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1. Summary and introduction. The point of this paper is that likelihood ratios,
especially in conjunction with suitable symmetry, yield at least partial operating
characteristic (OC) information for procedures other than the sequential prob-
ability ratio test (SPRT). Unpublished work of W. J. Hall ([12], [13]) apparently
contains related observations to this effect. We find it useful to discuss OC com-
putations in terms of mutually “conjugate” parametric values, which are con-
sidered at some length in Section 2; this term appears first in [17]%, and the con-
cept also elsewhere ([11], [4], [6]), all in the context of the SPRT. In Section 3
the ideas are applied to the Wiener process, for the sorts of two-decision “wedge”
procedures discussed in [15], [8F, [1]%, and [12], and, in Section 4, to modifications
of the sorts of three-decision procedures discussed in [2], [20], and [3]. Section 5
contains certain special absorption probabilities for Brownian motion; Section 6
is devoted to the binomial case.

2. Straight-line boundary segments and mutually conjugate parametric values.
Consider a one-parameter family of densities f(z; §) = exp [V(z) + a(8)T(z)
+ b(0)], and define Ty = 27 T(x;), An = [I7=1f(z;; 61)/f(z;; 6), and
¢ (8) = ra(8) + b(8); also call mutually conjugate with respect to r any 6, and
6, such that c,(60) = ¢.(61). Then, for any sample (1, ---, z,) with

(1) Tw=h+ rm,

Am = exp [h(a(6:) — a(6))]. Hence, if E is any event, or any sum of events,
specifying any sorts of conditions on (z;, ---, Z,) that include the condition
Tw = h + rm, then

(2) Pr{E | 6} = exp[h(a(61) — a(6))] Pr{E | 6q}.

The question of the existence of mutually conjugate parametric values has
been considered in [5] and [19]; one may note in this connection that if, in an
obvious notation, some open 6-interval 7 is such that (i) 0 < Vo(T) < + « and
Ey[T] is differentiable and monotone increasing on 7, and (ii) E4[T] = r for some
6 eI, then, at least locally (about ), 6-values will be paired uniquely into
mutually conjugate pairs. This because, borrowing from the theory of
the Cramér-Rao inequality, ¢, () can then be written in the form
E/(T)V5'(T)lr — Es(T)), showing a local maximum for ¢,(6) at 6 = 4. At
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any rate, in the binomial and normal (as well as other) cases, this pairing is not
merely local: all p-values in (0, 1) are paired into pairs (po, p1) in accordance
with

(3) po’ (1 — po)' ™ = p’'(1 — p1)' 7,

and all u-values in (— o, + ) into pairs (uo, p1) in accordance with
(4) Mo + p1 = 2r.

Relation (2) reduces, in these two cases, respectively to

(5) Pr{E|p} = [p(1 — po)/po(1 — p)I" Pr{E | pi}

and

(6) Pr{E |p} = exp [h(m — po)] PriE | pd},

relation (6) written for ¢ = 1. T, is Y7 «; in both cases, and is usually de-
noted by d,, in the first.

As is indicated in [10], and also made use of in [17] in the context of the SPRT,
the above remarks for the normal case apply as well to the Wiener process, and
(6) in fact then holds with strict equality; in other words, consider a line b(t) =
h + rt, for example with A < 0; also let X(-; u) be a separable Wiener process
with unit dispersion parameter and drift parameter p; finally let K(s) be a
condition on the behavior of X(-; ) on the interval (0, s). Then, for sufficiently
regular K (s), if one defines

(7) E(t): for some s in (0, t), K(s) obtains and X (-; u) crosses b(-) at s,
then, for uo and w; satisfying (4), one has
(8) Pr{E(t) | m} = exp [A(p — wo)] Pr{E(t) | m}.

Note that the argument ¢ = -+ « is admitted in (8), since Pr {E(¢) | u} is non~
decreasing and hence converges.

A typical condition K(s) required in our applications is as follows: Consider
three continuous functions bi(-), bo(-) and bs(-) satisfying b:(0) = bs(0) >
0 > b,(0) 2 b(0), ba(-) = bs(+) > be(+) Z b(+) on (0, ), 7> 0, and ba(-) >
b(-) on (0, t). These serve to define
K(s): for some v in (0, min (r, s)), (i) X(+; u) crosses bs(-) at u, (ii) for all

w in (0, u), neither X (u'; u) > bs(u) nor X(u'; p) < be(u'), (iii) for
no s in (u, s), X(s's ) > bu(s),
so that, in accordance with its earlier definition (7), E(t) is the crossing of b; be-
fore b, somewhere on (0, ), followed by the crossing of b before b, somewhere
on (0, t). For this E(t), relation (8) may be verified by passing to the limit of
discrete-time approximations. The above-mentioned regularity of the general
K (s) is intended to insure the validity of this operation.

The argument extends without trouble to the k-dimensional case. Thus, let

X(-;u) = (Xu(+; »), -+, Xi(+; 6)) be a vector process whose components
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Fic. 1. Bivariate normal conjugacy.

are mutually independent separable Wiener processes with unit dispersion
parameters and drift parameters respectively », - -+, 6; X is continuous with
probability 1 by virtue of the continuity of its components. Suppose that the
vectors o and u; are “‘conjugate’” with respect to the plane

in u-space, in the sense that o and u; are at the same distance from, and on the
same perpendicular to, B(as illustrated for & = 2 in Figure 1). Consider as well
the plane

(10) R*:dy + -+ + da, + dot = 1

in (¢, x)-space, and a “sufficiently regular” condition K (s) on the behavior of X
on the interval (0, s). Then, if one defines

(11) E(t): forsome sin (0, t), K(s) obtains, and X (-; u) crosses R* at s,
one has

(12) Pr{E(t) | p} = Mpo, m) Pr{E(?) | w)},

where Ao, w1) = exp [(n — w)/di] = -+ = exp [(61 — 60)/di].
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3. Wedge boundaries for the Wiener process. Consider first a wedge-shaped
region bounded by the line b(¢) = ho + rit (the “Accept’” line) and the line
bi(t) = h + rot (the “Reject” line), with hy < 0 < h; and

(13) 1= To.

Letting K (s) be the condition that X (s'; u) > bi(s’) for no s" in (0, s), the
event E((h — ho)/(r1 — 70)), as defined by (7), specifies absorption somewhere
on b(-), i.e. “Accept”. Hence relation (5), in view of the usual definition of the
OC, yields

(14) OC (u) = exp [2ho(p — 11)] OC (211 — u)
and similarly, since absorption on one or the other boundary is assured,
(15) 1 — OC (p) = exp [2ha(p — 10)] (1 — OC (2r0 — p)).

If the OC is known at some point j, say computed in accordance with [1] or [8],
relations (14) and (15) determine the OC on the two uniformly spaced grids
g+ 2k(ri —7r) and —g 4+ 2k + 1)(ri— 7) + (r1+1r0), k=0, =£1,
+2,---. When hy = —h; = —h, symmetry provides such a point directly,
namely g = (r + 71)/2 = 7, with OC(7) = 1, in which case the OC is deter-
mined on the single uniformly spaced grid 7 + k(r1 — 7)), k = 0, 1, £2,
-+ . Defining 6 = r; — 7o, alternating applications of (14) and (15) then yield

OC(F+8) =e¢®0C(F) = ¢ ™2, 1—0C(F—3)
= ¢ ™1 — 0C (7)) or OC (F — 8) = 1 — /2,
(16) OC (7 + 28) = ¢ " OC (F — &) = ¢"™(1 — ¢ /2),
1—0C (7 —2) = ¢™(1 —0C (7+8)) or OC (7 — 25)
=1—¢1 —e™2) ...

Note that Anderson’s integral OC expression (equation 4.63 of [1]) for the sym-
metric case is thereby evaluated on a grid. Specifically, for hy = —h = —h
and ro = —r; = —r, Anderson gives

(17) 1~ 0C (u) = (2m) 7 [Zoexp [— (2 — u(h/r)})?/2]
exp [2(rh) 21 + exp (2(rh)%)] ™ de,
which, on the grid 7 + k6, i.e. the grid 2kr, reduces, with a = 2(rh)}, to

1 — OC (2kr) = (2m)*[2, {exp [— (2 — ka)?/2] exp (az)/
(1 + exp (az))} de,

of which the left hand side is given by (16), with # = 0 and § = 2r.

For increasing |u|, the marginal utility of knowing one OC (i) in addition to
(14) and (15) declines, and these relations, by themselves, provide increasingly
sharper bounds for the OC. For example, substituting 2r; — u for p in (15),
followed by substituting the resulting expression for OC (2r; — u) in (14),
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yields
(18) OC (p) = exp [2ho(p — 11)]{1 — exp [2M(r1 + & — p)]

1 — OC (u — 20)]},
so that

(19) exp [2ho(p — 11)][1 — exp [2h1(r1 + 6 — w)]] = OC (n)
< exp [2ho(p — m1)],

which is informative on the right for x4 > 7 and on the left for up > r 4 3§,
and bounds OC (u) progressively more sharply as p — -+ «, to the extent that
one may conclude, for u large, that

(20) OC (u) = exp [2ho(p — )]
Similar relations hold for u small, in which case
(21) 1 — OC (n) = exp [2h(p — 70)].

Iterating (18) provides additional information, since substituting u — 26 for
u in the left hand side of (18), followed by substituting the resulting expression
for OC (u — 28) back into (18), yields

OC (u) = exp [2ho(p — r){1 — exp [2hi(r1 + & — )]
+ exp [2hi(r1 + & — p)] exp [2ho(p — 11 — 25)]
1 — exp [2hs(ry + 36 — u)] + exp [2hi(r1 + 36 — w)] OC (u
— 49)]},
so that
exp [2ho(u — 1)){1 — exp [2ha(ri + 6 — p)] + exp [2ha(n
+ 6 — )] exp [2ho(p — r1 — 28)][1 — exp [2hi(r1 + 36 — w)]}}
(22) < OC () = exp [2ho(u — m1)]{1 — exp [2ha(r1 + & — u)]
+ exp [2h(r1 + 6 — )] exp [2ho(u — 11 — 28)]},

where the upper and lower bounds bound OC (x) more sharply than does (19),
respectively for u > 1 + 26 and p > 71 + 38. A further iteration yields a still
sharper upper bound for u > r; 4+ 4 and sharper lower bound for x4 > 71 + 59,
and so on. An analogous argument for the left tail thus leads to an upper bound
function U(u), valid for all u, of changing analytic form over successive intervals
(ro + (2k — 1)8, 1 + 2k3), and a lower bound function L(u) of changing ana-
lytic form over successive intervals (ro + 2k, r1 + (2k + 1)8).

In the symmetric case (ho = —h1), Anderson (Corollary 4.5 of [1]) gives an
approximation, call it 4 (u), intended for moderate values of y, to the OC fune-
tion (17). Since the tails of this approximation are of order wtexp [—enl, it
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will be possible to divide the approximation task between A(u) and (L(u),
U(p)) in accordance with the intersection of A (u) with U(u) on the left, and
with L(u) on the right. Another aspect of the symmetric case is that, within the
family of symmetric wedge procedures, the SPRT’s (i.e., wedge procedures
with 7o = 1) minimize risk for fixed AST, in a certain asymptotic sense. Spe-
cifically, suppose that we consider, for some large fixed g, all symmetric wedge
procedures with

(23) AST (u) = AST (—pu) = 7, 7 small.

Now, if T denotes the random time to decision, E[T | u](p — s0) = E[X(+;
p) — soT |p] = E[X(-;u) — sT |Accept; u]-OC (u) + ha(1 — OC(u)),
where the first equality follows from the fundamental identity for the Wiener
process [10]. Hence lim,se ¢ AST (u) = k1, and, similarly, lim,» p AST (—p)
= —ho, so that (23) amounts, approximately, to restricting consideration to
symmetric wedge procedures with —ho = hy = pr = h, and, in view of (20)
and (21), one has, for such wedges,

lim,e exp [4uh] OC (p)(1 — OC (—u)) = exp (2h3),
or
OC (u)(1 — OC (—p)) = exp [2ur(rs — o) — 4u’7].

But, as specified by (13), wedges restrict us to r1 — 7o = 0; hence, within the
class of symmetric wedges satisfying (23), the risk product on the left is approxi-
mately minimum when 7, = 71.

4. K-decision procedures. A certain 3-decision procedure based on two SPRT’s
is suggested in [2], [20] and [3]; as pointed out in [18],* this is easily extended to a
K-decision procedure based on K — 1 component SPRT’s, whose K OC func-
tions are differences between the OC functions of successive component SPRT’s.
The K — 1 component SPRT’s may be replaced by K — 1 wedges with com-
mon intercepts (ho, 1), as illustrated by Figure 2 for the case K = 4, and the
K OC functions of the resulting K-decision procedure can be computed in
special cases, again by subtraction. For example, when all K — 1 wedges are
symmetric, i.e., when ho = —h; = —h, and the apexes of the K — 1 wedges all
are of the form (T, 2lh), then the K — 1 grids coincide, all being of form 2lh,
1:0, =1, £2, ---, and all K OC functions are therefore computable on this
grid.

Another sort of extension of the original proposals in [2], [20] and [3] is to
complicate the geometry in a manner indicated by Flgure 3 for the case K = 3:
There are now three (rather than two—in general (2" — 1) rather than
(K — 1)) wedges, call them W, Wy and W, with W nested within both Wy
and W, . Decision d; corresponds to the event UU: absorption on the upper
boundary of W, followed by absorption on the upper boundary of Wy, decision

4 We owe this reference to J. A. Lechner.
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Fia. 2. Four-decision wedge system.

di to LL, and d» to UL and LU. Hence, in an obvious notation, the three OC
functions are given by gvv(n), gvr(s) + grv(u), and grr(n).

Computing the probabilities g by the methods of this paper again is possible
only in special cases; for example, as illustrated by Figure 3, when W is sym-
metric and Wy and Wy, are degenerate (i.e., SPRT’s), with slopes restricted to a
certain grid depending on the slopes of the boundaries of W. Specifically, let the
SPRT’s Wy and W have slopes respectively B = (ry + 71)/2 + m(r1 — 70)/2
= 7+ mé/2 and S = 7 + nd/2. Then, denoting the OC of W by OC (u), the
iterative construction (16) yields OC (u), hence ¢grr(u) + gro(u) and gur(p)
4+ gvv(u), on the grid 7 + %5, and in particular at the points y; = 7 + k6 and
po = 7+ (m — k)& mutually conjugate with respect to B = 7 -+ ms/2.

Moreover, recall the particular K(s) defined following (8), and identify sym-
bols as indicated in Figure 3. If this K(s) is substituted in (7), the event E(¢)
of (7), with ¢ = + o, is seen in fact to be the event UL, and (8) yields

gor(m) = exp [Hod(2k — m)lgur(p)
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X(t)
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(0,1
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(0,Hy)

Fi1a. 3. Special three-decision procedure.

and, similarly,
guo(m) = exp [Hi6(2k — m)]guu(m),

these relations being informative, except when k = m/2, i.e. when g = 1 = R.
But, according to the previous paragraph, gur(m) + gvv(m) and gor(p) +
guv(u) are known; hence we have in fact four equations in the four unknowns
guz(m), gur(u), guo(po) and gyu(p), and therefore know guz(p) and guu(n) at
every point of the grid 7 + ké, excepting u = 7 + md/2 when m is even. A
similar argument applies for g, and gv, and the three OC functions are thus
determined for u = 7 + k§, except possibly for k = m/2, n/2.

5. Higher-dimensional Wiener processes. Consider a cylinder in (¢, 21, 2,)-
space with equilateral triangular base and planar boundary portions 4, B and
C as indicated in Figure 4. Let X (¢) = (X1(¢), X2(t)) be a two-dimensional
Wiener process, with drift parameters (», 8), starting at the origin. Of interest
are the probabilities A (v, 6), B(», 8) and C(», 0) that X (¢) first traverses the
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/ (0: d/\/?a t)
\1?

(Nf-A

2/3
A"Jc{le 1

F16. 4. Equilateral triangular boundary in (Xi(t), X2(t))-plane.

cylindrical boundary on a particular one of the three planar boundary portions
A, B, and C. Note to this end that the parameter points (», 6) and (—», —6) of
Figure 5 are conjugate with respect to the line 8 in the sense of (9), with

(24) di=3/d, do=3d, do=0,

and that, with (24), R* of (10) is in fact the plane containing B. Note also, if
K(s) of (11) is taken to be the obvious condition precluding the crossing of
either plane A or plane C in (0, s), that Pr {E(+4 ) | u)} is then B(», 6), so
that (12) yields

(25) B(», §) = exp (2d6/3")B(—», —0).

An analogous argument yields

(26) A(», 0) = exp (—d6/3H)A (v, —96).
Symmetry also requires that

27 24 (v, 0) + B(», 8) = 24(», —0) + B(—v», —0) = 1,

and solving (25), (26) and (27) yields
Ay, 6) = (1 — exp (d/3")/2(1 — exp (3' d9))



LIKELIHOOD RATIO COMPUTATIONS OF OPERATING CHARACTERISTICS 1713

~
~

B

Fiae. 5. Conjugacy and symmetry lines in the (v, 6)-plane.

and
A(v, —0) = (exp (d6/3") — exp (31 d9))/2(1 — exp (3} d0)),

so that, by symmetry, A(v, 6), B(», 8) and C(», 6) are evaluated on the three
dotted lines of Figure 5.

Similar arguments yield 4 (», 6), B(», 8), C(», 6) and D(», 6) on the two
dotted lines of Figure 7 when the base of the cylindrical region is the square
indicated in Figure 6. In particular, C(», ») and C(», —») are then ¢”/2(1 +
¢”) and 1/2(1 + ¢*) respectively; these expressions extending to ¢”/k(1 + )
and 1/k(1 + ) for k dimensions.

6. The binomial case. This section treats binomial sampling for the symmetric
wedge procedures of Section 3: Stop as soon as d, < —h 4+ rym or dn > h +
rgm, “accepting” in the first case and ‘“rejecting” in the second. The event

““Accept” thus specifies sample sequences (1, - - - , Z,) all of which satisfy (1),
so that, in view of (5), defining A(po, p1, 9) = [p1(1 — po)/po(1 — DY,
(28) 0C (p1) = Mpo, p1, —h) OC (po)

for po and p; conjugate with respect to r; in the sense of (3), and a similar argu-
ment yields
(29) 1 — 0C (p1) = X, p1, h)(1 — OC (po))

for po and p; conjugate with respect to 7, .
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Fig. 6. Square boundary in (X1(¢), Xs2(¢))-plane.
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Fia. 7. Conjugacy and symmetry lines in the (», 8)-plane.

If symmetry is to be counted on again for evaluating the OC, one needs the
further condition 7o + 7, = 1, which insures OC (%) = 1. This restriction still
accommodates procedures suitable for testing Ho:p < % vs. Hiip > % with
symmetric losses due to wrong decision; hence, by Wald’s ([21], p. 107) treat-
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ment of the double dichotomy, procedures suitable for testing Ho:po < p1 Vs.

Hi:po > pr.

The grid on which the OC is computed now consists of the point £, a sequence
of points £ > w; > m > --- converging to zero, and the complementary se-
quence § < py < p2 < -,

(30) m + ps = L.

Specifically, = is the conjugate of 3 with respect to ro, p: the conjugate of m
with respect to 1, 3 the conjugate of p; with respect to 7o, and so on. A similar
construction applies to py, m2, ps, -+ - . The OC is then computed by repeated
application of (28) and (29); thus

OC (p1) = M3, 1, —h) OC (3) = 3((1 — p1)/m)",
(31) 1 — OC (m) = Xp1, w2, h)-(1 — OC (p1)),
OC (ps) = A(m2, ps, —h) OC (m),

and the OC on 1, p2, m3, - -+ is gotten in similar fashion, or simply from the
fact that symmetry and (30) imply that OC (w;) + OC (p;) = 1.

It is also possible to bound the OC in essentially the manner suggested by
Wald in the case of the SPRT ([21], p. 164): All sample sequences leading to
“Accept” in fact satisfy T, < —h + rim, so that, for

(32) P1> Do,

relation (28) can be sharpened to

(33) OC (p1) < Mpo, p1, —h) OC (po),

and, similarly, relation (29) to

(34) 1 — OC(p1) > Mpo, p1, h)(1 — OC(p0)).

In addition, every sample sequence (z;, -+ , Z,) leading to “Accept’ satisfies

() Twa = —h + r(m — 1), which, under (32), implies
(35)  Priar, -+, Twa | pdd Z M@0, p1, —h) Pr{zs, -+, Tua | po}

and (b) 2, = 0, which, together with (35), implies that

Pr{zy, -, @m|p} 2 (1 — p1)/(1 — po)Mpo, 1, — h) Pr{zs, -+, &w | po}.

Hence, under (32), (33) can be complemented by

(36) OC(p1) = (1 — p1)/(1 — po)A(po, p1, —h)OC(po)
and, similarly, (34) by
(37) 1 — 0C(p1) = (P1/Po)N(po, p1, h)(1 — OC(m0)),

so that, in view of (33), (34), (36) and (37), the computations (31) can be ex-
panded on as follows:
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(a) By (33) and (36), (1 — p))""/p" = (1 — p)ME, 1, —h) = OC(p) <
N3, o, —h) = (1 = Pl)/Pl)h'

(b1) By (34) and (a), 1 — OC(m) < A(p1, m2, h)(1 — OC(p1)) = N(p1,
m, h)- (1 = (1 — p)""/p")

(b2) By (37) and (a), 1 — OC(m2) = (mo/p1)N(p1, w2, h)(1 — OC(p1)) >
(ma/p)N(pr, 2, B) (L — 3((1 — p)/p1)"),

and so on, successively, to bounds of decreasing relative sharpness for the OC at
all other points ; and p; .
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