ON CONFIDENCE BOUNDS ASSOCIATED WITH MULTIVARIATE
ANALYSIS OF VARIANCE AND NON-INDEPENDENCE BETWEEN
TWO SETS OF VARIATES!

By Govinp S. MUDHOLKAR
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1. Summary. A theory of simultaneous confidence bounds on certain para-
metric functions, and their ‘partials,” associated with some problems in multi-
variate normal statistical analysis has been developed by S. N. Roy and his
associates in a series of publications over the past decade (e.g., [6], [7], [8], also
see the references in [8]). In this paper we have obtained simultaneous confidence
bounds on the members of a class of parametric functions, together with their
‘partials,” associated with the two problems mentioned in the title. Our results,
not only contain Roy’s results as particular cases but, also throw a new light
on the parametric functions used by Roy. Furthermore, confidence bounds,
which can be considered as being associated with Hotelling’s trace criterian for
the MANOVA problem can be obtained as an example from our results.

2. Introduction and preliminaries. In this section we shall present the models
for the two problems, and the simultaneous confidence bounds by S. N. Roy
for these two problems; and discuss, in brief, his method of constructing these
bounds.

2.1. The MANOVA model. In the statistical literature several MANOVA
models have been discussed (e.g., [1], [2], [7]). However under certain invariance
restriction all these models can be reduced to the following canonical form:

Let X(p X ), Y(p X (n —1),Z(p X (r —8)),s Sr <n—p,bea(p Xn)
random matrix of observations whose columns are independently, normally dis-
tributed with a common covariance matrix X and expectations given by

EX = A(p X s), EY = 0(p X (n — 7)), EZ = T(p X (r — 38)).

The MANOVA problem is that of testing the MANOVA hypothesis 3¢, : A =
0(p X s) against the alternative 3¢: A ¢ 0(p X s), and that of estimating the
expectation matrix A(p X s) on the basis of the observations. The invariance
restriction mentioned above dictates that an invariant procedure should involve
the observations only through the characteristic roots of S,S,”", where S; and
S, are the sum-of-products matrices due to the hypothesis and due to error, and
are given by

Sy =XX(p X p), S.=YY(pXp).
Thus we are interested in the simultaneous confidence bounds estimates of A
depending only on the characteristic roots of S,S, ™.

Received 4 August 1964; revised 1 November 1965.
1 This research was supported in parts by N.S.F. Grant GP5801.

1736

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to [[&

The Annals of Mathematical Statistics. KGN ®

WWWw.jstor.org



SIMULTANEOUS CONFIDENCE BOUNDS 1737

2.2. The union-intersection principle and Roy’s confidence bounds for MA-
NOVA. Roy’s method and philosophy of obtaining the simultaneous confidence
bounds is very closely related (see [8]) to a heuristic method of test construction,
also due to him [5], and sometimes referred to as the union-intersection principle
by his associates. In this method, starting from a (usually multivariate) com-
posite hypothesis Ho and a (usually multivariate) composite hypothesis H;,
Roy expresses them as, respectively, an intersection and a union of more primi-
tive (usually univariate) composite hypotheses

(2.2.1) Hy = Nyo Hyy, Hi= U,rHy,,

where T is an index set, and each pair (Hy, , H1,) is such that on certain prior
optimality grounds one can accept the (univariate) hypothesis Ho, against the
(univariate) alternative Hi, over, say, a,, v € I'. The union-intersection prin-
ciple, then, accepts the (multivariate) hypothesis H, against the (multivariate)
alternative Hy over @ = [)yr @y, and rejects it otherwise. In the multivariate
examples considered by Roy, it usually happens that, associated with each pair
(Hoy , Hyy), v € T, there is a confidence interval based on @ = na, , and the in-
formation in (2.2.1), then enables him to make simultaneous confidence state-
ments about the parameters, other than the nuisance parameters, occurring in
H, and H, . Roy then uses various variational representations of the characteristic
roots of matrices to compress these simultaneous confidence statements into a
confidence bound on a parametric function, usually a function of the largest
characteristic root of some matrix of parameters, which can be considered as a
measure of the departure of the nature from H,, in the direction of H, .

In the MANOVA problem Roy expresses 3¢ : A = 0(p X s), as an intersec-
tion 3¢, = N¥Coy , 3oy : YA = O(p X 1), where ~ is a p-dimensional real vector,
and the intersection is over R”, the space of all p-dimensional real vectors. For
each 3¢y, there is Snedecor’s F-test which accepts over

(2.2.2) vXX'y/¥'YY'y £ a constant = 7* (say), v eR?,
and rejects it otherwise, and also yields Scheffé type confidence bounds [10]
(2.2.3) ¥vXs — 7(¥YY'y)! = vA8 = +'X5 + (v YY'y)}, +eR?, 3cR’.

The union-intersection test associated with the above decomposition of 3¢
accepts the MANOVA hypothesis over the intersection of all the regions in
(2.2.2), that is over Chy(SiS.™) = pa, where . , a function of r, is a constant
determined by «, the level of significance and Ch( - ) is defined by the following:

DeriniTioN 2.1. Chi(A), 7 = 1, 2, ---, p, denotes the ¢th largest charac-
teristic root of the real symmetric matrix A(p X p). We shall also write Chnin(A)
for Ch,(A).

The simultaneous confidence statements (2.2.3) imply the confidence state-

ment
(2.24) Ch*(S1) — me' Ch¥(S,) = Ch(AA")

<
< Ch(Sh) + pe Ch(S.).
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Next suppose that I and J are any two subsets of distinct positive integers not
greater than, respectively, the number of rows and the number of columns of a
matrix A. We shall refer to such sets I and J as ‘valid sets.” For any valid sets T
and J let us define (i) AY”, (ii) A and (iii) A”"” as the matrices obtained by
replacing in A, respectively

(i) rows with numbers in I,

(ii) columns with numbers in J, and

(iii) rows with numbers in I and columns with numbers in J,
all by O-vectors. It is easy to see that the non-zero characteristic roots of
ATPATD" are the same as those of the matrix obtained from AA’ by deleting or,
as Roy puts it, by ‘cutting out’ the rows and columns of A with numbers in I and J
respectively. Now let

Su(I, J) = XOxe
and
Se(I,0) = Y"OY“",
Then the confidence statements (2.2.3) also imply,
Chi(8u(1, J)) — ! Chi¥(S.(Z, 0))
(2.2.5) < ChA(ATAT)
< Ch(Su(Z,7)) + na’ Chi(S.(1,0)),

for all valid sets I and J. The parametric functions Ch(A“”AY”") have been
termed by Roy as the ‘partials’ of Ch,}(AA’). Thus for any «, 0 < & < 1, the
simultaneous confidence bounds (2.2.4) and (2.2.5) hold with confidence co-
efficient not less than (1 — «). It may be noted that the intervals (2.2.5) on
the partials are, in general, narrower than the interval (2.2.4) on the parametric
function.

2.3. The model and Roy’s confidence bounds for the non-independence problem.
In the model of the problem concerning the independence between two sets of
variates, we have a (p 4+ ¢)-variate normal population, p < ¢, with the co-
variance matrix

=(p+9) X (0 +0) = | 5P X2} 2 X 0],

From this population we have a random sample of size (n 4+ 1) with the sample
dispersion matrix

S+ 0 X G+ ) = [ FP R FRXO],

Under this model the hypothesis of independence the two sets of variates (the
p-set and the g-set) is 3¢ : Tz = O0(p X ¢) against the alternative 3¢: Xy,
0(p X g¢). The invariant [2] tests of 3¢, depend only on the sample canonical
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correlation coefficients, that is, the characteristic roots of S1iS1:S::S1s , and the
population canonical correlation coefficients, that is, the characteristic roots of
T EpEaEr, can be considered as valid measures of non-independence between
the p-set and the g-set of variates. However, Roy has obtained simultaneous
confidence bounds on certain functions of some regression-like parameters asso-
ciated with this problem. To be specific let us set 3 = EpZa, B = SpSz, and
S12 = Su — S1:S:5°S12 . It is then well known (e.g., page 110 [7]) that

(2.3.1) e = ¢/ (1 — ci), i=12-,p,
where
e; = Ch{ST3(B — 8)Sx(B — 8)'],
and
¢i = Chi{(Su — Suf’ — BSiz + 6SzB")"(Se — BS2)Sx (S — SwB)],

i=1,2, .-, p. It may be noted that 3¢, : 1, = 0 is equivalent to 3 = 0. Thus
Ch(B8’) are valid measures of non-independence between the two sets of variates.
Roy’s set of simultaneous confidence bounds with confidence coefficient not less
than (1 — a), 0 < a < 1, obtained by using the method discussed above is

(2.3.2) ¥'Bs — . Ch¥(S1z) Chi(S%)

< 185 = ¥'Bb + ua Ch'(S12) ChiA(S2),
(2.3.3) Ch(BB') — pot Chi¥(S12) Chii(Sz)

< Ch/(88") = Ch(BB') + pa’ Chi*(S12)Chi¥(S%),
and

Ch(B(I, J)B'(I, J)) — pa'-Chi(S12(1, 0)) Chi(Sx)
(2.3.4) < Ch(g(I, J)B'(I, J))
< Ch¥(B(I, /)B'(I, J)) + ma' Chi(S1a(I, 0)) Chi(Sz),

for all valid sets I and J, where u, is the % point of the distribution of e,
and B(I, J) etc. are the matrices obtained by replacing the variates in the p-set
with numbers in I and the variates in the g-set with numbers in J, by variates
which are, identically, equal to zero. It may be observed that replacing the
variates by zero-variates is equivalent to cutting out these variates.

In Section 4 we shall obtain sumultaneous-confidence bounds with con-
servative confidence coefficients not less than (1 — ), 0 < a < 1, on symmetric
gauge functions of the parametric functions Ch#(AA”"),i=1,2, ---, p, and of
Ch#(88),7 = 1,2, ---, p, and their partials. We shall obtain the bounds by
direct inversion without an appeal to Roy’s heuristic principle. Roy has often
hinted at the ‘distance’ property of the parametric functions used by him (e.g.
[8]). Section 5 will make this aspect more explicit. One of the good points of



1740 GOVIND S. MUDHOLKAR

Roy’s bounds is that they involve only central distributions. Our bounds also
use only on the central distributions. However, we shall discuss only the ‘inver-
sion’ aspect of the bounds in this paper and defer the distribution aspect to
another communication.

3. Symmetric gauge functions and the matrix theory. In this section we shall
present the needed properties of symmetric gauge functions and their role in
the matrix theory.

DrriniTion 3.1. A real valued function ¢(a) = ¢(a1, a2, -+, a,) on the
space of p-tuples of the real numbers is said to be a symmetric gauge function if

(i) ¢(a) = 0 with the equality if, and only if, a1 = a2 = - -+ = @, = 0;
(3.1) (ii) ¢(ca) = |c|e(a) for any real c;

(i) p(a1 + a2) = o(a1) + o(asz);

(iv) (e, , iy, -, eas,) = ¢(a1, a2, *- -, ap), where ¢; = +1,

t=1,2,---,p,and @i, @iy, - - -, as, is a permutation of a1, aa, - - - , ay.

Sometimes, as convenience, one requires a symmetric gauge function ¢ to

satisfy
(v) (1,1, ---,1) = L

ExampLEs. Suppose that aqy = a@ = -+ = a are the ordered values of
real numbers |ai|, |az|, - -, |ap|. Then the following are some examples of the
symmetric gauge functions:

(1) ¢(a) = X tiaw,q=1,2, - -, p. Thus the largest value aw and the
sum Y% |a;| are symmetric gauge functions

(2) e(a) = (2 21lad)", 1 £ 1 £ o, is another example of a symmetric
gauge function. We note that the condition (iii), in this case, is the Minkowski
inequality. We also note that limz,. (22 |ad)" = aq .

DEriNiTION 3.2. For any function ¢ satisfying the conditions (i) and (ii) of
(3.1) let us define the conjugate of ¢ to be the function

110(‘11 y A2,y ° 0, a’p) = 8up [Z?=1 aibi/¢(b1 ) be y T bp)])

where the sup is over either of the sets (i) b = (b1, b2, ---, b,) %~ 0,
(i) 2oFalbd = Lor (iii) ¢(br, ba, -+ -, bp) = L.

Then it is well known [4] that ¢ satisfies, in addition to (i) and (ii) of (3.1),
the condition (iii) also. Furthermore if ¢ is a symmetric gauge function then
is also a symmetric gauge function.

Examries. (1) o(a) = (Xalad)" and ¥(a) = (Zialad™" 1 < |,
m = o, 1/l + 1/m = 1, are conjugate symmetric gauge functions.

(2) ga(a) = aq and gb(a) = .2, |ai are mutually conjugate.

Let @, denote the class of all symmetric gauge functions on the p-dimensional
space of p-tuples of real numbers. Then it is easy to prove the following.

Lemma 3.1. Foranypoe®,and k; ,0 = k; £ 1,2 =1,2, --- , p, we have

o(kwas , ke, - - - ,,ap) elar, a2, -+, ap).
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Dzrintrion 3.3. For any real matrix A(p X n), p = n, and any ¢ ¢ ®, let
“A”iﬂ = ¢(cl%7 Cz%, STty CP%)’

where ¢; = Ch,(AA"), s =1,2, ---, p.
Lemma 3.2. For any real matriz A(p X n), any orthogonal mairices L(p X p)
and R(n X n), any ¢ = ®,,

[Alle = [ILAR], .

Lemma 3.3. For any real matriz A(p X n), any valid sets I and J, and any
pEDy,

1A, = (A"l , 1A”"],) = [All,

where either term in the middle brackets satisfies both inequalities.

ProoF. Suppose A = [a;,as, - - -,a,]. ThenAA' = > % aa, = ATOATY B,
where B is at least positive semidefinite. Hence Ch;(AA’) = Ch,(AY®AT®"),
i=1,2, .-, p. Thus replacing any number of rows of A by 0-vectors only de-
creases its ordered characteristic roots. Now since the non-zero characteristic
roots of A’A are the same as those of AA’, the above conclusion holds for replace-
ment of the rows of A by O-vectors also. Hence ete.

The following is the result (A.3.6) of [7], and may also be considered as a form
of polar factorization (e.g. [3]).

LemmA 3.4. For any real matrix A(p X n), p < n, there exists a symmetric
matriz to be denoted by |A|,and an orthonormal matriz R(p X n), RR" = I(p),
where I(p) denotes the p-dimensional identity matriz such that

A(p X n) = |[AR.

It is easy to see that Ch;(]A]) =10h,-’(AA'), t=1,2,---,p. Thus we may,
in the sequel, refer to |A| as (AA")%. Also for any symmetric matrix S(p X p)
we can define a symmetric matrix S*(p X p) such that Ch;(S*) = Ch,-’(S),
1= 1,2, -+, p. The following result follows immediately.

LemMa 3.5. For any real matrix A(p X n),p = n, and any ¢ € ®,,

[Alle = Il 1Al [l

Lemma 3.6. For any two real matrices A(p X n), and B(p X n) and any

p Dy,
|All, — [IBll, = |A + Bll, = [[A]l, + [IBll, -
Proor. For the second inequality see [4], or for a direct matrix proof see [3].

The first inequality may then be obtained by observing that ||—A[, = [[A[l,.
LemMmA 3.7. For any two real matrices A(p X n) and B(n X p) and any ¢ € @, ,

Ch,!(BB")||All, < ||AB||, < Ch(BB")|A[l,.
Proor. We know that
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Ch,(BB')Ch;(AA") < Ch;(ABB'A")
< Chy(BB')Ch;(AA"),
foralli = 1,2, --- , min(p, n). Thus
[AB||, < ¢(Ch}(BB’)Ch;}(AA"), Ch{(BB’)Ch)}(AA"), ---, Ch/(BB')
-Ch,'(AA"))
Ch(BB)-||Al, .

The other inequality of the lemma may be established similarly.

The following represention of ||A]l, , for A(p X n) real and ¢ £ ®, , due to von
Neumann [4] will be very important for constructing the confidence bounds on
partials.

LemMma 3.8. For any real matriz A(p X n), p = n, and any ¢ € ®,,

[All, = supms [tr [AM/[[M]4],

where M(p X p) are real matrices and  is the conjugate of ¢.
This result may be expressed in slightly different form as
LemMA 3.9. For any real matriz A(p X n), and ¢ £ ®, with conjugate ¢ € ®, ,

IAll, = Supjnjy=1 tr AN',

IIA

where the supremum is taken over all real matrices N(p X n) such that |N|ly = 1.
Proor. Suppose that A = |A|R, RR’ = I(p). Then

[Alle = || |A] [l
= supmy -1 tr [A]M

I

’
= Sup||M||¢=-1 tr AN y

where N(p X n) = M'R. The proof is complete since |[N|, = [[M]ly .
One of the consequences of the Lemma 3.8 is the following:

(3.2) tr AN" < [|A[l,- [N[ly

Other results concerning symmetric gauge functions and of relevance to this
work are contained in the following:
LemMa 3.10. If o(a) = (2 2 |ai)"", r = 1, then we have

e(a) Ser(a), 127 Sr = .

If @1, @2 are two symmetric gauge functions of p variables with conjugates Y1, Y2
respectively, and if o1 = @2 then Y1 = s . Furthermore for all ¢ € ®, we have

max (lally Ia'2|) ] Iapl) = ¢(a) = Z?=l Iaril'

4. The simultaneous confidence bounds associated with the two problems.
In this section we shall present the confidence bounds for the two problems. We
shall discuss the bounds for the non-independence problem in some detail and



SIMULTANEOUS CONFIDENCE BOUNDS 1743

derive from these the bounds for the MANOVA problem. The observation that
this may be done is due to the referee, which I greatly appreciate. His suggestions
have immensely influenced the form of this section.

4.1 The non-independence between two sets of variates. Let us work in the frame-
work of the model for the non-independence problem discussed in the Section 2.3.
For any ¢ ¢ ®, with the conjugate y & @, , the statistic o(er’, ez*, ceey ep*),
where ¢; = ¢;(1 — ¢;) " and ¢1, ¢a, -, ¢, are the sample canonical correla-
tion coefficients, may be expressed as |[S1aBS%||, . Let C = ., be the a % point
of the central distribution of this statistic. That is, let

(4.1.1) [ST3(B — 6)Sk, = C

be true with probability (1 — ), 0 < a < 1. Then because of (3.1.2) we have
for all (¢ X p) matrices M

(4.1.2) [tr STA(B — 8)ShM| = C M|, .
Taking M = S;?NS!, we get the basic set of simultaneous confidence bounds
(4.1.3) trBN — C [SzNS!,|y < trgN =< tr BN + C |[Sx'NSi,l,,

valid for all (¢ X p) matrices N with the simultaneous confidence coefficient
(1 —a).

SoME ParTicuLAR CAsEs. (i) Let ¢; be a symmetric gauge function of p
variables with the conjugate ¢ , and such that ¢; < ¢. From the Lemma 3.6 we

have
ISzNStally < Chi(Sz) Chi(S1e) N[y -
Hence from (4.1.2) we get
[tr (B — 6)N| = C Chs'(Sz) Ch/(S2)[IN]ly

< C Ch;*(S32) Ch(S12)|IN]ly, ,

since ¥; = . An application of the Lemma, 3.8, then yields
(4.14)  [Bl,, — C Che(S%') Chi’(S12) = [Blly,
< |Blls, + € Chi(Sz") Chit(S1.2)

true for all ¢1 < ¢ with simultaneous confidence coefficient (1 — «).
Moreover, we get from tr BN = tr BN — C ||SzaNS! /|y using the Lemmas 3.6

and 3.8 the following:
I8lle, = max {Chhin(Sz") (|[BSkll,, — € Chi'(S1)),
(4.1.5) Chlia(S12) ([ST3Bly, — € Chii(Sz)),
Chhin(S1.2) Chhin(S2 ) (|ISTiBSEll, — €)},

with confidence = (1 — ).
(ii) Now let ¢ > ¢ be any symmetric gauge function of p variables with the
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conjugate ¢» < ¢. To obtain a development of confidence bounds as above we
notice that ||N|ly, = Ch(NN’) and hence

1822 NSi.ally < min {Che(Sz") (IS :lly- [[N]ly, , Chi*(S12) [STlly - [Ny, } -
This with (4.1.3) and the Lemma 3.8 yields
(4.1.6) |Bll, — Cmin (Chy'(Sz)[|Sally , Chiy(S12)lISH Iv)
< [Blles = [Blle» + C min (Che(S3)[|Sally , Chi'(S12)[IS%4).
Furthermore, we get from tr BN = tr BN — |[S;#NS1 .||, , the following:
IBlles = max {Chhin(Sz) ([BSklle, — C lISall),
(4.1.7) Chiin(S12) (IST3Blly, — C 1822 1l4),
Chhin(S%') Chhin(S1.2) (ISTIBSh,: — €))
with confidence = (1 — a).
Partials. Let us recall the notation defined for the Equation (2.3.3) and replace
N in
tr (B — 8)N = C ||SzNS! .|y
by N(Z, J) and get
tr (B(I, J) — (I, J))N = tr (B — 3)NY” < C ||SzaN""sk |,
< C||S%NSo(1,0)]y -

Then arguments similar to the development of previous bounds yield the fol-
lowing:

(4.1.8) trB(I,J)N — C Ch(S55) Ch}(S12(1, 0))

< tr 8(I, J)N = tr B(I, J)N + C Ch,}(S57) Chy'(S14(Z, 0));
(4.1.9) B, J)|ls; — C Ch(S3) Ch(S1(7, 0))

< 18, Nlle, = IBUI, J)|| + € Ch'(S%') Chik(S14(1, 0)),

and analogues of other bounds obtained by replacing B by B(I, J), 8 by 8(I, J),
and S;2 by S12(Z, 0), all simultaneously true with confidence not less than
(1 — a).

We shall summerize the results of this section in the following:

TaEOREM 4.1. For the non-independence problem, inequalities (4.1.3) to (4.1.9),
where ¢, o1, 02 (o1 = ¢ < @2) are any symmetric gauge functions of p variables and
C is defined by (4.1.1), provide a set of simultaneous confidence bounds with the
stmultaneous confidence coefficient not less than (1 — «a).

COROLLARY 4.1. If we take o(a) = max (|ai|, |aa|, - - - , |ap|) and N = 8" where
v(g X 1) and 8(p X 1) are any two vectors with unit modulus then we get Roy-
type bounds, e.g., (4.1.3) yields (2.3.2), (4.1.4) with ¢1 = ¢ reduces to (2.3.3) and

(4.1.9) gives (2.3.4).
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4.2. MANOVA. Let us recall the model and notation for the MANOVA prob-
lem dlscussed 1n the Section 2.2. Let us start with a statistic ||S,'S —*||¢ =
qo(cl , ety oo, ¢pt), where ¢y, ¢z, - - , ¢ are the characteristic roots of S,S,™ and
o is any symmetrlc gauge function of p variables. Let pq,, = C be the a % point
of the central distribution of this statistic. That is let

(4.2.1) (X — a)s7H|l, = ¢

be true with probability (1 — @),0 < a < 1.

A comparison between (4.1.1) and (4.1.2) shows that the bounds for the
MANOVA problem may be obtained from the bounds for the non-independence
problem by replacing B by X, 8 by A, S by I(q), where I(q) is the identity
matrix, and S;; by S, , ete., and making relevant changes in the dimensions of the
matrices. In this way we get, for example, the following:

(4.2.2) trXN — C ||SN|y < tr AN < tr XN + C ||SN]jy ;

(423) X, — CChi(S,) = |Ally, < |Xlle, + C Chi(S.);

(424) |lAlly, = Chhi(S) (S|, — ©);

(425) |X]lp, — Cmin (1,Chi*(S.)) < |Ally, < IX]lp + € min (1, Chi(S,));

(42.6) [Alle, = max {([Xlle, — CSMy), Chhin(S2) (118, K]lss — €)};
(4.2.7) IS, Dlley — € ChA(SU(T, 0)) < [IAZ, )]l
< ISk(I, I)|lo; + € Che*(Su(I,0));

and other analogues of the bounds for the non-independence problem. We sum_
marize these results in the following:

TuEoREM 4.2. The inequalities (4.2.2) to (4.2.7), where C is given by (4.2.1),
and ¢, o1, 02 (01 = ¢ S ¢3) are many symmetric gauge functions of p vartables pro-
vide a set of stmultaneous confidence bounds for the MANOVA problem with con-
fidence coefficient not less than (1 — «).

CoROLLARY 4.2. Theorem 4.2 with ¢(a) = max (|ai, |az], -+, |a.|) and
N = %', where (s X 1) and 8(p X 1) are any two vectors with unit modulus, pro-
vide Roy-type confidence bounds. In particular, (4.2.2) yields (2.2.3), (4.2.3) with
o1 = ¢ reduces to (2.2.4) and (4.2.7) gives (2.2.5).

COROLLARY 4.3. Theorem 4.2 with ¢(a) = (2 P ai)! provides simultaneous
confidence bounds which use the distribution of Hotelling’s trace criterion.

6. Remarks. (1). For any ¢ ¢ ®,, and real A(p X n), HAH,,, is a unitarily
invariant norm, that is, it satisfies

(i) ||A]l, = 0, with equality if, and only if, A = 0

(ii) |lcAll, = |c|-]|A]l, for any real c,

(iii) [|Ax + Aafly = [|Adlly + [|Ae,,

(iv) ||LAR||, = ||A]l, , where L and R are orthogonal.
Furthermore, it is known [9] that ||A||, , ¢ € ®,, are the only unitarily invariant

norms. It is, therefore, clear that the parametric functions introduced by Roy,
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namely, the largest characteristic roots of the parametric matrices, indeed have
the “distance properties” which he vaguely claimed. As a matter of fact, because
of the Lemma 3.9, his parametric functions happen to be the smallest unitarily
invariant norms of the parametric matrices. We have obtained simultaneous con-
fidence bounds on all unitarily invariant norms of the matrices of the non-
centrality parameters.

(2) Let us consider the confidence bounds of the type (4.1.4) for the non-
independence problem or (4.2.3) for the MANOVA. The geometrical width of
these confidence bounds is proportional to the constant C' = u,,, , which in turn
depends upon the confidence coefficient (1 — «) and the symmetric gauge func-
tion ¢, with which we start. Now by the Lemma 3.9 we have, for any ¢ £ @, ,

Chi(AA") < |Al, £ 2% Chi(AA").

Therefore for any ¢ ¢ @,, |All, = C implies that Ch,}(AA") < C. Thus if
AA’ = S,S, " or AA" = S7;BSyB’, then

Prob {||A]|, £ C} < Prob {Ch(AA") < C}.

That is, the constant C is the least when ||A]l, = Ch;}(AA’). This shows that
among all the confidence bounds of the type (4.1.4) or (4.2.3) those obtained by
starting from the maximum root tests are the shortest. It may, however, be noted
that the only ¢ satisfying ¢1 < ¢, when ¢ = Ch,*(AA"), is ¢ itself. Thus larger
the symmetric gauge function ¢ we start with, it will provide more simultane-
ous confidence bounds of type (4.1.4) or (4.2.3), but they will be wider.

(3) It may be noted that Hotelling’s trace criterion for the MANOVA prob-
lem is based on the self conjugate symmetric gauge function o(a) = (>, a)i.
Statistical implication of this fact deserves further investigation.
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