@, v} = Z @it L) + .
The derivative of the non-linear function

Q 7= [ v ave ave

is

® V@), v} = [ W v + v, D) a7 ).

Note that an additive constant in f’ (i.e. a quantity independent of ») has no
significance since the integral of d(V — V°) vanishes. It follows from (6)
that the first derivative of the mth order variance as defined in (2) of theIntro-
duction, at-the point V°(x) is

© W= " —my[@ - w™aV()

where a, is the mean value of V°(x).

In the same way derivatives of higher order can be introduced. The second
derivative of f{V(z)} is a function of V°(x), i.e. of the point at which the deriva-
tive is taken, and of two scalar variables y, z which correspond to the two sub-
scripts in the case of a function of distinet variables. The definition of
f"{V(x), y, 2} is given in the equation

d2 0 0
LAV + V@ = V@l
(10)
= [[717@, 5.2 a7 = V@) 4 =76,

The second derivative of a linear function is zero. The function (7) has the
second derivative ¥(z, ¥) + ¥(y, 2) independently of V°(x). The mth order
variance gives, twice differentiated

(11) —2mz(y — qo)"‘"l + m(m — l)yzf (x — ap)™ 2 dV'(x).

The variables y and z in f or in any additive term of f” may be interchanged
and a term depending on one of them may be added or omitted. Thus, f”
can always be written as a symmetric function of y, z without linear terms
Accordingly, the second derivative of (7) is also 2¢(y, 2).
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The derivative of rth order of f at the point V() will be defined by the
equation
@
datr

- [[ ff"){V°(x),y1,yz,-~ U} AV = V@) - d(V = V) (@,).

fV'@ + dv@ — V@] o
(12)

Here, for given V(z), f*” may be supposed to be a symmetric function of the r
variables y1, %2, *+-, ¥ . The rth derivative of the mth order variance is

(~Om
(m—r+ 1)!‘1/1‘1/2

‘X [(m —7r 4 1) f (@ — a)™ " dV’() — W]‘

Yr
(13)

k=1 Yx
In the case r = m the expression becomes independent of V'(z), viz.
(13" (=D"m!yye -+ ym(l — m)

where terms depending on less than r of the variables 41, ¥z, - - -, ¥, have been

omitted.
If the definitions (4), (10), (12) are confronted one can see that f/{V, y, 2}

is the first derivative of f'{V, y} etc. For proofs see [9] and [10].

2. Taylor development. The function F(¢) defined in (3) admits the develop-
ment

! 1 1 1 T 1 41,
(14) F(1) = FO) = F'0) + 5 F"0) + -+ +T—!F”(0> +o T 1)!F“”(0)

where ¢ is some quantity between zero and one. According to (3) the left-hand
side equals the difference f{V(x)} — f{V%(x)}. The expressions F’(0), F”’(0),-- -,
F'”(0) are the derivatives as defined in eqs. (4), (10), (12). In the last term
to the right, one has to introduce the distribution

(15) V(@) = V') + 8lV(z) — V(@)

and then to take the (r 4 1)st derivative of f at the point V’(z).

For a given V'(z) each one of the terms on the right-hand side of (14) is a
function of V(x). Except for the last one—in which ¢ depends in a certain way
on V(x)—they are quantics with respect to V(z) — V°(x), of the same kind as
those considered in Part I. (There we had S, instead of V and V., instead

of V).
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The rth term of (14) can be written as
1
(16) F, = ;,ff fﬁl/(xxu’vz, v z) dV = V@) - AV — V) (@)

where according to (12)
(16I) 'p(xl y&ay 0y x?) = f(r){Vo(x): T1,T2, x"}°

To find the characteristic properties of F, we compute its derivatives at apoint
Vi(x). To do this we must replace in (16) the V(z) by

Vi(@) + V() — Vi(x)]
then differentiate the product

(17) TLdl(V: — V@) + 4V — V(@)

with respect to ¢, and finally set ¢ = 0. The derivative consists of r terms
the first of which will be

A = V@ I, - 7).

Due to the fact that ¢ may be supposed as a symmetric function, all r terms
supply the same integral. Thus the derivative of F, with respect to ¢ at the point
t = 0 can be written as

(7-%1)-1 f[.” f'p(xl)xZ)"'; xr) d(V - Vl)(xl) ‘I;Izd(vl - Vo)(x‘).

Comparing this with the formula (4) which defines the first derivative of a
statistical functidn and writing y instead of z and V(x) instead of V,(x), we find

Fi{V(@),y} =

(18) -
(7_—1—"1)! H f“y»“»xa, &) AV = V) (@) - d(V = V) ().

This is the first derivative of F,{V(x)} at the point V(x). It vanishes at the
point V(z) = V°(z).

The integral in (18) has the same form as that in (14) except that its multi-
plicity is (r — 1) rather than r. Thus it is immediately seen how the higher
derivatives of F, can be found. For the second derivative Fl{V(), y, 2}
we have simply to replace (r — 1)!in (18) by (r — 2)!, then 2, by z and finally
to omit in the product the differential d(V — V°)(x;). This procedure can be
continued up to the derivative of order (r — 1). The rth derivative, finally,
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will be
(19) FOV@), g1, 92, ot U} = VW1, Y2, =0, 9)

independent of V(x) and, according to (16’), equal to the rth derivative of
f{V(z)} at the point V°(x). It is also seen that all integrals of the form(16)
or (18) vanish if V(z) equals V’(x). The results can be summarized as follows:
The sth term, (s = 1,2, - -- 7), of the development (14) is a function of V(x)
for which all derivatives at the point V'(z) except that of order s vanish while
this one equals the sth derivative of the original function f{V(x)} at V(z).
The complete analogy of (14) with the Taylor development of a function of
distinct variables is thus evident.

If we assume that f{ V(x)} is a function whose first. (r — 1) derivatives vanish
at the point V°(x), eq. (14) takes the form

V@) ~ V@ =3 [[ - [fO@ 0,0l

AWV = V)@ -+ dV = V()
(20) .
+ r+1)! ff ff(ﬁl){v'(x)’ Yis Y2yt Yraal

AV = V@) -+ AV = V@)

By applying to this formula the lemmas A and B of Part I, we shall arrive at
the general theorem on asymptotic distributions that is the principal goal of
this paper.

3. General theorem. The main result to be derived in the general theory of
asymptotic distributions is that the so-called normal distribution represents
the first element in an infinite sequence which includes the asymptotic dis-
tributions of all differentiable statistical functions, except certain irregular
cases. The Gauss distribution covers in fact only those functions whose Taylor
development starts with the first (linear) term, in particular the linear statistical
functions themselves. If the first (r — 1) terms in the development vanish,
the asymptotic distribution of type r becomes valid.

TaeoreM L: Let Vi(x), Va(x), Vi(z), - - - be an infinite sequence of distributions
and f{V(x)} a statistical function with derivatives up to order (r+1). Denote by
Sn(x) the repartition of then label values in the collective with the distribution element
dVi(z), dVsx) --- dVa(x) and by Va.(zx) the arithmetical mean of Vi(z),
Vo(x), -+, Valx). If for large n the first (r — 1) derivatives of f{V(x)} at the
point V.(x) vanish and the rth derivative equals Yn(y1, Y2, **+, Yr), then the
distribution of

(21) A = n[f{8a(®)} — f{Va(2)}]
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ts asymptotically equal to the distribution of the rth order quantic

i
@ =7Tff“' f'pn(xl,x:,...,xr)
.d(Sn - Vn) (xl) d(Sn - Vn) (:1:2) eoe d(Sn _ V,,) (x’)

under the following conditions:
a) The distribution of (22) has a uniformly bounded derivative for alln;
b) Within a convex domain in the V-space that includes all Va(x) from a certain
n on, and all S.(z) that can occur, the (r + 1)st derivative of f{V (z)} is smaller
i absolute value than a product ¥(y)¥(ys) -+ (Y41 whereby ' the

integrals f (@) dV,(z) for k = 1,2, ---,2(r + 1) have a finite upper

bound for v = 1,2,3, ...
In order to prove this we introduce in eq. (20) S,(z) for V(x) and V,(z) for
V’(z), and multiply both sides by n”’%. Using the notations (21) and (2) and
writing T', for (S, — V,), the equation reads

An—Bn':

(32) r/2
(rnTl)! ff o ff(r+l){ V’(IB), Y, 92, , yr+l} dTn(yl) v dTﬂ(yr'H)'

According to Lemma A the theorem will be verified if we can show that the
expectation of the absolute value of the right-hand expression in (23) tends to
Zero.

According to the Schwarz inequality one has, for any real C:
(29) - E{|C|} = VE.(CF.

For fixed values of ¥, and S, the integral on the right-hand side of (23) is a
quantic of order (r + 1) with the coefficients ¥,41(y1, ¥z, - - - y Yr41). The
square of thisintegral is a quantic of order 2(r + 1) whose coefficients are a finite
number (depending only on r) of terms each of which is a product of two .-
values implying 2(r 4 1) variables y1, y2, -+ - , %241y . The absolute value of
these coefficients is, therefore, according to the condition b) smaller than a
finite factor times the product ¥(y,) ¥(ys) -- - ¥(y2¢r+1)) and thus fulfills the
condition of lemma B;. If the right-hand side of (23) is identified with C, the
expectation of C*is, except for a finite factor, the product of n” times the expectation
of the above-mentioned quantic of order 2(r + 1). It then follows from lemma
B, that the limit of E,{C"} is zero and from (24):

im E.{|C.|} = lim E.{|4, — B, |} =0.
This accomplishes the proof of Theorem I.

If we apply here what was shown in Part I about the asymptotic distribution
of a quantic, we can also state the following.
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TureorEM I1: Under the conditions of Theorem I, the asymptotic distribution of @
differentiable statistical function f{Sa(x)} is essentially determined by

a) the average distribution V.(z);

b) the first non-vanishing derivative of f{V(x)} at the point V.(x);

c) the average distribution excess

vn(x, y) = Vn(x) - 7% z”; Vv(x) V.(?l), =y
(25) -
= 7.) - 2 V@V, 22y

By “essentially determined” is meant determined except for an additional
function whose moments of any order are zero. The statement then follows
from Theorem I in connection with the fact that the asymptotic moments of
quantics have been computed in Part I from the values of Un(x, y).

That functions with all moments vanishing exist has been known for a long
time. A simple example given by Shohat and Tamarkin [6] is the following.
Let « be a positive constant smaller than %, and 4 = 2, ¥ = tan «x. Then,
the density (positive or negative)

(26) o(r) = ¢ “sin (ku) = Im ¢ 0

fulfills the condition. In fact, the nth moment of (26) is the (vanishing) imagi-
nary part of the integral

o n—1
(27) ’% f u(n+1/x)—1 e—u(l—ki) du = ( 1) (COS K‘ﬂ') (n+1/x) T (n + 1) .
0 K

K

Since ¢(z) takes negative values of the amount ¢ * it can be superimposed. to a
given distribution density only in cases where the original density remains
greater than some multiple of ¢ ™ = exp (—z*). It can be shown that the moment
problem is determinate (i.e. the distribution determined by the moments in a
unique way) if the density vanishes at infinity at a sufficiently strong degree.

From the standpoint of statistical theory two distributions with the same
moments throughout may be considered as equivalent. This justifies the ter-
minology used in Theorem II. On the other hand, Theorem I is independent of
this restriction: The asymptotic distribution of the statistical function f{S,(z)}
is under the given conditions identical with that of the corresponding quantic
of mth order. A detailed discussion of the case m = 2 will be given in Part III.
Here follow some illustrations for the general ease.

4. Illustrations. The existence of asymptotic distributions of higher types
can be exemplified in.a comparatively simple way if we start from any known
asymptotic distribution of a statistical function.

Let us assume that g{V(z)} is a function fulfilling the condition

(28) 9{Va(@)} =0
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for all n, and that the asymptotic c.d.f. for g{S.(x)} is known. There will be
some positive integer r such that

(29) Prob [g{S.(x)} < 2n”" ~ &,(2).

If, for instance, g is a linear statistical function r will be 1 and, under well-
known conditions, $,(z) a normal (Gaussian) c.d.f. with finite variance depend-
ing on n.

Now, let f be an ordinary function of g and thus another statistical function
which may be denoted by f{V(z)}. According to the rules of differentiation
we have

30) F1V@, g = j—’;g'w(x), v}

and analogous relations can be derived for the derivatives of higher order. In
particular, the following statement, valid in ordinary differential calculus, holds
true: If g{ V(z)} has derivatives of every order and if the first s derivatives of f
with respect to g vanish at some point ¢ = g{Vi(z)} then also the s first deriva-
tives of f with respect to V(x) will be zero at V(z) = Vi(z). In this way we can
devise statistical functions, with vanishing derivatives, for which the asymptotic
distribution is known.

For the sake of simplicity we may assume that (29) holds with » = 1 and
that f(g) is a monotonic increasing function, given in the form

@1 7@ = ¢'l1 + alg)]
with s a positive integer, and the inverse function
@) 9(f) =11 + (N
where B(f) goes to zero with f — 0. Then, from (29):
32) Prob [f{8a(2)} < zn™“'"] ~ &,(2')
if z and 2’ are connected by

n by = g(n_('lz)z) = n_*z”’[l + B(n_('mz)].
It follows that

Z7—2"~0

and if ®,(2") is supposed to be continuous, (32) becomes
(33) Prob [f{Sa(z)} = 2n™ %] ~ &,(z"").
This is a distribution of type s.

Take as an example for g the arithmetical mean

(34

_ht ot
918,@) = -



DIFFERENTIABLE STATISTICAL FUNCTIONS 331
where ;, 22, -, 2, are the observed values and G, is the arithmetical mean

of the mean values of V,(x). Then, under certain restrictions for the V,(z),
there exists a bounded sequence k3 so that

Problv/ng S 4 ~ @@ = o= [ au.
Now if we choose
3 7
f=6(g —sing) =g (1-—2_0_'_...)
the asymptotic distribution of f will be given by
s1/8
Prob[nv/nf < 2] ~ &,(V/z) = V- [ i g

with the probability density

ha
_(2/3) —h2s2/3
= 2 2/3) ¢ h3s .

3Vx

Similar examples can be drawn from the asymptotic distribution of nx* if one
asks for the distribution of appropriate functions of nx? etc.

PART III. SECOND-TYPE ASYMPTOTIC DISTRIBUTION

1. Statement of the problem. We now propose to study the asymptotic
distribution of a quantic of second order as defined in eq. (6) of Part I. It
has been shown in Part II that this covers the case of any statistical function
of which the first but not the second derivative at the critical point vanishes.

Independently of what was said before, the problem can be stated in the fol-
lowing way. Given a function y(z, y) and a sequence of cumulative distribu-
tion functions V;(x), Va(z), Va(x) ---. Let V.(z) be the arithmetical mean of
Vi(z), Va(x) , -+, Va(x) and Sa(x) the repartition of a sample z;, 2, - , 2a
drawn from the collectlve with the distribution element dVi(z:) dV.(z,) ,
dV.(z,), that is: nS,(z) is the number of those of the observed va.lues
21,2, ' , 2, that are smaller than or equal to z. Then the quantity

W f= [[ v dT@ aTaw), where Tu@) = 8,@) — Ta@)

is determined by the observations z;, 2z, - <+ ,2,. We ask for the distribution
of f at large values of n.

Without loss of generality, the function y(z, y) can be supposed to be sym-
metrical. If, in particular, ¢(z, y) = Y(z)¢(y), the quantity f becomes the
square of

@ [ a1 =5 3 v - [ v avto |
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and its asymptotic distribution can be computed in the manner shown in the last
section of Part I. Another example would be

@) v(@,y) = g(2) (= <)
= g(y) (x z y).

In this case, integration by parts shows that

@ 15.@) = [ ¢@TA@

where ¢’ is the derivative of g. This is the statistical function that takes the
place of x* in continuous problems. See Introduction eq. (3).

‘Note that the “excess” T.(x) vanishes at + = 4« and that for sufficiently
large z the increment d7',(z) equals —dV,(z). Thus, conditions for the exist-
ence of the integrals in (1), (2), (4), etc. can be expressed in terms of the given
functions ¢(z, ¥) and V,(x).

We shall first study the special case that implies so-called discontinuous chance
variables. In our terminology it is the function ¥(z, y) that has to be specified.
Let I, I, - -+, I be k mutually exclusive one-dimensional intervals (or groups
of intervals) and Iy, their complement. Assume that ¢(z, y) has a constant
value when z fallsin I, and y fallsin I, (,, k = 1,2, --- ,k + 1). Theincrements
of 8a(x), Va(z), Ta(z) in the interval I, will be called p,, P« , £ respectively.
Clearly, np. is the number of observed values falling in I, , np, is the expected
number of such values, and n(p. — p.) = né, the excess of observed over expected
numbers. Note that the given distributions V,(z) determine increments p,.,
in the interval I, and that

(5) P = ;L (Pixc + pox + <+ + D).

Since the sum of all £ must be zero we can replace &4y by

(6) b = —b — & — -0 —&.

Thus, the integral (1) can now be written as a sum of % terms
10k

) F8.@)) = 2 vubik

like that introduced in the second eq. (8) of Part I.

Our next task will be to find the asymptotic distribution of (7) which depends
on the matrix ¢, (,, k = 1,2, -+, k), and on the succession of probability
values o, (v = 1,2,3, -+ ;k=1,2, -+ k). The matrix y,,in k¥ variables
will be supposed to be symmetrical.

2. Characteristic function. We define our chance variable as

®) w=gf.
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All summations, here and in what follows, are to be extended from 1 to k if
not otherwise indicated. If P,(z) is the c.d.f. of z, that is

9) Prob {g f=s x} = P.(2)
the characteristic function (c.f.) is defined by
(10) Q.(w) = E{e™} = f AP, ().

In order to compute @, we assume that the quadratic form (8) is transformed,
by a linear transformation, into a sum of squares. Using appropriate (in general
complex) coefficients a., one can write

(11) x=g(’7i+ﬂ§++’7§); m=20¢u£x-

(The form y,, is here supposed to be non-singular which, however, means no
loss of generality). It will be seen later that explicit knowledge of the .,
is not needed.

Now, for any real or complex ¥, the identity holds:

1
(12) eh'2 = 75’:- f e’mﬂﬂ dt.
T

If we write » for /s and replace in (12) successively y by vn/nm, v\/nn2, -
we find

1) = @0 [ [ e (3T 8+ ov/aXadd duds - di

where

(14) ZZKEK = Zﬂxtm 2 = Zautt’ (" = 1)2) ] k)-

Since the first exponential factor in the integrand is a constant with respect
to the chance variable, the expected value of €™ is given by

(15) @Qu(w) = E{e™} = (2m)™" ff fexp (32 1Gudtdty -+ dty
with
(16) Gn = E{ exp ov/n 2oz}

In order to find G, we consider the following n collectives Cy, Cz, ---, C,
with discontinuous, (¥ + 1)-valued distributions: In C, the label values are

21,2, 2k, and 2y , with 2,41 = 0, their probabilities p,1, P2, **+ , Dokt
The c.f. of this distribution at the point —1v/4/n is
k+1

@17) > eV,

k=1
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If we multiply the n expressions (17) for» = 1,2, - - - n the product will be—
according to well-known rules of probability calculus—the c.f. for the distribu-
tion of the sum of the n label components in the collective formed by combining
Cy, Cy, +--, C,. This sum is

anle

and therefore,
n k41

(18) E {eXP [ \%» E npxz.:l} =11 [E Puce™! W]-

pu=l | k==l

Multiplying both sides of this equation by
v _ _ _ 2 _v__
(19) exp [— ~n > np,z,‘:l = exp [ 2 z‘: Do z,]

and using the abbreviation

(20) 3, = E Poeze
we arrive at
(21) G" = E{ €xp [0‘\/7;25,‘2,]} = Fle e F,,
with
k41 -
(22) F, = E DoV

k=1

This solves the problem: By inserting (21), (22) in (15) and carrying out the
integration with respect to &, &, -, # one has expressed Q,(x) in terms
of the given p,. and of the coefficients a,, which link the z, to the ¢{,. This ex-
pression for @,(u) holds for all .

We have still to show that the integral (15) exists, at least for small | u| or
| |, independently of the value of n. For this purpose we develop F, , as given
in (22), in the neighborhood of v = 0. At this point F, = 1 and the first deriva-
tive vanishes by virtue of (20). We thus have

2 k+1

(23) F,=1+ 2"_n > Prlee — 3,) 62t /5
k=1

with |9, | = 1. From the definition of 2, in (14) it follows that the ratio | z, |/7
with

TP=64+64+ - +4
- has an upper bound depending on the a., only. On the other hand, according

to (20}, 2, is & weighted mean of the 2, and, therefore, | z, — 2, | will not surpass
twice the maximum |z, |:

(25) |2e — 3| < T



DIFFERENTIABLE STATISTICAL FUNCTIONS 335

where « is a positive function of the coefficients ., which, in turn, are deter-
mined by the ¢,,. Introducing (25) in (23) we find

| v |2 T lolar/\/5 |v2la2T2/n
|F,| <1+ —op ¢ n=e

and, finally, from (21):
(26) |Gu| < T < it

Thus it is seen that for

(27) |u|<2im2 or 1 —2d|u|=79">0

the integral (15) admits the upper bound

(28) |Qu) | < @0 [[ o [T dn, dy, diy = 07

It also follows that the contribution to Q,(u) from the region T > T, tends to
zero with increasing T, , uniformly with respect to n and with respect to u in

the region | u | < 1/24%

3. Asymptotic value of Q,(u). If the quantity F, introduced in (22) is con-

sidered as a function of z;/A/n, z/N/n, -+ , 2/\/n, We may write
k+1 ( .
(29) Foei, 22, ,z) = 2 pu €™,

K==l

Here, 2, is defined by (20) and, on the right-hand side, zx4. is zero. These func-
tions F,(z21, 22, -+, 2) for » = 1, 2, 3, - -- have all the properties required

in Lemma C of Part I: At the point 2, = 22 = -+ = 2, = Oonehas F, = 1,
the first derivatives are
aF, k41
% - VDy. — VD ; P =0
and the second derivatives, (¢ # «),
62Fy k+1
azz = ngu(l - pn) - vzpw [pw — Dwe len] = vzpn(l - pn)
30
(30) o°F, ( ) 9 "‘2 .
62, az' =V Dy Dwx. v pn Dw D« & va = —U D pvg .

The third derivatives are certainly bounded in any finite region of the z-space,
and this means also in any finite region of the ¢-space.

The matrix of the second derivatives except for the factor v’ is exactly that
defined in eq. (19) of Part I:

(31) PE:) = pnan — DPviDox
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and the arithmetical means of the derivatives from the matrix in eq. (23) of
Part 1:

(31/) u: = - Z pw w Z Pvie P -

y=1

Applying Lemma C we find

(32) G, =G, (\/n VAR \—E/k";) ~ exp [1‘;—2 ; P,z z‘].

This is valid in any finite {-region. Since it has been shown at the end of the
foregoing section that, for small | » |, the outside contribution to the integral
(15) converges uniformly (for all n) towards zero, we are allowed to introduce
(32) in (15). Writing

(33) D Pz = 2 yulils, whereby v, = )‘Z P o,
0K 0HK W

equation (15) becomes

(34 Qulw) ~ (2m)™" ff fexp[— 126+ %uiz-y..t‘tx] dhdty -+ dty

Now, it is well known that if m,, is any positive definite matrix with the de-
terminant | m..|, then

35 (@n™? ff fexp Zm‘,t tldtidte - dty = Wl-m—j

This is likewise true if -the matrix m,, , which we also call M, has the form M =
M, — \M, where M, is positive definite, M, arbitrary (complex) and | A | suffi-
ciently small. Thus, the integration formula (35) applies to (34) and the result
is reached, for small | u |:

(36) Q.(u) ~ Qu) = ‘\71;?—?@ with DQ\) = |6 — Myuc]-

If the a,, which transform the given quadric into a sum of.squares are known,
(36) with (33) supply the solution of our problem.

The formula (36) is susceptible of several useful transformations. Let us
write A for the matrix .., A’ for the transposed matrix, and ¥, P, T, I respec-
tively for the matrices Y., Pus, Tux, ¢ir. Then, obviously

37 ¥ = A'A, I' = APA’, M =171 — wr.
If we multiply M by A’ to the left and by A to the right, we obtain
(38) A'MA = A'TA — ui A'APA’A = ¥ — wi VPV,
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In this operation the determinant of M is multiplied by | ¢.«|. Thus D(}\)
can be written as

— ! —
(39) Do) = e XMl i o S g B,
I‘l’“l Ap

Here, the knowledge of the a,. is no longer required.
If the matrix (38) is multiplied twice by ¥*, the inverse of ¥, we find ¥* — uiP
and, therefore,

(40) D) = | | X | ¥l — NP.s|.

As P is positive definite and ¥* real, it follows that all roots of D(\)—-
the “Eigenwerte” of I'—are real numbers. Therefore, D™"*(u7) is a regular
function along the real axis in the w-plane. Thus, (36) which was proved so
far for small | % | only remains valid for all real values of u: The c.f. of the
asymptotic distribution is represented by D™"/*(uz) for all real u-values.
Multiplying (38) only once by ¥* we obtain one of the two forms

(41) I — ui P or I — ui P¥

which lead to

(42) D(>\) = |3ut - Asu:l = Iauc - >\sn | y S = Z‘/’mpnxo
;M

Although this formula has been derived by means of ¥* it can be seen by con-
tinuity considerations that it remains valid whatever the (symmetric) matrix
Y. 1s. The formula makes it clear that the asymptotic distribution of the
quadric Zy..£.% is completely determined by the “Eigenwerte’” of the matrix
S = W¥P. This bears out our second main theorem in Chapter II, as far as
quartics of the form (8) are concerned. It will be seen in sec. 5 how (42) applies
to the continuous case.

We, finally, apply to (36) a transformation that is valid only if P has an inverse
matrix P*. (As shown in Part I, sec. 4 this is not the case if the % intervals to

which the subscripts 1, 2, -+, &k refer cover the whole range of the variables
Ty, T2, -+, Tn,). Multiplying (41) by P* we find the matrix P* — ui¥ and
thus

(43) D) = | Pic| X | P — MWl

This is equivalent to
(44) Q(u) = IFLK |1/2 ff ot /exp [_' %zpfxfzsx
+ Yuid puddd didss - dbe

According to the definition of the characteristic function eq. (44) can be inter-
preted as stating that

(45) |P.. |} exp [—32P} £.£]
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is the asymptotic probability density for the simultaneous occurrence of &,
&, -+, & . The expression (45) can be arrived at by applying the Central
Limit Theorem to the case of k¥ independent chance variables. Since, however,
P* does not exist in general, eq. (44) would not be a suitable point of departure
for developing the theory that concerns us here.

4. Asymptotic value of P,(x), illustrations. The relationship between the
c.f. and the c.d.f. of a distribution is well known and need not be discussed here
in detail. We shall use, in this section, two aspects of this relationship only.
First, the continuity theorem, first proved by G. Pélya [5], stating that if the
c.f. Q.(u) tend towards a limiting function Q(u), the corresponding c.d.f. P.(x)
tend towards the P(x) that corresponds to Q(u). Second, the additivity, i.e.
if Q(u) is of the form aQ’'(u) + BQ”(w) with @ 4+ B = 1, then P(2) is
aP'(x) + BP”(x) with the P’(z), P”(x) corresponding to '(u) and Q"(u)
respectively. The following three groups of examples will illustrate the applica-
tion of the foregoing results.

a) Let us first consider a function of two excess values & , & only

(46) z=2f =3 (A& + 2Btk + C)

where the matrix ¥ is given by ¥n = A, U, =¥y = B, ¥y = C. The product
matrix PV is

APy + BP,,  BP, + CPp

APy + BP;;,  BPy + CPx

and the determinant of I — A\P¥

(48) D(\) = 1 — NAPy + 2BPy, + CPx] + N(AC — BY)(PuPy» — PL).

If A, A are the two real roots of D(A\) = 0, the asymptotic probability density
of z will be

(47)

) dP(x) f g iz du — .
dx /‘/ 1 - — 1 - ——)

We are particularly interested in the case that P is “complete,” i.e. a matrlx
with all horizontal and vertical sums vanishing. Then Py, = P, = P = pyp,,
the last term in (48) cancels out and the only Eigenwert is A\ =
1/(A — 2B + C)pp,. Here, instead of (49) we have

— —)\lz

dP(x) 1 it du A e
TV

(50) dr =~ 2« 1 —

)\1

This is, with respect to V4 |_Z;-| a Gauss distribution with the variance
|A — 2B + C|pp./2.
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If, in addition to the assumption that P is “complete” (i.e. in the present case
that p,s 4+ p.2 = 1 for all ») the further assumption is made that the two inter-
vals I, and I, cover the whole range of the original chance variables z;, x:,
3, -+ , one would have also & + & = 0 and from (46)

x=’21 A — 2B + O)£.

In this case, v/ |_x-| is a linear statistical function and the Central Limit Theorem
leads to the same result as that expressed in (50). It is seen, however, from our
derivation, that (50) holds under wider conditions: If p,; + p,. = 1 for all »,
there may exist another interval I; within the range of the chance variables
1, T2, X3, - -+ so that & + & is not necessarily zero.

The latter remark suggests the following general theorem: If f is a function
of the k variables & , &, - - - , & and g another such function but vanishing when
&L+ &+ -+ + & = 0, then f and f + ¢ have the same asymptotic distribution
provided that for each » the sum p,1 + P2 + -+ + pax = 1. In the case of
quadrics this result is equivalent to the following matrix theorem: If P, ¥, A
are symmetric matrices, P with all horizontal and vertical sums equal to zero,
¥ arbitrary, and A of the form a.« = a, + a, then the two products
(51) Pv and PW+ A)
have the same characteristic roots.—This can be proved by the usual methods
of matrix calculus. The matrix PA has all characteristic roots equal to zero.?

b) In the definition of Karl Pearson‘s test function which is usually called
x’, it is presumed that a sample is drawn from the combination of n equal dis-
tributions. In this case all P* are equal and coincide with P which then can
simply be written P:

(52) Pu = p;‘su: — PP« .

The chance variable we now consider will be .

_n,_n §i_12
(53) _Ef— z‘zp‘— 2X -

Thus Y.« = 8../p. and the elements of P¥ are
(53" (PY) = Z Py = 6 — D..
M

The matrix I — APV¥ has the elements
(1 — N) + Mp..

If the kth column is subtracted from any one of the others, only two terms re-
main, one equal to 1 — A and one equal —(1 — A) in the last row. Thus, the

2 A proof of the matrix theorem has meanwhile been published by Alfred Brauer, Bull.
Amer. Math. Soc., Vol. 53 (1947), pp. 605-607.
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determinant D()) includes (¢ — 1) times the factor (1 — A\). On the other hand,
D)) is of degree (k — 1) and has the absolute term 1. Therefore

(54) D(\) = (1 — ML
This supplies the x’-distribution with (¢ — 1) “degrees of freedom”
21 dP(x) B

e’ (z = 0).

- T T 1
Gy W =0-w) == (k = 1) !
I‘ JR——
2

Again, our result is slightly more general than that reached in the usual theory.
It includes the case that in addition to the k intervals with the probabilities
P1,D2, *** , Px (Whose sum is 1) there are other intervals with probability zero.
On the other hand, if to x* a term, of the form nZ(a, + a.)£é, is added, this
would not change the asymptotic distribution.

One may ask for other quadratic functions of &, &, - - - , £ whose asymptotic
distribution is given by (55). In particular, one might be interested in a generali-
zation of x” for the case of unequal original distributions. The answer can easily
be given by introducing the cofactors of order (k¢ — 1) and of order (k — 2) of the
determinant | P,, | . It was mentioned in sec. 4 of Part I that all cofactors of
order (k — 1)—in the case of “complete” P—have the same value. It may be
denoted by A. The cofactor corresponding to the lines ¢, x and the columns
A, u will be denoted by I« with II = 0if ¢ = kor XN = u. Then, iflis any one
of the integrers 1,2, --- , k

1
(56) \I’LK = —A Htl;xl ) LK F1

is one possible solution. In fact, the product P¥ has in this case the elements
(P\I,)Lx = 6“:, for L K + l
(57) =—1,%“ =L+l
— O, “ o= l

The determinant of I — AP¥ is then seen to equal (1 — \)*.

The solution (56), however, is unsymmetrical in the sense that it does not
include any terms with & . A completely symmetrical solution in which all
¢ play the same role is given by

k
(58) 'l/u = Z M

According to (57) the matrix P¥ now consists of terms (¢ — 1)/k in the prin-
cipal diagonal and —1/k at all other places, that is

1

(581) (P\I,)LK =0 — E-
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In the same way as in the case of (53’) it can be seen that the determinant of
I — \PY¥ equals here (1 — N, The asymptotic distribution of D .&k« with
the coefficients (58) is, therefore, the x’-distribution with (k — 1) degrees of freedom.

If the formula (58) is applied to the case of equal P the corresponding
quadric becomes

1, 1l 2
z‘:pLE‘ +k‘zp;(zbzg“> ’
that is, x° + a term vanishing with & + & + -+ - + &. One can easily modify
(58) so that it leads to x* without any addition.

¢) A third group of examples where the asymptotic density is expressed by
simple functions is that where D()\) is an exact square, that is, all characteristic
roots (except the one that is zero) have even multiplicities. Let us assume &k =

2m + 1 and let Ay, N2, - -+, A be m double roots. Then
m uz -1 m )‘ A
59 =II 1 —_ — —_ U4l p .
(59) 0w = 1 ( L)L
with
1e-em A
(59) 4, = 11 ( _ _n>
LHEp A
and therefore
(60) dP(x) — ZA“x“e—)\“z, z g 0.
dz p=1

Assume, for instance, that all original distributions are uniform, that is

P =P, =,1C5‘,—,:—2
and that the quadric f is given in the form (11) with the following a., :
aw = Ve forco=1
= vVke. P> Lk=1,2¢c,1—1
(61) = — ( — DvVke. P> 1Lk=1
=0 Pa>Le=c4+ 1, o4 2,000,k

Then, the v,, as defined in (33) become
Y = ca(t — 1)é.x foriorx >1
— 0 ({3 L=k = 1

and D()\) according to (36) takes the form

(62)

k

(63) DO = |6 — Mu| =111 = Neote — DI

=2
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In other terms, for the quadric
F=katE + - + &) + kea(br — &) + kes(tr + & — 28)* + -
+ kexlts + £ + o004 Eo — (B = DEP

the characteristic A-values are 1/c.(c — 1).
Now, to obtain the case of m double roots with £ = 2m + 1 we have simply
to choose

¢ = 3cs,3ce = 5c5,5c6 = Ter, ++0

The first term on the right-hand side can be entirely omitted in accordance to

what was said in connection with (51). Besides, for the same reason, the ex-

pression can be simplified in various ways by assuming & + & + -+ + & = 0.
As a numerical example, take k = 5,¢; = 3,¢c3 = 1,¢ = 5,¢; = 3. Then

F=208 + & + & + 20 & + 20 & — fubr — £abs — Et1 + 10 Eiks)

leads to the characteristic values A = 1/6 and 1/60 and the asymptotic density
becomes

dP 1 .0 —ase
%—gl(e e %),

In a similar way other groups of quadrics with asymptotic distributions of
the type (60) can easily be constructed. One may, for instance, use eq. (41)
and make vanish, in the matrix S = P¥, all elements on one side of the diagonal
so that the roots are immediately known.

6. Transition to the continuous case. In this concluding section, the transi-
tion to the case of a quadric of the form (1) with continuous ¢ (z, y) will be
outlined. The formula best fit for this purpose is eq. (36). We therefore
suppose the statistical function f given as

©) 1= [[¥e 9)dT@ dTu) with ¥z, 9) = [ ot Datr, v dr.

In analogy to (33) we derive

1@, 1) = [ [ atz, 9aty, 0 aTuGs,
(65)

- f a(z, aly, 9 dVa(s) — f f a(z, )aly, 1) dW.(s, 2).

Since dW is symmetric, this function y(z, y) is symmetric with respect to = and
y. If D()\) denotes the Fredholm determinant of the ‘“kernel” y(z, y), we con-
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clude from (36) that the characteristic function of the asymptotic distribution
of f will be given by

(66) (W) ~ 5 (u 5

if certain convergence conditions are satisfied.

In order to establish (66) the main point is to find a sequence of functions
(=, y), ¥e(, y), - - - each of the type considered in the foregoing Sections and
such that 1) the distribution of the quadric f; with the coefficients ¢, tends to-
wards the distribution of f with increasing % and independently of n; and 2) that
the determinants Dy corresponding to ¥ converge towards D as k increases in-
definitely. Using our Lemma A we can replace the first condition by asking
that the expectation of | f — fi | should go to zero with ¥ — «independently of n.

The following assumptions shall be made concerning f and the V,(x): The
function a(r, z) in (64) is continuous and bounded in every finite region; there
exist two positive continuous functions a(r), 8(x) such that

(67) | a(r, 2) | = a(r)B(2)
and that the integrals

@  [ewar=u  [s@a@ [feade

exist, the latter two being bounded and converging uniformly with respect to
v. We are going to devise a step function ¥x(z, y) so that for the corresponding
fr and any positive ¢
(69) E{|f—fel} =@

Let N be an upper bound of the integrals

(70) [s@av.@) s N, [6@aTu@) <V
and € = /(5 + 8 N). Choose a value L such that
- 2 €
a [ @@ ss, [ f@de sy
and, calling B the maximum of 8(z) in |z | £ L, another quantity R such that
2
dr < £
(72) [, dr s 5

We subdivide, in the z-y-r-space, the domain |2 | = L,|y| £ L,|r| £ R in
k® equal cells where & is determined by the condition that the absolute value
of the variation of a(r, x)a(r, y) within each cell does not exceed ¢/4R. Outside
this domain we set ¥i(r, ) = 0 while inside the domain ax(r, £)ox(r, y) shall
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equal the value that a(r, z)a(r, y) assumes in the center of the respective cell.
Then yu(z, y) will be defined by

(73) @ 9) = [ ewlr, Dautr, ) dr.

From the definition of £ and from (67) and (72) it follows that

¥y — el s [ et Da0,9) = at, Daute, 9] dr
(14) + [ lat, datr, ) ar
Ir|>R
€ 2 € 2 €
S 2R 5 + 6@BW) f,,.ﬂ“ () dr S5+ Bt =
as long as|xz | = L,|y| < L. If this square is called (L) and the comple-

mentary region (L) we have

P=t=[[ Wew - we, ) ine are
(75)

+ f f( V@ 9) dT(@) i)

and since the integral of | dT,(z) dT.(y) | is not larger than 4, while, according
to (64) and (67)

(76) ¥,9) | < 6@8W) [ &) dr = MB)B(0)

we conclude from (74) and (75)

@7) |f—fe| S 4e+ M ff_ B(x)B(y) | dTA(z) dTA(y) | .
(@

This gives

@® B fil) S e+ M [[ p@B0IE AT T, 1)

Now, from |dT,| = |dS, — dV,| < dT. + 24V, and from the formulag
derived in’ Part II,

E{dTa(x)} =0,  E{dTa(z)dT.(y)} = - dU.(z,y)

St

it follows

(79 B{[dTs@) dTa@) |} S | dUs@, 4) + 4 d7a(@) dVa(0)
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with
(79) AUz, y) = 8(z, y) dVa(x) — dWa(z, y) < 8(z, y) dTVa(z).
If this is introduced in (78) and (71) taken into account, we find

BUS =5} Ste+ M [ F@ a7,
(80) +at [ [ 8@6w aPa@) aP)

§4e+%e+4X2Ne§(5+8N)e=el

as required in (69).
On the other hand, it can be seen that the kernel v(x, y) as defined in (65)
is the limit of the sequence vi(z, ¥)

(81) (2, y) = f—/u.) (@, 8)ou(y, 1) dUa(s, 1) for z, y in (R)

=0 for z, y in (&)

where (R) means the region |z| = R,|y| = R and (R) the complementary
region. In fact, from the definition of % and eqgs. (67) and (71) one has for z, y
in (R):

[v(z, 9) — mlz, ) | = 5?”@) | dUa(s, ?) |
+ f_/(z) | a(z, )aly, 1) dU.(s, ?) |

(82) < -ﬁ + a(@)aly) [ f > 8%(s) dV.(s)

Tk ff B(s)B(®) dV,(s) AV, (?)

= 5}—3 + a(w)a(y) — (1 + 2N).
Since a(z) is bounded, the right-hand side goes to zero with e. Finally, for
z, y in (R) we have

[v(z, ) — nlx,9) | = ffla(x, S)a(y, t) dU.(s, 1) |

(83)

IIA

a(z)aly) l:f B%(s) dVa(s)
+13 [ [ 8080 av. av,0. |
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Here, the two terms in the brackets are bounded, but a(z)a(y) goes to zero as R
increases. The conclusion is that vi(z, y) tends uniformly towards v(z, y)
with & — o,

Thus, eq. (66) is established provided that the function v(z, y) defined in (65)
has a Fredholm determinant D(\) that is the limit of the corresponding alge-
braic determinants and provided that the c.f. v/1/D(uz) leads to a c.d.f. with
bounded derivative.

As an example let us consider the case
(8) a(r,z) = \/g'(r) forr = z
=0 “r <.

This function is not continuous as it was assumed in establishing (66). How-
ever, the existence of a single discontinuity line, x = r, does not invalidate the
argument. We assume ¢’(r) = 0 and equal to dg/dr. Then, in the case of
(84):
(s5) V@, 9) = [ alr, Datr, )ir = — g4) forz sy

= —g® “zzy.

Since, however, adding to ¢ a function of z or of y alone does not change the
value of f, we can also use

Y(x,y) = g(x) forz <y
= g(y)

The statistical function f that corresponds to (84) can be computed either from
(85) or (85")—or directly from (84) if we use the formula that follows from (64)

(86) f= f [ f alr, z) dT,.(x)T dr.

The integral in the brackets is, in our case, seen to equal \/¢’(r) T(r), thus

(85/) «

rZy.

(86" 7= [ ¢80 - VP

This is exactly the test function ® mentioned in the Introduction, eq. (3).
To find the distribution of f we have to compute y(z, y). Its definition (65)
can be written in the form

n

D 3(0,9) = 1 35| [, 900,90 7,0) [ a0 7.6) [atr,0a7.6].

V==

This supplies in the case of (84)
7@, y) = Vg@)g @) V@) — Va(@)Valy) forz <y

(88)
= Vi@e W) — V.@V.@) “ z 2 y.
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Here, the second term in the brackets is the arithmetical mean of the products
V(@) V.(y).

If the distributions V,(z) are all equal (independent of ») we have simply to
write V(z) instead of V.(z) and V(z)V(y) instead of V,(2)V,(y). If, in addi-
tion, the distribution in the original collectives are uniform in the basic interval
0 to 1, one has

vz, y) = Vi@gd@as(l —yfor0 Lz =sy=1

= Vi@y@yl—2) “0=sysz=L

This is the case dealt with in Smirnoff’s papers [7, 8]. If, finally, ¢’(x) is sup-
posed to be equal to 1 in the interval 0, 1, we arrive at a kernel y(z, y) whose
Fredholm determinant is well known:
v, y) =2z(l —y) for z=y DO = sin v/A

=y(l—2a) “ zzuy. v
This supplies immediately the c.f. and (in form of a definite integral) the c.d.f.
of the asymptotic distribution of w® for ¢’ = 1.

The same result can be reached without the use of a(r, z) if we apply one of
the transformations discussed in the foregoing Section. Take, for instance,
instead of y(z, y) the unsymmetric kernel o(z, y) corresponding to the matrix
S = PV defined in (41). If all original distributions are equal, the element of
S can be written as

(91) S = z”: Podu = Zh(ﬁl/u - zp: ‘ppxpu)~

Calling #(x) the density dV(z)/dx in the continuous case, the corresponding
kernel becomes

(92) oo, ) = o@) | ¥l 1) = [, 0000 ds |
With the y-values from (85'), ¢’ = 1, v = 1, this gives

(89)

(90)

o(x,y)=x—y+%for =y
92) 2

_ y_ «
It can easily be seen that the “Eigenfunctions” of this ¢(z, y) are sin(\/\,, x)
with A\, = m’z%, and, therefore, the Fredhollm determinant is that indicated in
(90).
It might be added that the expectation and the asymptotic variance of w’
can be computed, independently of the distribution, from the formulas de-

veloped in Part I. The results are

Y

Y.

(93) nBlet) = [ ¢@V@I = V@] do
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and, in the case of all V,(z) equal

(94) n*Var{w®] ~ 4 f f g (@g' () V21 — V() dz dy.

zsY

These formulas have already been given in [4].

Another, more general, remark is this. If all V,(z) are equal, one can reduce
the problem, by a transformation of the original chance variable x into 2’ =
V(z), to the case of a uniform distribution over the interval 0 to 1. If the V,(x)
are not equal, it might still be possible to find a transformation 2’ = z’(x) such
that all original distributions extend over a finite region on the z’-axis only.
In this case the restrictions concerning the behavior of the distributions at
infinity drop out.
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