ON THE DISTRIBUTION OF THE RATIO OF THE iTH OBSERVATION!
IN AN ORDERED SAMPLE FROM A NORMAL POPULATION TO AN
INDEPENDENT ESTIMATE OF THE STANDARD DEVIATION

By K. C. S. PiLrar ano K. V. RAMACHANDRAN
Unaversity of North Carolina

1. Summary. This paper deals with the distribution of any observation, z;,
in an ordered sample of size » from a normal population with zero mean and
unit standard deviation. The distribution has been developed as a series of
Gamma functions, and has been used to obtain the distribution of ¢; = (z:/s),
where s is an independent estimate of the standard deviation with » degrees of
freedom. In a similar manner the distribution of the Studentized maximum
modulus %, = | x,/s | has been obtained and upper 5 per cent points of ¢, and
upper and lower 5 per cent points of u, have been given. The method of obtain-
ing the different distributions essentially depends on appropriate expansions
of the normal probability integral and its powers in the intervals — « to x and
0 to z.

2. Introduction. The study of ordered samples from a normal population has
led many authors to the construction of different Studentized tests based on
outlying observations. One of the important tests in this group is that based on
the Studentized range, for which tables of significance levels have been given
by May [4] and Pillai [8]. Nair [5] has considered the distribution of the Stu-
dentized extreme deviate from the sample mean.

In the present paper the Studentized extreme deviate from the population
mean as well as the Studentized maximum modulus are discussed and their
distributions given for small sample sizes. Roy and Bose [1] and Tukey [9] have
suggested the use of Studentized maximum modulus for simultaneous confi-
dence interval statements. These authors have illustrated the use of the upper
percentage points of the Studentized maximum modulus.

Box [2], [3] has suggested the criterion u., as a possible test for platykurtosis.
He points out that if the mean is assumed known, then wu, is the likelihood
criterion for testing the null hypothesis of normality against the alternative
that the distribution is rectangular. Significance is attained if u, is too small;
the test uses the lower tail area of the Studentized maximum modulus. The Stu-
dentized extreme deviate from the population mean can be used in different
situations, including the problem of simultaneous confidence interval state-
ments.
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TABLE I

Coefficients a® for determining coefficients in expansion of normal probability
integral (cf. Eqns. (3.7) and (3.8))

‘ E=1 k=2 E=3 E=4 k=5 k=6 | k=7
- | I

0 50000000 | .25000000 | .12500000 | .06250000 | .03125000 | .01562500 | 00781250
1 .30804208 | .39894228 | .20020671 | .10047114 | .12466946 | .074801677 | .043634312

2 .08333333 | .24248827 | .30123241 | .28039908 | .22498535 | .16483276 | .11356002

3 .00000000 | .066490381 | .16322020 | .22672284 | .24184706 | .22106882 | .18252664
4 .0269444444 | 013888889 | .055413735 | .11879665 | .17364827 | .20227295 | .20317473

5 .0%44326920 | 099735572 | .010047114 | .048314782 | .092106224 | .13648605 | 16794083

6 .0138580247 | .0%50799863 | .011225050 | .021654495 | .042857313 | .074771485 | .11017451
7 —.0814072038 | .0%00588746 | .040660421 | .011190082 | .021145714 | .038066474 | .062520157
8 .0416075103 | .0416322188 | .0212255041 | 0247138211 | .010536732 | .019623411 | .033666900
9 L0417500048 | .0468527804 | .0%24943180 | 0714392049 | .0244470780 | .0%06627902 | .017740216
10 .0953583677 | .0442256072 | .013636504 | 0344476086 | .0215758833 | .0%41848164 | .0°87577403
1 ~.0571070901 | .0541143388 | .0460698505 | .0%19767201 | .0%8046643 | .0°16453177 | .0239238553
12 .0714884355 |—.0513383047 | .0410421860 | 076540643 | .0924399876 | .0%66245098 | .0°16581736
13 .0740243139 | .0621190527 | .0638170362 | .0s18085787 | .0491007838 | .0527544134 | .0%70311663
14 .0935438040 | 0923053505 | .0980135071 | 0537006286 | .0+26274003 | .0910376136 | .0%29463704
15 —.0815186090 | .0%03991620 | .0546425639 | .0517064457 | 0576383520 | 0434166748 | .0%11424039
16 .01173831125 |—. 0711517901 | .0747000596 | 0574037123 | .030334402 | 0411514181 | .0441122684
7 01058932046 | 0936804111 |—.0713802071 | .0612500030 | .010884773 | .0543525045 | .0414980845
18 .01213672431 | .0994822617 | .0%27623121 | .0%9957761 | 0525212504 | .0515096316 | 0956433342
19 i—.0110067827 | 01012030560 | .0928220250 | 0899240268 | .0752692237 | .0642168894 | .0519806847
20 01422787385 | —. 01050145804 | 0913135284 | 0853037376 | .0723621441 | .0511881132 | .0962274205
21 .01958406021 | 01241086623 | —.014925379 | 0955745257 | .0992015238 | .0744059326 | .0619924791
22 .01634526341 | 01129526830 | 01162487064 |—.0914669723 | .0815685712 | .0115015557 | .0770504086
23 —.0M16064956 | 01811907069 | .01014601423 | 01036846548 | .0S11547196 | .0534471983 | .0723286637
24 01847953251 |—.01214440848 | .01224078183 | .0M34521877 | 0912647069 | .0973620775 | 063698971
25 01541326546 | 031756106 |—. 01288085611 | 0117015609 | 0064692264 | 0931172628 | 0817628625
26 .02061478527 | 01469636202 | 01499813888 | —.01118472470 | 067974001 | 0911601965 | .0963081504
97 1—.01597882630 | .01778408304 | 01962775844 | 01198301492 |—.01115741833 | 01019918567 | .0520448365
28 . .0:273188723 |—.01530387828 | .01534400747 | .01220151209 | 01249685732 | 01118079118 | 01047412957
29 | .0121740932 | 01518024897 |—.01436804948 | 0137870276 | 0142511479 | 01116304551 | .01010212511
30 | .0%81320803 | .0V6164817| 0611854144 |—.01015211642 | .0W21457246 | 01279226637 | 0141797437

3. Power series expansion for the normal probability integral. In this sec-
tion we develop a power series expansion for the normal probability integral
over the range — o to x. Let

3.1) (e, 2) = < [ ’

0

Pt dt/\/ﬁ;-r>k.
An appropriate expansion (cf. Section 5)'for I(k, x) is given by
(3.2) Ik, 2) = 0l + af’s + of2* + -+ ),
where the a’s are given by the recurrence relations
2 + Dasha = (k/V2r) [ — (9)adid + - - 4
+ (=D (GB)}ad "] + (k/3)asi,
(k/N/27) lasi) — (Masit + -+

+ (=171 e ™) + (K/3)as) (j=0,1,2,--),

3.3)

(25 + 2)as¥\s

Il

(3.4)



STUDENTIZED ORDER STATISTIC 567

and af® = (3)*. Thus

(3.5) ( | " dt/\/§1_r>m - ( [ ; P dt/\/zTr)m = I(m, —2)

and by using (3.2)

(3.6) I(m, —z) = ¢ ™*@ai™ — a{™z + ai™a® — ---).
Hence

(B7)  I(k,m,z) = ETH(pE™ 4 pEmy o pmaE Ly
where I(k, m, x) = I(k, z)[(m, —z) and

] . .
(3.8) bF™ = ;) (—1)" " a® g™

Pillai [7] has given a similar expansion for the powers of the normal probability

integral in the interval 0 to x. The af® coefficients for ¢ ranging from 0 to 30

and k from 1 to 7 are given in Table 1.

4. Distributions of the 7th ranked observation, Studentized extreme deviate
and Studentized maximum modulus. Let 23 £ 2, £ 23 £ ... £ 2, be an or-
dered sample from a normal population with zero mean and unit standard
deviation. The distribution of any ranked observation, x;, is given by

4.1) plx) = [nl/G — D! (n — D' V2E — 1, 2) I(n — 4, B i
Using (3.7), p(x;) takes the form
42) p) = /(i =D! (0 = 91 /Zgle "=
4 pi g L,
The distribution of an independent estimate of the standard deviation s is given
by
(4.3) p(s) = 12(5/2)"/T(v/2)]s" """,
Multiplying (4.2) by (4.3), using the transformation ¢; = x;/s, and integrating
with respect to s in the interval 0 to «, we get
@) = - nl(v/2)" 2
P =~ D — 9)1v27 (5/2)
0 (+v+1)/2 .
S i i L S Ltiﬂ)
20 q¢[<n+2>q%+3»] P( 5 /)

Using (4.4), the probability integral of ¢; can be evaluated with the help of
Tables of the Incomplete Beta Function [6]. Putting ¢ = n in (4.4) gives

_ n(/2)"? & ; 6 (v+1)/2 j+v+1> )
49 20) = 50 = ) e

(44)
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TABLE II

Upper 6% points of q. = (x./8), for ordered samples of sizes n
with v degrees of freedom

<
n
1 2 3 4 5 6 7 8
v
3 2.3513.10 | 3.53 | 3.85 | 4.12 | 4.34 | 4.53 | 4.71
4 2.13 | 2.72 | 3.06 | 3.31 | 3.51 | 3.67 | 3.82 | 3.98
5 2.01 12.53|2.83|3.03|3.21|3.34|3.45 | 3.58
6 1.94 | 2.42 | 2.68 | 2.86 | 3.02 | 3.14 | 3.25 | 3.36
7 1.89 | 2.34 | 2.60 | 2.75 | 2.90 | 3.01 | 3.11 | 3.21
8 1.86 | 2.29 | 2.52 | 2.67 | 2.82 | 2.92 | 3.02 | 3.11
9 1.83 1 2.24 | 2.47 | 2.62 | 2.75 | 2.85 | 2.94 | 3.04
10 1.81 | 2.22 | 2.44 | 2.59 | 2.70 | 2.79 | 2.88 | 2.97
12 1.78 | 2.18 | 2.38 | 2.53 | 2.63 | 2.72 | 2.81 | 2.90
14 1.76 | 2.14 | 2.34 | 2.49 | 2.58 | 2.67 | 2.75 | 2.83
15 1.75 | 2.13 | 2.32 | 2.47 | 2.56 | 2.65 | 2.73 | 2.81
16 1.75 | 2.12 | 2.31 | 2.45 | 2.54 | 2.63 | 2.71 | 2.78
18 1.73 | 2.10 | 2.29 | 2.43 | 2.52 | 2.61 | 2.68 | 2.75
20 1.72 1 2.09 | 2.27 | 2.41 | 2.50 | 2.58 | 2.65 | 2.72
24 1.71 | 2.06 | 2.24 | 2.38 | 2.47 | 2.55 | 2.62 | 2.68
30 1.70 | 2.04 | 2.22 | 2.35 | 2.44 | 2.52 | 2.59 | 2.65
40 1.68 | 2.02 | 2.20 | 2.32 | 2.41 | 2.49 | 2.55 | 2.61
60 1.67 | 2.00 | 2.17 | 2.29 | 2.38 | 2.45 | 2.51 | 2.57
120 1.66 [ 1.98 | 2.14 | 2.26 | 2.35 | 2.42 | 2.47 | 2.53
© 1.64 | 1.96 | 2.12 | 2.23 | 2.32 | 2.39 | 2.44 | 2.49

Upper 5 per cent points of ¢, , computed using (4.5), are given in Table II, for
n from 1 to 8.

For obtaining the distribution of the maximum |z |, we may start with the
probability law

(4.6) /2 ze 0<t< o
and noting [7] that

z k
4.7) [ f Pash dt] = 2"+ 0Pt + P’ + -]
0
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TABLE III

Upper 5% points of u, = | x./s | for ordered samples of sitzes n
with v degrees of freedom

n
1 2 3 4 5 6 7 8
14

5 |2.57 |3.09|3.40 | 3.62 | 3
10 | 2.23 | 2.61 | 2.83 2.98 | 3. . .
15 | 2.13|2.47 | 2.67 | 2.81 | 2.91 | 2.99 | 3.06 | 3.12
2
2

20 | 2.09 | 2.41 | 2.59 | 2.72
24 | 2.06 | 2.38 | 2.56 | 2.68

30
40

2.04 | 2.35 | 2.52 | 2.64 | 2.73 | 2.80 | 2.86 | 2.91
2.02
60 | 2.00|2.29 | 2.46 | 2.5
1
1

4
2.3212.49 | 2.60 | 2.69 | 2.76 | 2.82 | 2.86
6| 2.65|2.72|2.77 | 2.82
120 98 | 2.26 | 2.43 | 2.53 | 2.61 | 2.68 | 2.73 | 2.77
© 96 | 2.23 | 2.39 | 2.49 | 2.57 | 2.64 | 2.69 | 2.73

(J. W. Tukey [9] states that some upper percentage points of the Student-
ized maximum modulus were computed by P. Nemenyi.)

we get

(4.8) P(I Tn I) = n( /—"2/‘"_)1; e—(n+2)z£l6 i C;'”—l) xﬂ‘«’iﬂ—l'
=0

Since %, = | za/8 | , the distribution of u, is given by

B 9 n/2 (V/2)v12 % (n—1) |: 6 ](n+2:'+v)lz
plun) = n (;) T(/2) 12:5 LR [y o) v i

i (LEL ),

4.9

It may be noted that in (4.8) and (4.9) 0§ = 1 and C{"™® = 0. The C coeffi-
cients are given by Pillai [7] (in his notation they are K coefficients). Using
(4.9), the upper and lower 5 per cent points of u, have been computed with
the help of Tables of the Incomplete Beta Function, and are given in Tables
III and IV for small values of n.

5. Convergence of the series. For examining the convergence of the different
series developed in sections 3 and 4, let us start with series (4.7) for the case
k = 1, given by

(5.1) f 2 g = 21 + S I |

0
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TABLE 1V

Lower 6% points of u, = |x./s| for ordered samples of sizes n
with v degrees of freedom

© .06 .28 ) .47 | .63 .75| .85 .93.1.00

AN
1 2 3 4 5 6 7 8 9 10
1 081 .29 .44 | .55 .62| .68 | .73 | .78 | .82 i .86
2 07| .29 | .46 | .57 | .66 | .73 | .79 | .84 | .88 . .92
3 .07 .29| .46| .59 | .68| .76 | .82 | .87 | .92| .96
4 07 29| 46| .60 .70 | .78 | .84 | .90 | .95 .99
5 07 29| 47| .60 .70} .79 | .8 | .91 .96 | 1.01
10 .06 | .28 .47| .61 | .71 | .81 | .89 | .95 1.01 ] 1.06
15 .06 | .28 | .47 | .62| .73 | .83 | .91 | .97 |1.03 | 1.08
20 .06 | .28 .47 | .62 .73| .83 | .91 | .98 |1.04! 1.09
24 .06 | .28 | .47 | .62 | .74 | .84 | .92 | .98 |1.04 | 1.09
30 .06 | .28 | .47 | .62 .74| .84 | .92 | .99 |1.05]| 1.10
40 .06 | .28 .47 | .63 | .74 .84 | .92, .99 |1.05 | 1.11
60 .06 ! .28 | .47| .63| .75 | .85 ] .93 |1.00 | 1.06 | 1.11
120 .06 | .28 | .47 | .63 | .75 .8 | .93 |1.00|1.06 | 1.11

1.06 ' 1

11

If we expand ¢ asa power series and integrate term by term (assuming its
validity, which is easily shown in this case), we get an expansion of the integral
in the form

2—52/2 - “ _ﬁ .14_,”> — [_mj x4__...:|
(5.2) foe dt—f0<1 2+§ dt =z|1 6+4-0 .

As the first two terms in square brackets in (5.2) are contained in Pl ® the
appropriateness of the series expansion (5.1) is immediately obvious. Since the
integral
z e—t2/2 dt 1 1 /z 22
. = == = U dt,
(63) L. Vor T3 Varh ¢
the expansion (3.2) follows from (5.1)." An examination of the convergence of

the series in (5.1) will thus be enough to show the convergence of the series
(3.2). It can easily be shown [7] that the C’s follow the recurrence relation

(5.4) 3(2i + 1CP — ¢, = (—-1)7/374L

Hence

o _ (2) 3 .8 385 ,-3-5~--(2i—1)]
(65) €7 = (5) (ii"IT)‘t[l g mgr A0 =y
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and
- 1 3.5+ (2% — 1)]
(56) o, 32+ [_1 + JIA
where
67 Ao38@—8 385---@-=5_ |

G —1)! @ — 2!

It may be noticed that since the right hand side of (5.1) is an alternating series,
—CP/05Y is always positive. Moreover, A is also positive (except when 4 is
the sum of the first two terms on the right side of (5.5) which is equal to zero).
Since the second term in the square bracket of (5.6) is positive, the right side
of (5.6) will be increased if we decrease A. Now if we neglect all the terms of
A except the first two (where the sum of the neglected terms is positive), we
decrease A and hence increase the right side of (5.6). In other words

—CP 1 [_1 4 @ —3)@ - 1)] G =1

8) c® <3@ T D (G — 2) G-+

Hence when 7 is large
(5.9) —-CP /032 < 1/2.
Again, if we retain the first four terms in the expression for 4 in (5.7), we get

—c® (@ —1)11:* — 78 + 169 — 105)
c® T30 — 2)@2 + DB — 290 + 39)

(5.10)

If 7 is large
(5.11) —CP/08 < 11/304.

The right side of (5.10) can be made smaller if we consider more terms in the
approximation to A. Hence the series ) o | C{" | is absolutely convergent, and
hence > o C{" is convergent and the absolute value of the ratio of the sth to
the (¢ — 1)th term of the power series in (5.1) (with which we are really con-
cerned) is less than 112°/30: for large values of ¢ (considering only the first four
terms in (5.7) to approximate A4). Hence the series (5.1) is absolutely convergent
and therefore the powers of the series are also convergent.

Now consider the series expansion in (3.2). For k¥ = 1, it can be shown that
the sum of the terms involving even powers of z (which are all positive) is 3.
Hence from the absolute convergence of the series (5.1), the absolute con-
vergence of (3.2) is immediate. It may be noticed that the series (5.1) is rather
rapidly convergent, so that, for a relatively small z, only a few terms of the
series will suffice for any degree of accuracy desired in practice.
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572 K. C. S. PILLAI AND K. V. RAMACHANDRAN

REFERENCES

[1] 8. N. Roy anp R. C. BosE, ‘“Simultaneous confidence interval estimation,” Ann.
Math. Stat., Vol. 24 (1953), pp. 513-536.

[2] G. E. P. Box, ‘“Nonnormality and tests on variances,” Biometrika, Vol. 40 (1953),
pp. 318-335.

[3] G. E. P. Box, ‘““A note on regions for tests of kurtosis,”” Biometrika, Vol. 40 (1953),
pp. 465-468. .

[4] Jovce M. May, ‘‘Extended and corrected tables of the upper percentage points of the
‘Studentized’ range,’”” Biometrika, Vol. 39 (1952), pp. 192-193.

[5] K. R. NaIr, “The distribution of the extreme deviate from the sample mean and its
Studentized form,” Biometrika, Vol. 35 (1948), pp. 118-144.

[6] K. PeARrsoN, Tables of the Incomplete Beta Function, Cambridge University Press,
(1934).

[7] K. C. 8. PiLrax, “On the distributions of midrange and semirange in samples from a
normal population,’” Ann. Math. Stat., Vol. 21 (1950), pp. 100-105.

[8] K. C. 8. PiLrax, “On the distribution of ‘Studentized’ range,”’ Biometrika, Vol. 39
(1952), pp. 194-195.

[9] J. W. Tukry, “The problem of multiple comparisons,” Preliminary report (unpub-
lished), Princeton University, p. 169.



