ROBUST ESTIMATION IN INCOMPLETE BLOCKS DESIGNS!

By Vipa L. GREENBERG
Universtty of California, Berkeley and San Francisco State College

1. Introduction and summary. Robust estimates of contrasts in treatment
effects for experiments with one observation per cell were proposed by Lehmann
[6] for complete (randomized) blocks designs. The model for the observations
Xiw(t=1,---,¢c;a =1, ---,n) is in this case

(1) Xie = v+ & + tta + Uia (2 &= 2 pa=0)

where the £’s are the treatment effects, the u’s are the block effects, and the U’s
are independent with a common continuous distribution. Here we shall generalize
these estimates to experiments in which the block size is smaller than the number
of treatments to be compared, and we shall obtain their asymptotic efficiencies
relative to the classical estimates.

Since we are concerned with large sample theory, we shall be interested in
designs in which the blocks are replicated a large number (at least 4) times. Such
designs could be applied to situations in which only a few different treatment com-
binations are practicable but each could be replicated several times. For example,
in an experiment to compare various diets for pigs, the natural block is the litter.
One may wish to compare ¢ diets and have available a number of litters of size
b < c¢. An incomplete blocks design using some J litters could first be selected
and then the whole design replicated several times using the remaining litters or
(e.g. if some comparisons were of greater interest than others) some groups of b
diets could be given to more litters than others. Thus the situation to be considered
is that in which ¢ treatments are to be compared and the blocks of experimental
units are all of size b < ¢. An incomplete blocks design D consisting of J blocks
of size b is selected, the number n; of replications of the jth block is decided upon
(j=1,---,J;n; = pmn), 2 n; blocks of experimental units are selected and
numbered, and D n; sets of b treatments are assigned to the selected blocks as
specified by D and the n; . The set of blocks receiving the same treatments will
be called a replication set. After the assignment of treatments to blocks, the
order of application within the blocks is randomized.

Assuming fixed effects and no interaction between treatment and block effects,
the model for D is

(2) Xg=v +6+w+Us G=1 -, J5ic8)
nglsi = Z§=1uj =0

where S; consists of the numbers of the b treatments applied in the jth block, the
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£’s are the treatment effects, the u’s are the block effects, and the U’s are inde-
dependent and identically distributed according to a continuous distribution F
with mean zero and variance ¢° (not necessarily finite). Under the same assump-
tions, the model for the whole design is
Xije = v+ & + pj + Bia + Uija,

(3) (jzly""J;ie‘S’i;a=17""ni>

2tk = 2imip = 0; 2aiifi. = 0 for each j
where S; is defined as before (the treatments applied to the jth block of D now
being applied in the n; blocks of the jth replication set), £; is the effect of the 7th
treatment, u; is the effect of the jth replication set, 8;, is the effect of the ath
block in the 7th replication set, and the U’s are distributed as in the model (2).
(Although it might appear that the models (2) and (3) are valid only for a
fixed order of application of the assigned treatments to the units within a block,
the models remain valid under randomization. For, consider a model in which
any of the b treatments may be assigned to each unit within the block. If the
corresponding U’s are independent, identically distributed random variables,
then any selection according to specified probabilities will again be independent
and identically distributed, which justifies the assumptions of the above models.)

2. The estimates. The classical least squares estimate of a treatment dif-
ference & — &; has the form

(4) Ckl = Zs,t.j Aﬁj it,
where the A’s are constants and
(5) Cit = ij. - ng. = nj_l Z:Ll (ija — tha), s, thj , .7 = 1’ ceey, J.

(This is seen by observing that the least squares estimates £; are unchanged by
the addition of constants to the block effects and hence are functions of intrablock
differences only; also differences within the blocks of the same replication set
are weighted equally.)

Estimates more robust than (4) will be defined as functions of the random
variables

(6) Yit = medl_ﬁ_agﬂénj (ija - Xt]'a + ijﬂ - thﬂ)/2;
Vi, is the one-sample Hodges-Lehmann estimate of ¢ — £ based on the dif-
ferences of observations in the jth replication set.

The following definitions and notation will be needed: Let G be the common
distribution of the random variables Usje — Uyj. ; G is symmetric about zero with
variance * = 2¢°. Let g be the density of G. Let

MF) = PIX: < Xo+ X5 — X4, X1 < X5 + X6 — X,

X1, -+, X+ being independent random variables with common distribution F.
It was shown in [7] that ¥ < A\(F) = 3% for all continuous distributions F.
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Lemma 1. If the density g of G satisfies the regularity conditions of Lemma 3(a)
of [3], then the random variables (Y3, — (& — &)), s, teS;,j=1,---,J,
have a joint normal limiting distribution with mean zero and covariance matrix
Zyi = (U'jst,juu) given by
N4

Tist.jrun = 0 if s, t,u,vdistinctandj = j
orifj = j
(7) = 1/12p;([ g*(») dz)? if j=37,s=uandt=v

(MF) — /o[ () dx)*  4f j=jands=wort= v
(& = \F)/pi(f ¢’(z) dz)’?

Proor. For j = j/, Y?, and Y, are independent. For j = 7', the proof is a
slight modification of the proof of Theorem 1 of [6] and hence will be omitted.

We shall now derive a suitable set of compatible estimates of the differences
& — &, at first restricting attention to the case in which the overall design is
balanced, i.e. all n; = n, each treatment occurs the same number of times, and
each pair of treatments occurs together in the same number of blocks. The design
with model (3) must then consist of n replications of a balanced incomplete

.

f j=jands=vort=u.

blocks design D. .
Let R be the class of all linear functions of the random variables Y%, , s, t € S;,
j =1, -+, J, which are unbiased estimates of a difference & — &, . Let Y3. =

bt Zusj Yi,and Zi, = Vi — Vi, ; Z3,1s the Hodges-Lehmann adjusted estimate
of &, — £, based on the differences of observations in the jth replication set.

THEOREM 1. In the class B an asymptotically minimum variance unbiased es-
timate 1s obtained by substituting Z, for Ce; , s, te8;,7 = 1, -+, J in the classical
least squares estimate. If N(F) < 3%, this is the unique asymptotically minimum
variance estimate in R.

Proor. Though A(F) is unknown, it will be considered as known throughout
the proof; it turns out that the minimum variance estimate in R does not depend
on \MF).

If M(F) < 44, the covariance matrix = defined by (7) with p; = 1 is non-
singular, and the Gauss-Markov theorem applies, yielding a unique minimum
variance unbiased estimate in the class R. This least squares estimate may be
found by a straightforward computation using Lagrange multipliers to minimize
the asymptotic variance of an arbitrary linear function in the class R.

If N\(F) = % (which may not be possible), it is seen from (7) that the co-
variance matrix Zy; is proportioned to Z¢i , the covariance matrix of the joint
normal limiting distribution of the random variables n}(C?, — (¢ — &)) where
Ciy = X.jo— Xy ,8,te8;,7 =1, -+, J. Since the ¥’s and the (’s each have a
joint normal limiting distribution and their covariance matrices are proportional,
any linear function of the Y’s has asymptotic variance proportional to the asymp-
totic variance of the same linear function of the C’s, with the same proportionality
factor. Hence, the same linear function of the Y’s as the classical least squares
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estimate is of the C’s has minimum asymptotic variance among unbiased es-
timates which are linear functlons of the Y’s. From (7) with A = &%, it is seen
that the asymptotic variance of n WYl + Y, + Yi,) is zero, so that n}(¥V?, +
+ Y us) — 0 in probability, and the same proof as in [4] shows that
%( Yi,— 7)) —-0in probability. Thus the classical estimate with Z’s substituted
for C’s, while not the same function as that obtained by subsbltutmg Y’s for C’s,
has the same asymptotic distribution and hence the same minimum asymptotlc
variance in the class E.
The above result also throws some new light on the estimates proposed in [6]
for the case of complete blocks designs. There the observations are given by (1),
and the incompatible estimates

(8) Yij = medi<aspzn [(Xia — Xju + Xig — Xj5)/2]

are adjusted by minimizing the sum of squares Zz,é, [ Yii — (& — &)’ to obtain
compatible estimates

(9) Zij = Yi- - Yj. .

We now see that the estimates Z;; have the following optimum property:
CoroLLARY 1. Let (1) be the model for the observations in a complete blocks
design and let Y i; and Z;; be defined by (8) and (9), 1 < 4, j < ¢ [6]. In the class
of all linear functions of the random variables Y.; which are unbiased estimates of
& — &1, Zi uniformly minimizes the asymptotic variance, and, if N(F) < o4, 18
the unique estimate in this class which does so.
Proor. In the preceding theorem letd = ¢, J = 1.

3. Asymptotic distribution and efficiency of the estimates. Theorem 1 shows
that, in the case of a balanced design, among all linear functions of the ¥’s which
are unbiased estimates of a treatment difference the largest asymptotic efficiency
(in the sense of the reciprocal of the ratios of the variances) relative to the least
squares estimate is achieved by putting Z7, for €7, in the classical estimate. Al-
though this optimum property has not been proved in the unbalanced case, this
suggests the corresponding estimate

(10) Zkl = Zs t,j Ast] sty

where the A’s are given by (4), for the general (not necessarily balanced) case.
The efficiency of the results justifies the choice of the estimate (10). We shall now
find the efficiency of (10) in the general case.
Lemma 2. Under the assumptions about g of Lemma 1, the random variables
%(Z — (& —&)),s,teS;,7 =1, ,J, are asymptotzcally joint normal with
mean zero and covariance matrix (O'jst,j'uv) gien by

Tistrjrus = 0 if  jHEF orifi =7 ands,t, u, v distinct
(11) = 8%/2p; if j=jands=wuort=ruv
= —8%/2p; if j=jands=vort=u



ROBUST ESTIMATION IN INCOMPLETE BLOCKS DESIGNS 1335

= 8%/p; i j=is=ut=0v

where 8* = (2/b)[25 + (b — 2)(N(F) — DI/([ ¢'(z) dx)’.

Proor. The joint asymptotic normality follows from Lemma 1, since the
Z, are linear functions of the Y3,, s, teS;,7 = 1, ---, J. The variances and
covariances are found by direct computation from those of the Y’s, exactly as
in Lemma 8 of [6].

Let 2, be the covariance matrix (11) and let =¢ be the covariance matrix of
the random variables n*(C%, — (& — £)),s, teSj,j=1,---,J.Then 2, =
(*/8%)Z¢. Hence we have from Lemma 2 )

Lemma 3. The two sets of random variables {(T/S)n*(Zﬁt — (& — &), s,
teSi;j = 1’ "]} and {n*(o‘;t - (gs - Et)); S,tSSj,j = 17 e 7']} have the
same limiting distribution.

Lemma 3 now yields the desired efficiency result:

TraeoREM 2. If Cyi, as defined by (4), is the least squares estimate of & — &,
then (10) s an unbiased estimate of & — &, and the asymptotic efficiency of (10)
relative to (4) is

(12)  e=7/8 =127(f (=) dz)*/(24/b) 75 + (b — 2)(\(F) — 1)].

In general the efficiency is seen to depend on the block size b and to be inde-
pendent of the number ¢ of treatments. In the case that b = ¢ (hence J = 1),
the design reduces to a complete blocks design [6] and our results agree with those
of [6]. The efficiency e is the same function of b as the efficiency in the case of
complete blocks is of ¢; a table giving values of the efficiency in the complete
blocks case for various values of ¢ in the case of F normal is given in [6]. For
fixed A\(F) < ¥4, € is an increasing function of b, with a minimum at b = 2 of
127 f g’(x) dz)®. For fixed b > 2, e is a decreasing function of A\(¥) bounded
below by its value 127 f g’(z) dx)® at A = 4. Thus, for all b, e =
1272(f ¢*(x) dx)?, which is = .864 for all distributions F and = 3/r if F is normal
[2].

Lemma 4. The random variables Ziy, 1 £ k, I < ¢, form a compatible set of
estimates, in the sense that Zyy + Zim = Zym .

Proor. Considering each replication set as a complete blocks design, we have
from [6] that for each j the random variables {Z;, k, [ £ S;} form a compatible
set. That is, the {Z;,} satisfy the same linear restrictions as do the Ci; = Xj;.
— Xy;. for each j. Hence linear combinations of the 7, satisfy the same linear
relations as do the same linear combinations of the C%; , and thus Cy; + Cim = Cim
implies Zi; + Zim = Zim , 1.€. the Z’s are compatible.

The efficiency (12) holds not only for differences but extends to the estimation
of any contrast. Let 6 = D i, 2 ¢ = 0, be any contrast; 6 is a function only
of differences of the £’s. The representation 6 = ) > dii(& — &) is not unique,
but the estimate 6% = > D di,Zs; is independent of the representation. This
follows from that compatibility of the Z’s and the fact that the classical estimate
of any contrast is, by the Gauss-Markov theorem ([7] p. 14) independent of the
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representation of that contrast. That is, if Z D da(t— &) = 2> et — &),
then D > du(f — &) = > 6kz(€k — &), ie. 222 duCu = 2.2 el
But the last equality together with the fact that the Z’s satisfy the same linear
relations as the C’s yields the desired equality Z Z il = EZ exilny .
In order to extend the efficiency result of Theorem 2 to the estimation of any
contrast, it suffices to show that the asymptotic covariance matrices £, and
2 ¢ are proportional, with the same proportlonahty factor as that relating the
asymptotic variances of n'Z;; and n*Cy; .

The following lemma enables us to obtain from the fact that the estimates
Zyand Cy, 1 < k, 1 < chave proportional asymptotic variances that they have
proportional asymptotic covariance matrices.

Lemma 5. Let Vi and Wi, 1 < 4, § < ¢ be two sets of random variables with
covariance matrices Zv and Zw and such that each set forms a compatible system of
estimates of a set of differences ¢; — &; . If, for all i, j, Var (V;) = K Var (W;)
for some constant K, then Ty = KZy .

Proor. We shall show that for all 4, j, &, I

(13) Cov (W';j 5 Wkl) = %[Var (W.:z) — Var (W«;k) + Var (ij) — Var (W]l)]

The assertion of the lemma will follow from (13). Since Wi; + Wy = Wy,
Var (W.;) + Var (W) + 2 Cov (W, W) = Var (Wy) and

(14) Cov (W.;j, W]k) = %[Var (W.:k) — Var (W.;j) — Var (ij)].

Now (13) is obtained by a similar computation from the relation Var (W;) =
Var (Wi; + Wi + W) with the use of (14).

The joint asymptotic distribution of the random variablesn}(Z, — (& — &) ),
1 =k, 1 = ¢, is now given by the following lemma.

LemMA 6. The random variables n*(Zy, — (& — &)),1 =k, < ¢, have a joint
normal limiting distribution with zero mean and covariance matriz =, = (8*/7%)Z¢,
where 2 ¢ is the covariance matriz of the random variables n*(Cyy — (& — £)).

Proor. The joint asymptotic normality follows from Lemma 2, since the Zy;
are linear functions of the Z%,. From Theorem 2, the ratio of the asymptotic
variances of n'Z;; and n*Cj,; is 8%/7, hence by Lemma 5, 2; = (87 2 ¢.

COROLLARY 2. Let 0 = D, cit; = DD di(t — &) be any contrast. The
asymptotic efficiency of the estimate Y, D diZi relative to the classical estimate
> D dii Crris e = /8%

4, Extensions and acknowledgment. Tests of the hypothesis that all the
treatment effects are zero can be obtained from the estimates Zi; of & — &
using the two approaches suggested in [5]. Also, it is easy to extend the above
estimates and tests to certain Model II designs (one-way layout and nested
designs). In this extension the distribution of the errors may be any unspecified
continuous distribution, but the factors of interest are assumed normally dis-
tributed. Such an assumption may not be unreasonable in cases where the errors
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are more likely to be subject to gross errors than are the factors of interest
Details of these extensions are given in [1].

I would like to express my deepest gratitude to Professor E. L. Lehmann,
whose guidance and encouragement made this work possible.
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