ON MARKOV CHAIN POTENTIALS!
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1. Introduction. In [3] we developed a theory of potentials for denumerable
Markov Chains. The purpose of this note is to supplement these results in two
ways: We will show for an important special class of Markov chains that they
are normal (i.e., that the potential operators exist), and we will generalize cer-
tain results due to Spitzer [5].

While our previous paper developed a theory both for transient and for re-
current chains, our present note will deal only with the recurrent case. The key
definitions, notations, and theorems for this type of chain will be summarized
below. Parenthetical references to theorems will always refer to [3], Section 3.

We consider both measures (row vectors) and functions (column vectors);
the former are denoted by Greek letters, the latter by ordinary lower case letters.
The theory for functions is dual to that for measures. One passes from one to
the other by replacing a transition matrix { P;;} by the “reverse chain” {a;P;i/a.},
where & > 0 and P = a.

If the limit » = lim, [u(I 4+ P + --- 4+ P")] exists, we say that » is a poten-
tial, and u is its charge. The set of states for which p, is non-zero is the support
of the charge. If 1 is the constant function, and if ul is defined, then xl = 0.
Dually, one defines potential functions. If the column vector f is a charge of a
potential function, and of is finite, then of = 0.

Let N{7’ be the mean of the number of times that the process is in state 7 in
the first n steps, starting at 7. If lim, [N$}’ — N{’] = Ci; = 0 exists for all ¢
and j, we say that the chain is normal. Under certain assumptions, if » exists
then » = —uC. A sufficient condition is that u be a weak charge, i.e., that not
only uC is finite but also Cf, where f; = ui/a; is the dual charge. (See Theorem
15.) For example, all charges of finite support are weak. The dual operator
Gi;j = lim, [N{P -a,;/a; — N{P] serves a similar role for functions. All ergodic
(positive recurrent) chains are normal, and the finiteness of uC suffices to assure
the existence of the potential. .

Many of our considerations will be relative to a given set of states E. Then
Bi; is the probability of entering E at j, starting at <. N, is the mean number
of times in j, starting at ¢, before hitting E—this is taken to be 0 if ¢ or j is in
E, and we write *N;; if E = {k}. By P{; we mean the probability that starting
from 7 in E we reenter E at j; P” is itself a recurrent transition matrix, for the
states in E. The submatrix of C consisting of rows and columns in E is denoted
by CE .
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Of special interest are the limits lim, P"B”, giving the entrance probabilities
“in the long run”. If these limits exist, and they always do for a normal chain,
then the limits are independent of the starting states, hence the limiting matrix
has identical rows \*. (See Theorems 16, 20.) The existence of these limits for
two-point sets is equivalent to normalcy. (See Theorem 14.) Similarly, we de-
fine *» to be the common row of the limiting matrix P"(*N).

A chain is ergodic if the mean first passage times M ;; are finite, and strong
ergodic if the passage times “in equilibrium,” oM, are also finite.

Spitzer considered recurrent Markov chains obtained from sums of independent
random variables with a common distribution. He assumed that this distribution
was a two dimensional symmetric distribution. He showed that these chains are
normal. In the first part of this paper we establish this result for the not neces-
sarily symmetric one dimensional case under the assumption of a finite variance.

For transient chains the basic potential operatoris N = I + P + P* + --- .
In this case for any set E, N5 exists and

I —-P°=N53.

Spitzer showed that for the recurrent chains that he considered, and any finite
set E, C3" exists. He established an elegant formula for I — P*, using this in-
verse. In the second part of this paper we give necessary and sufficient conditions
that C3' exist for finite sets, for any normal recurrent chain. In particular this
inverse exists for all finite sets for certain symmetric chains and for ergodic chains.
We obtain a generalization of the Spitzer formula (corollary to Theorem 2) for all
such chains. We use these results to shed new light on certain previous results of
ours.

2. A class of normal chains. Let {p;} be a probability distribution on the
positive and negative integers. We consider the Markov chain having transition
probabilities P;; = P;_;. Assume that this chain is started in state 0. Then the
resulting random variables So, Si, - - - represent sums of independent random
variables with a common distribution. We assume that S; has finite variance
o’. The mean must be 0 for the chain to be recurrent. We assume that this is
the case. We are interested first in studying B{; for a finite set E. For conveni-
ence we assume that the smallest element of E is 0.

LemmA 1. lim,, e BE = BY and lim,.,_,, BY; = B7 exist.

Proor. We shall prove that lim,,_,, Br: exists. We refer to the process {S;}
determined by P as the basic process, and define an auxiliary process called the
ladder process as follows: Let Sy = Sy = r. We define S,,; to be the first state
> 8, reached by the basic process. We thus obtain the ladder process which
represents the progress of the basic process watched only when it makes progress
to the right. This ladder process is again a Markov chain with transition proba-
bilities given by P;; = p;—;, equal to the probability that the basic process
started in  reaches a state >4 for the first time at state j. Let u = M[S;], the
mean of S, if the process starts at 0. This mean is finite by a theorem of Spitzer
[6]. He proved

p = (o/V/2)c



MARKOV CHAIN POTENTIALS 711

where

0<c= exp{i (1/k)[3 — Pr [S: > O]]} < oo,

We denote by Br, the probablity that the ladder process started at r reaches
the set F of all non-negative integers for the first time at s. Then
B:; = Pl‘f [Sn

(1) = Pr, [, = s for some n]

s for some n and 8,, < 0 for m < n]

Il

— Y Pr,[8ua = s — kand 8, = s for some n].

k=1
By the renewal theorem,
(2) lim,,— Pr, [S, = s for some n] = 1/u.
Let Bf = lim,,_, B, . By (1) and (2) this limit exists and
8 = 1wt = Sor)= (2, ).
J=1 j=841
Note that D, Bf = 1. Now
(3) Bf: = 2. BLB.
Since B% < 1, and since 2, BY, = D, BI = 1, we have
Bi = lim,._, Bf; = >, BB

The proof for B is similar.
TuEorEM 1. Assume that {p;} has mean O and finite variances o°. Then

lim, P"B* = 1.\*
where \{ = 3B + 31B7 .
ProoF. Let 17 be a column vector with 1 for the non-negative states and 0
otherwise. By the Central Limit Theorem

lim,.. (P™1%) = &.
For a null chain, the probability of being in any finite set at time n tends to 0.
Hence we have
lim, P"1* = 1.1,
For fixed 4, let f be a column with value Bf on the non-negative states and B7
on the negative states. Then
limp.e P*f = (3BT + 3B7)-1.

Let g be the ith column of B®. Then f — g has limit 0 at 4+ and — . Since
P" — 0, it is an easy consequence that

lim,., P*(f — ¢g) = 0.



712 JOHN G. KEMENY AND J. LAURIE SNELL

Thus
lim P"g = (4Bf + 3B7)-1
as was to be proved.

This theorem shows that sums of independent random variables with mean 0
and finite variance always constitute a normal null chain.

3. Restricted potential operators. From now on we assume that we have an
arbitrary normal chain. Quantities for the reverse chain will be denoted by *
Thus X in the following theorem is A computed for the reverse chain.

We will assume from here on that E is a finite set of at least 2 states.

TureoREM 2. Gz(I — P*) = —I + W\*; (I — P*)Cpx = —I + lax, where
i = A)\.E/ a; .

Proor. We have shown (Theorem 20) that if we choose a column of I — P*
as charge on a set E, then this is always a weak charge, and the resulting

potential is the corresponding column of B® — 1\". Hence, —G (I _OPB)

= BF — 1)\*, where the right side has rows corresponding to all states, but
columns correspondlng only to the states in . We obtain the first result by
restricting the rows to those in E, while the second result is obtained by dual-
ity, i.e., by applying the first result to the reverse chain. (The vector [ is the
dual of )\, and « is the dual of the constant vector 1. )

COROLLARY If O3 exists, then (I — P®) = 7 + U(axCE).

If Gz exists, then (I — P*) = G"1 + (GEL)\".

TuroreM 3. There is a measure w such that Cx(I — P®) = —I + 1la.

ProOF. (CsP®)ij = 2 ker lim, [Nf2’ — N&]-Pi; . We may interchange the
limit with the summation.

(CEPE)ij — lim I:E ngl?)P:J] (Ngzt) _ 6” + B(Eaftern steps))] ,
= Ciy+ 65 — M+ lim [ 32 NPl — N7
ke E -

We let w; be \j minus the quantity in brackets, and the theorem follows.

COROLLARY. If v = —uC is a potential, then uE(I — P*) = ug.

This result is immediate from the theorem and from the fact that charges
have total measure 0. We obtain an obvious dual result for potential functions.

TaroREM 4. C35" exists if and only if Cgl 5 0. If the inverse exists, then C5'1 = cl,
where ¢ = azC3'1 1 a positive constant.

Proor. For any finite set, asl = 2 .z Ai = 1 (by a result in the previous
paper). Hence ! % 0, and thus if Cx is non-singular, Csl 7 0.

Conversely, suppose that Czl £ 0. We compute Cr(I — P*)Cx twice, once
from each of the last two theorems. We obtain:

—CE + (CEZ)OCE = —CE + 1(0)0);).

If Cgl # 0, then 1 = ¢Cxl and az = cwC , for some constant ¢, which is clearly
positive.
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Suppose that for some measure 7, 7Cx = 0. Then 71 = 0 from the above.
And multiplying the result of Theorem 3 by 7 we find that 0 = —7 + (7l)w =
—m. Hence 7 = 0, and thus Cg is non-singular. Therefore, C:'l = ¢l, and if we
multiply by ar we obtain the value of ¢. This completes the proof.

The dual of this result is that G is non-singular if and only if A*G # 0, and
then azG3 = éN*, where ¢ = azG3'l.

The Corollary to Theorem 2 provides the desired generalization of Spitzer’s
result, if we know that the inverses exist. His result was applicable to symmetric
sums of independent random variables. We see more generally:

THEOREM 5. If P is either ergodic, or symmeiric and P7; = Pj; for all 4, j, n,
then C3" and G%" exist for all finite sets E. And for any chain, if \* > 0, then G7'
exists, while if \® > 0, then C%' exists.

Proor. We shall show the results for Cz, the others are dual. If Cxl = 0,
then Cz must have a 0 sth column whenever A} > 0. Hence A* > 0 would re-
quire Cz = 0, which contradicts Theorem 2. For an ergodic chain C;; = M ;;a;
(see Theorem 24, Corollary 1), hence all off-diagonal components of C are posi-
tive. Furthermore, we know that Cy;ai/a; + Cj; = ‘N = 1if ¢ # j (see Theorem
22, Corollary 1). If P is symmetric and P}; = P;j;, then a; = ajand Cy; = Cy;.
Hence for ¢ = j, C;; = %. And this completes the proof.

The significance of these results is that if Cz is non-singular, then it, together
with az , determines P”. This is seen from the Corollary to Theorem 2 and from
Theorem 4. This is a generalization of the result in [2], that the transition matrix
of a finite chain is determined by M and «.

It is easy to construct examples where C;; = 0 if j = ¢, and hence where Cg
is singular for all E. The class of examples in [3] has this property in all null-
recurrent cases. More generally, if in a null chain M ;; happens to be finite, then
C;; = 0; hence random walk in one dimension with a reflecting barrier is an-
other example.

LEMMA 2.

Lim, [kZE) BENSY — NE;‘)] = dia; — "N,

where d; = "5;/a .
Proor. If ¢ ¢ E, then Bi; = 6, , and both sides are 0.
For ¢ £ E we will show this result for the reverse chain. Using that Bf =
" Nii/ai , we find that for the reverse chain our assertion is equivalent to
lim [kz NGPNy — N§:‘>] = "y — "Nji.
n ¢E
In this form the result can be proven by the type of systems-theorem argument
we used repeatedly in our previous paper (see the explanation preceding Lemma
6). Here “N,, is the mean number of entries from % into  before returning to E.
TueoreM 6. If f is a charge with support in the finite set IV, then Cf = Gf +
(N°Cxfe)l.
Proor. We will show first that the relation holds on E. Then we will show
that B7(Cf) = Cf. The result will then follow, since B*(Gf) = Gf (see Theorem
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11), and B*1 = 1. If we compute Gz(I — P*)C% in two ways from Theorem 2,
we find Cx + (Gel)az = Gz + 1-(Z\*Cg). We multiply this on the right by fz,
and use the fact that azfz = 0 for a charge with support in E. We obtain the
desired result inside E. Since F is finite,
(B*C)ij = im > BLIN{P — NiP’l = Cy; — lim [Z BiNi; — Nﬁ}"].
n  keE n keE

Thus, by the lemma, B*C = C + *N — da. But °Nf = 0, since f has its sup-
port in E, and af = 0 for a charge, hence B°Cf = Cf. Which concludes the proof.

This shows that for charges with finite support C not only serves as potential
operator for measures, but it “almost’’ serves for functions as well.

If we are dealing with a finite Markov chain, then we may choose E to be
the set of all states. Then \* = A* = «, hence C1 = (1/c)1. This says that
the row-sums of C, hence of {M;;a;j (see Theorem 24) are constant. This we
proved independently in [2], and there identified the sum as the trace of Z — A =
(A — I)C. (See p. 81 and Theorem 31. There is a discrepancy of 1 due to a
difference in the definition of M.)

4. Interpretation of results. Our results are more easily interpreted for ergodic
chains. Here the existence of C3' is equivalent to the existence of Mz'. Thus
we see that for ergodic chains this inverse exists for every finite set of states.
This is a generalization of the existence of M for finite chains, which we ob-
tained in [2].

Using the fact the I; = A\f/a; = Mz, the mean time to return to set E from ¢
(see Theorem 27), we see that the ith row-sum of C3' is M.z . We also note
that ¢ is the sum of all the components of Mz, and hence A\* is obtained by
normalizing the row-sums of Mz".

It is also worth noting that for ergodic chains Theorem 2 is equivalent to the
assertion that the mean time from ¢ in E to reach a state j in E is the mean
time to return to E plus the mean time once E is reached of hitting j.

To obtain an interpretation of one more result we will specialize to strong
ergodic chains.

TueoreM 7. For a strong ergodic chain,

(aM); + Mi; = (al); + M ;.
Proor. From the relation between Z and C we obtain (see Theorem 31),
Ci; = (a€); + aj/ailCii — (aC)i]-

We then replace C;; by M;a;, and make use of the fact that oM is the same
for the reverse chain as for the original. (See Theorem 24 and Lemma 12.)

This result is interesting in itself. It says that “the time to reach j in equi-
librium via 7"’ is the same as “the time to reach 7 in equilibrium via 77 for the
reverse chain. But we can also use it to clarify a previous result, Csl = (1/c)1.

(Cgl); = kZE Cahi Joy, = ,2 MaAi = kEE i\lf[(aM)k + My — (aM)z]
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The last expression is entirely in terms of the reverse chain. For this chain the
last two terms yield Xtz Me Mz — (aM); . This has a simple probabilistic in-
terpretation. The second term is the time to reach ¢ in equilibrium, while in the
first term we start in equilibrium and count the time to reach ¢ after entering E.
Hence the difference is —M,z, the negative of the time to reach F in equi-
librium. This explains why the sum is a constant, and we obtain that 1/¢ =
D ker Me(aM ), — Mag . Since (aM);, = Mz, we see that c is positive.
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