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ON A PROBLEM IN MEASURE-SPACES

By V. S. VARADARAJAN

I Mian Statistical Institute, Calcutta

Summary. Let § be the family of all random variables on a probability space
Q taking values from a separable and complete metric space X. In this paper we
prove that & is in a certain sense a closed family. More precisely, if {£.} is a
sequence of X-valued random variables such that their probability distributions
converge weakly to a probability distribution P on X, then there exists an X-
valued random variable on @ with distribution P. An example is also given which
shows that the assumption of completeness of X cannot in general be dropped.

1. Preliminary remarks. In what follows (2, 8, 1) is a probability space and X a
separable metric space. We denote by & the class of Borel subsets of X defined
as the minimal o-field containing all open subsets of X.

A map ¢ of @ into X is called a random variable if it is measurable i.e., ¢
(A) ¢ 8 for each A ¢ ®. If ¢ is a random variable we define as its distribution
the measure u, on ® given by

uo(4) = ulo-'(4)}
for all A £ ®. A given probability measure P on ® is said to be induced from @
if there exists a random variable ¢ such that P = p, .

Suppose we are given a sequence {P,} of probability measures on ®. We say
that {P,} converges weakly to a probability measure P on & (P, => P in symbols)
if
lim [gdPn=fgdP

X X

n->00 ¢
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for every bounded continuous function g on X. In terms of subsets of X this is
equivalent to

lim sup P,.(C)< P(C)
for every closed set C € X ([1]). When X is the real line with the usual topology,
this convergence is equivalent to the usual convergence of distributions.

2. The main theorem. In this section we state and prove the main theorem.
Before doing it we prove a lemma.

LeMMA. Let X be a separable and complete metric space and (2, S, 1) a nonatomic
probability space ([2] p. 168). Then any probability measure on & can be induced
Sfrom Q.

Proor. Since X is a separable metric space, it can be imbedded homeomorphi-
cally into a countable product of unit intervals by a celebrated theorem of
Urysohn ([3] p. 125). Since it is also complete, the image of X will be a G; by a
theorem of Larentieff ([3] p. 207). X can thus be regarded as a Borel subset of
a countable product of unit intervals. This implies however that X can be re-
garded as a Borel subset of the unit interval since the unit interval and the count-
able product of such intervals can be connected by an one-one map which is
measurable both ways. It is thus sufficient to show that any probability measure
on the unit interval can be induced from Q. This however is a well-known result.

We now prove the main theorem. '

TrEOREM. Let X be a separable and complete metric space and (2, S, u) an
arbitrary probability space. If {£,} is a sequence of X-valued random variables
such that ug, = P as n — « where P is a probability measure on ®, there exists
an X-valued random variable £ such that P = ;.

Proor. Any measure space can be decomposed into its atomic and nonatomie
components and in view of the previous lemma we can assume that there is no
nonatomic component in @. We can thus write @ = 4, U 4, U ... where (i)
A;NA; = ¢fors = 7, (i) each A;is an atom of (2, S, u), and (iii) u(4;) = ¢; > 0
for each ¢. The distribution P,(=p;,) is then atomic and (since X is separable)
has mass concentrated in a countable set of points, say {@n1 , G2, - }. Palaa] =
c;fore=1,2, ...,

We first assert that for each ¢, the set D; = {a1:, @z, --- } has compact
closure. If not, then for some %, D;, has a subset which has no limit point and
which is infinite. We can assume without losing generality that this subset is
D, itself and that all the a,;, are distinct. If then D C D;, is any subset, then
D is closed and from P, = P it follows that P(D) = lim sup..«P.(D). If D is
infinite then, im sup,.-P.(D) = ¢;, . Thus for any infinite subset D < D;,,
P(D) = ¢;, > 0 which is a contradiction.

Thus each D; has compact closure. We can then, by the diagonal procedure
choose a sequence {n;} of integers and points a;, @, - - - of X such that

Hm @, = a;
k>
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fort = 1,2, ---. Let £ be the random variable with values a;, az, - - - on the
sets A1, Az, - - - . We complete the proof by showlng that P = ;. It is enough
to show that P,, = ¢ . In fact for any bounded continuous g on X,

f gdPn, = 2_ cig(an,) = 22 ci gla) = f gdug,
p-¢ [} T X

the passage to the limit being justified as > icig(@n, <) converges uniformly in k.
This completes the proof of the theorem.

ReMARKS. (1) Suppose X is any separable metric space and X* its completion.
The above theorem will still be true not for X but for X* and £ will now be X*-
valued. If then X has the property that as a subset of X* it is measurable with
respect to the completion of every measure on X*, £ can be reduced to an X-valued
random variable and the main theorem is true for such X. This is the case for
instance when X is itself a Borel set in X*. It is interesting to note that there are
separable metric spaces X which have the above mentioned property in relation
to X* but which are not complete under any metrization, for example, the set
of rationals with the relative real line topology.

(2) It is to be noted that when (2, 8, u) is purely atomic the theorem is true
with any separable X.

(3) Suppose now A4, Az, - - is a sequence of sets in § such that u(4.) — a.
Setting £, = x 4, the characteristic function of 4, , we find that u;, = P where
P is the measure with masses « and 1 — « at the points 1 and 0. The above
theorem then ensures the existence of A ¢ 8 such that u(4) = «; in other words
that the range of u is a closed subset of [0, 1].

3. An example. We construct an example to show that the theorem proved in
Section 2 requires some such condition on X. We take for X a subset of [0, 1]
such that (i) p*(X) = 1, ux(X) = 0 where p is Lebesgue measure and (ii) X con-
tains all points of the form m/2". For (@, 8, u) we take the unit interval with
Lebesgue measure. The Borel sets of X are precisely the intersections with X
of Borel subsets of [0, 1]. Lebesgue outer measure on ® is now actually a measure
over it, denoted by A.

Suppose now P, is the measure on ® with equal masses 1/2" at the points
m/2" (m = 1,2, --- 2"). It is easy to verify that P, = \. Further each P, is
trivially induced from ©. We will now show that A cannot be induced from €.

Suppose \ is induced by the map £. £ is obviously a Borel measurable function
on [0, 1] and hence by Lusin’s theorem ([2]) p.243) we can find for each ¢ > 0
a compact K. C [0, 1] such that (i) u(K) > 1 — eand (ii) £ restricted to K. is
continuous. If M, = ¢K.], then M, C X and is a compact subset of the real
line. Since \ is induced by &, A(M) > 1 — e But M. is a Borel set of the real line
and this shows that (M) > 1 — ¢, contradicting the assumption that px(X) = 0.

Thus A cannot be induced from . This completes the discussion of the example.
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CORRECTION TO “PROBABILITIES OF HYPOTHESES AND
INFORMATION-STATISTICS IN SAMPLING FROM
EXPONENTIAL-CLASS POPULATIONS”

By Morron KUPPERMAN

The George Washington University
In the paper cited in the title (Ann. Math. Stat., Vol. 29 (1958), pp. 571-575):
p. 572, line 5. For > xp(x, 0.) read D x p(X, 0,.).

—

CORRECTION TO “POWER FUNCTIONS OF THE GAMMA
DISTRIBUTION”

G. D. BernDT

Professor I. R. Savage has called to my attention, through the Editor, the
fact that I have overlooked reference to previous work appearing in Eisenhart,
Haystay, and Wallis, Technigues of Statistical Analysis, and bearing on results
reported by me in the Annals, Vol. 29, No. 1, March 1958, pages 302-306.

On pages 274275 of Eisenhart, Haystay, and Wallis, in Figures 8.1 and 8.2,
there are given operating characteristic curves for the chi-squared distribution
for eight selected degrees of freedom when the significance level is 0.01 and 0.05.
Inasmuch as the chi-squared distribution is a gamma, distribution with 1 (degrees
of freedom) = the parameter gamma in my paper and with 2 = the parameter
beta in my paper, and since their rho is equivalent to my delta, there is a simi-
larity in the reported results. This similarity has resulted in some overlap in the
results of the two papers in that ten of my forty-eight power curves have an
equivalent in the operating characteristic curves in the previous work.

I should like to acknowledge this previous work, and also that of Ferris,
Grubbs, and Weaver, by having the following two references added to the two
which already appear at the end of my paper:

[3] Selected Techniques of Statistical Analysis, Churchill Eisenhart, Millard W. Haystay,
and W. Allen Wallis, editors, McGraw-Hill, New York, 1947, pp. 270-278.

[4] CuarrEs D, FERRIS, FRANK E. GRUBBS, AND CHALMERS L. WEAVER, ‘‘Operating char-
acteristics for some common statistical tests of significance,” Annals of Mathe-
matical Statistics, Vol. 17 (1946), pp. 178-197.



