The Annals of Mathematical Statistics
1968, Vol. 39, No. 5, 1620-1637

A COMPACT TABLE FOR POWER OF THE ¢-TEST!

By J. L. Hopges, Jr. AND E. L. LEHMANN
University of California, Berkeley

1, Introduction. While most intermediate and advanced statistical textbooks
discuss the power of the ¢-test, few if any provide tables that would enable the
student to acquire a working knowledge of this important topic. The omission
may be due in part to the fact that available tables giving good coverage run to
many pages, and are therefore not suited for inclusion in the brief compendium at
she back of a textbook. We present here a one-page table for i-power which covers
any value of the (one-sided) significance level o in,the range from .005 to .1
(double these values for the two-sided test); any value of the second-type error
probability 8 in the range from .01 to .5; and any number f of degrees of freedom
greater than 2.

Such a table should not only be compact but also convenient to use. In par-
ticular, it should not require high-powered interpolation since this would be
almost prohibitively laborious in a triple-entry table. The problem is therefore to
find a compact presentation in which the tabulated quantity will admit accurate
interpolation over wide intervals by means of low order formulas—ideally, by
means of linear interpolation. A second possible difficulty in the use of such a
table stems from the great variety of statistical problems involving ¢-power. No
matter how a table is designed, it will deal by direct entry with only one type of
problem. Many of the more interesting applications will call for some sort of trial-
and-error. Initial or trial values with which to enter the table are obtained by
guess, or by some approximate method. Unless one is lucky, the solution corre-
sponding to the initial values may have to be adjusted, calling for an iterative
use of the table. A satisfactory presentation of ¢{-power must therefore provide for
trial values with which to enter the table; preferably, these should be accurate
enough so that iteration will not be necessary.

The presentation provided here gives reasonably accurate answers without
iteration and using only linear interpolation. In order to achieve these features
in a one-page table of broad coverage, we found it necessary to reparametrize
the problem. Our presentation uses not the error probabilities themselves but
rather their normal transforms, say

'l —a)=u, (1 -8 =

We must therefore assume that the user has at hand a table of the normal dis-
tribution ®. In terms of » and v, the asymptotic expansion recorded in Section 4
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makes it natural to write
(1) u 4+ v =581 —u’/4f) — A’ (u + v)/f~
Here 6 is the noncentrality parameter of the ¢-statistic.

We may think of the coefficient 4 of the remainder term of order 1/f* as im-
plicitly defined by the relation (1) itself. Our basic method consists in finding 4
in the accompanying table, and then solving (1) for whichever parameter is be-
ing calculated. (As it stands, (1) applies to one-sided ¢-tests against alternatives
to the right. The modifications called for by other problems are discussed in Sec-
tion 3).

The justification for presenting ¢-power by means of (1) and a table of A rests
on three facts. First, A turns out to be a smooth function of u, » and 1/f; as dis-
cussed in Section 5, quadratic interpolation in the table gives four-decimal results
in most cases, and even linear interpolation is accurate enough for most purposes.
Second, the remainder term of which A is the coefficient is usually rather small, so
that A itself need not be highly accurate to give good results. Third, this approach
deals satisfactorily with the problem of trial values. If we drop the remainder
term, the curtailed version of (1),

(1%) u+ v =561 — u'/4f),

may be solved to give trial values that have an error of order 1/f%. These trial
values are in most cases good enough so that no iterative use of the table is called
for.

By virtue of the expansion on which it is based, our method works best if f is
not too small. We do not cover f = 1 and f = 2. To illustrate the degree of pre-
cision available with other small values of f, we have chosen for the Examples
values of f ranging from 3 to 13. As will be seen, in these problems linear inter-
polation without iteration typically gives probabilities correct to about four or
five decimal places. This should be adequate for nearly all purposes.

More accurate results would of course have been obtained with larger values
of f. In fact, for f above 15 or so, a four-decimal value of A will often provide
more precise answers than given by any other table we have seen. For this or
some other reason, the user may occasionally wish to push our method to the
limit of its accuracy. Such refinement of the solution requires a cycle of iteration
in which A is interpolated quadratically with respect to » and 1/f.

2. Examples of one-sided tests. The eight Examples of the next two Sections
illustrate a variety of t-power problems. It is our hope that the flexibility of (1)
will encourage the use of unconventional significance levels and nonstandard
test designs. While the details differ from one problem to the next, the general
approach involves three steps.

(i). The curtailed equation (1¥) is solved to give the trial or entry values of the
paraieters. These values are labelled with subscript 0.

(ii) The table is entered at these values, and linear interpolation with respect



TABLE OF 4

= .01 .05 .10 .20 .30 40 .50
= 2.326348 1.644854 1.281552  .841621 524401  .253347 0
f a=.005, u=2.575829
3 0083 .0412  .0076  —.0361  —.0605  —.0993 .1280
4 1705 .1037  .0653 0165  —.0202  —.0524 .0831
5 2011 1207 .0804 .0389 0014 —.0312 .0620
6 2167  .1420 1018 .0508 0132 —.0193 .0499
8 2310 .1552  .1137 .0627 0254 —.0066 .0367
12 2308 .163¢  .1221 .0718 .0353 .0041 .0252
24 2436 .1681  .1277 .0787 .0433 .0131 .0152
o 2431 .1699 1309 .0837 .0497 .0206 .0066
a= 01, u= 2326348
3 1693 1090  .0737 0282  —.0064  —.0370 .0662
4 2058 .1396  .1020 .0544 .0190  —.0119 .0412
5 2205 1518 .1135 .0656 .0304  —.0001 .0289
6 2274 1576 L1101 .0716 .0367 .0067 .0215
8 2320 1626 .1244 0775 .0434 .0141 .0133
12 2352 .1654 1278 .0820 .0489 .0205 .0060
24 2347 1662 .1207 .0854 .0534 .0260 .0004
. 2316 .1656  .1303 .0877 .0570 .0307 .0061
a= .02, u= 1050064
3 2157 L1555 .1200 .0769 .0439 .0153 .0118
4 2236 .1618  .1271 .0840 .0522 .0248 .0010
5 2253 1632 .1200 .0869 .0561 .0206 .0048
6 2251 1634 .1207 .0883 .0583 .0325 .0083
8 2237 1627 1208 .0897 .0606 .0357 .0124
12 2210 L1614 .1204 .0906 .0625 .0385 .0161
24 2172 1503 .1285 .0011 .0641 L0410 .0195
" 2125 .1568  .1271 L0912 .0653 .0432 .0225
a= .05 u= 1644854
3 2200 1637 .1320 0024 .0633 .0382 .0148
4 2168 .1614  .1310 .0034 .0660 .0426 .0207
5 2136 1593  .1208 .0936 .0674 .0449 .0239
6 2110 .1576 1288 .0936 .0681 .0463 .0259
8 2073 .1553 1274 .0034 .0689 L0479 .0283
12 2031 1527 1258 .0031 .0695 .0493 .0305
24 1086 .1500  .1240 .0926 .0700 .0506 .0325
® 1038 L1470 .1221 .0920 .0703 L0517 .0343
a=.1, u=1281552
3 1999 L1522 .1261 .0041 L0709 .0512 .0329
4 1020 1477 1232 .0034 .0719 .0535 0364
5 1885 1449 L1214 .0929 .0724 .0548 .0383
6 1854 L1430 1202 .0026 .0727 .0557 .0398
8 1815 1406 .1187 .0021 .0730 .0566 .0413
12 1776 1882 L1171 .0016 L0732 .0575 .0428
24 1736 1357 1155 .0910 .0733 .0583 .0442
w 1606 .1332  .1138 .0903 0734 .0589 .0454
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to u, v and 1/f used to find A. This linearly-interpolated value of A4 is denoted by
A,

(iii) With A set equal to 4, , equation (1) is now solved. The resulting parame-

ter value is labelled with subscript 1. In the examples, it is recorded to about one
more decimal place than is reliable.
[The solution would normally stop at this point, but for purposes of illustration
we append to each Example in square brackets the refinement that results from
a cycle of iteration using quadratic interpolation of A with respect to » and 1/f.
These refined answers are labelled with subseript 2].

In this section we give five illustrations involving tests against alternatives to
the right of the hypothesis.

ExamprE 1. Noncentrality parameter. With f = 13 and o = .06, what value of
8 corresponds to 3 = .3? .

(i) Since the values of o, 8 and f are all given in this problem, no preliminary
solution of (1*) is needed in this case.

(ii) From a normal table we note that u = 1.554774 corresponds to « = .06.
Interpolating linearly for 4 with respect to » and 1/f at the given values of u
and f, we find 4, = .0705.

(iii) With this value of 4, (1) becomes a linear equation in 8, the solution of

which is 6, = 2.18274.
[It is difficult to imagine needing a more precise value of §, but for purposes of
illustration let us consider the refinement of quadratic interpolation. One gets
Ay = .07090, leading to 8 = 2.182752. In this problem, since u*(u + v)/f is
about .03, four-decimal accuracy for 4 corresponds to a possible error of .0000015
in é.]

ExampLE 2. Power. Consider the test with « = .07 and f = 6. What is its
power at 6 = 47

(i) From a normal table we read out w = 1.475791 corresponding to o = .07.
To find an entry value for v, we solve (1%) getting v, = 2.1612.

(ii) Linear interpolation in the table gives A, = .1874.

(iii) With this value, (1) is a linear equation for v, with solution »; = 2.12044,
corresponding to power 1 — 8 = .98302.

[If we now enter the table at v, , and interpolate quadratically in u, we find 4, =
.18569. With this value, (1) gives the refined answer v, = 2.120811, corresponding
to 1 — B, = .983031. Further cycles of iteration would not change this answer.]

ExawmpLE 3. Significance level. With f = 10, a t-test is to have power .8 at
8 = 3.5. What must its significance level be?

(i) In this problem, (1*) is a quadratic equation for u, with root uy = 2.2251.

(ii) Linear interpolation in the table gives 4, = .0830.

(iii) With this value, (1) is a cubic equation for u, which is most easily solved
numerically, giving 4; = 2.21617, corresponding to a; = .01334.

[To refine this solution, one may iterate, using three-point interpolation in the
table, getting A, = .0843 and hence u, = 2.216032, corresponding to o =
.013345.]
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Exawmrir 4. Equal error probabilities. Since the user of a test must be concerned
with both error probabilities, it is often more reasonable to specify control of
both simultaneously, rather than to fix « arbitrarily at a conventional value with-
out regard for 8. To illustrate how (1) can give relatively easy solution to such
problems, let us find the test for which « = 8 when 6§ = 6 and f = 12.

(i) Equation (1%) is a quadratic in u = v, with solution uo = vy = 2.5830.

(ii) This entry point lies outside the tabular ranges of u and v, but A will
tolerate the extrapolation. Linear extrapolation gives 4; = .2688.

(iii) With this value, (1) becomes a cubic equation in u = v, with solution
ur = v = 2.565932, corresponding to oy = B, = .005244.

[In refining this answer, it seems safer to use a three-point formula not only for
u but also for v, because of the considerable extrapolation. One gets 4, = 2.6528
and hence u; = v, = 2.559626, or a; = B = .0052392.]

ExampLE 5. Sample Size. The details of sample size determination depend
somewhat on the statistical problem, but the methods can be illustrated on the
problem of a single sample of size 7. In this case f = n — 1 and § = An’and
the problem is to find the smallest integer n for which given error probabilities
a and @ are attained at given A. Suppose for illustration that « = .04, 8 = .25
and A = 1.6.

(i) Proceeding as usual, we solve (1) curtailed of its last term, finding n, =
4.1.

(ii) This initial value suggests that n = 4 will not quite suffice, to verify which
we put n = 4, getting f = 3. Linear interpolation in the table gives A, = .0712.

(iii) With this value, (1) can now be solved for A, = 1.67. As this is larger
than the given A = 1.6, we see that n = 4 is indeed not quite big enough, so that
it will be necessary to take n = 5.

3. Alternatives to the left and two-sided tests. As mentioned above, formula
(1) as it stands applies to ¢-tests against alternatives to the right. Thus, if the
test statistic is 7°(8) (this notation designating a ¢-random variable with non-
centrality parameter 6), (1) applies directly to rejection regions of the form
T(8) > ¢

It is of course easy to modify (1) to deal with tests against alternatives to the
left. Rejection if 7'(6) < —1 is equivalent to rejection if —7'(8) > ¢, and —T'(6)
has the same distribution as 7'( —§). Thus, we need only change the sign of § in
(1) for it to apply to left-sided tests. For example, the left-sided test with f = 13,
a = .06,and B = .3 has 6; = —2.18274 (Example 1), and the left-sided test with
f = 6and o = .07 has power 1 — 5, = .98302 at § = —4 (Example 2).

Now let us consider a two-sided test, which rejects if either 7(8) < —t, or
T(8) > tr. This rejection region is the union of the regions of the left-sided test
T(6) < —ty and of the right-sided test 7'(8) > t. Let us distinguish the
parameters of those two one-sided tests by means of subscripts L and R respec-
tively, using « and 8 for the error probabilities of the two-sided tests. The total
rejection probability or power 1 — 3 is the sum of the powers 1 — 8, and 1 — B,
of the two one-sided tests, so that 8 = B, + Bz — 1. As a special case, with
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6 = Owe have o = a;, + az . Since (1) applies to each one-sided tests, (with the
sign of & changed in the left-sided test) we can write

(2) Uy, + v, = —6(1 — uL2/4f) - ALuL2(uL + UL)/fz:
Up + Vg = 5(1 - uza2/4f) - ARuRZ(uR + Uze)/f2~

These equations apply to all parameter values, but our table covers only cer-
tain ranges of values. What two-sided tests does it cover? Clearly we shall require
that oz, and oz each fall within the range of a-values covered by the Table, or
roughly that 1.28 < uy , ur < 2.58. To discuss the coverage of 3, let us note from
(2) that, to a first approximation, v, + vz, = —6 and uz + vz = 6. Thus, vy is
approximately — (ur + uz + vg). Therefore if vz is within tabular range, i.e.,
0 < vz < 2.33, v, will not be: in fact v, will be less than about —2.56, and usually
much less. Hence the value of 4, is not available from the table. Fortunately,
for such large negative values of v, the value of 8, will be quite near 1, so that 8
is nearly equal to 8z . Furthermore, because the normal density at v, is so small
in such cases, a rather crude value of v, will give 8, to good accuracy. Therefore,
in the first equation of (2), one can get along reasonably well without the re-
mainder term. Similarly, when v, is within tabular range, we shall have 8 nearly
equal to Bz and can omit the Az-term in (2). To summarize, the table will deal
adequately with those two-sided tests for which ar , @z and 8 fall within tabular
range.

It is traditional to consider among two-sided tests only those that are sym-
metrical, in the sense that ¢, = ¢z and @, = az . We shall begin with symmetrical
examples, but then in Example 8 show that our method permits us to deal with
the more interesting asymmetrical tests as well.

ExampLE 6. Power. Find the power at § = 4 of the (symmetrical) two-sided
test with « = .14 and f = 6.

By symmetry, a;, = ar = .07. The calculation of By is identical with the cal-
culation of 8 in Example 2, leading to Bz = .01698. From (2) it appears that
vz is about — 5.1, and inspection of a normal table shows 8, equals 1 to six decimal
places. Thus the power of this test agrees with that of the one-sided test of Ex-
ample 2, or 1 — (8, = .98302 at 6 = 4 (and of course also at & = —4). [Refine-
ment of the solution proceeds as in Example 2.]

ExampLE 7. Noncenirality parameter. Find § for the (symmetrical) two-sided
test with @ = .2, 8 = .5and f = 9. (These extreme values of « and 3 are chosen
to illustrate the situation that is most difficult for our method.)

By symmetry a; = az = .1, and the power is the same at § and at —&. With-
out loss of generality we shall seek the positive solution, for which B, is near 1
and hence 8 is near .5, so that vy is near 0.

(i) If we omit the remainder terms and add the equations (2), we get vy
4 vz = —2.563104. Solving this in conjunction with 8, 4+ Bz = 1.5 gives the
entry value vz = —.0135.

(i) Linear extrapolation in » and linear (harmonic) interpolation in f gives
AR; = .0410.
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(iii) With this value, and pretending that A, = 0 as explained above, we re-

solve (2) to find 8, = 1.32980. Of course, — é; is also a solution.
[To refine the solution we iterate, using quadratic interpolation in 1/f, to find
Age = .0410, unchanged. We may also refine the value A, = 0, using the series
(5) below to get the approximation 4, = —.0908 — .0183 = —.1091. With these
refinements, (2) gives 6§ = 1.32991.]

ExampLE 8. Asymmetrical test. It is often said that a one-sided test should be
used if only the alternatives on one side of the hypothesis are possible or of in-
terest, while the (symmetric) two-sided test should be used if alternatives on both
sides must be considered. The latter test pays equal attention to each side, but in
practice one may well be interested in both sides although not equally so. In such
cases the reasonable choice is an asymmetrical two-sided test.

To illustrate the design of such a test, let us suppose that f = 11 and « = .05,
and that we desire 8 = .15 and 8 = .05 at equally-distant alternatives to the left
and right respectively, say at —& and at 6. We seek left-sided and right-sided
tests such that ey, + @z = .05. Since the region on the left will make a negligible
contribution to the power at §, we may replace the condition 8 = .05 at § by the
condition 8 = .05 at 8. Similarly, the condition 8 = .15 at —§ may be replaced
by B = .15 at 6. We therefore must solve simultaneously the three equations

arp = Op = .05,
ur + 1.036433 = 6(1 — u’/44) — wur*(uy, + 1.036433)A./121,
ur + 1.644854 = 6(1 — uz'/44) — up’(up + 1.644854)A/121.

(i) Proceeding as usual, we first ignore the remainder terms. Using a normal
table to translate the first condition into terms of %, and uyz , it is easy to solve
numerically for uz, = 2.23710, corresponding to ey = .01264, and uge = 1.78218,
corresponding to azy = .03736.

(ii) Entering the table at these values, and interpolating linearly, one finds
AL() = .1031 and AR() = 1569

(iii) With these values we re-solve the equations, now finding az; = .012648,

ete.
[The refinement of quadratic interpolation gives a, = .0126492].

4. An asymptotic expansion for A. Asymptotic expansion of 8 in inverse
powers of f has been a key method for dealing with ¢-power since the pioneering
paper of Johnson and Welch in 1940. There is a tabulation in [1] of the coeffi-
cients of the series for 8 expressed in terms of the eritical value of the ¢-test and
of the expectation of chi. It is a straightforward matter to rework that series to
obtain the expression

(3) w4 v— d(1 — u?/4f) = o[(—6u’ + 5u')/96f° + (4 + 6u* — u°)/128f°]
+ [—ut/24f® + (—2u® + «°) /48] + O(1/f*).
., From this expression it may readily be seen that

(4) o =u+ v+ u(u+ 0)/4f + O1/f7).
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When this value for § is substituted into the right-hand side of (3), one sees that
the two terms have the common factor —u’(u + v)/f*, which makes it natural
to define A as we have done in (1). Furthermore, the substitution gives the two
initial terms of an asymptotic expansion for 4 as so defined:

(5) A = (4w — u’ + 6)/96 + (8uv — u' + 2u* — 6)/192f + O(1/f*)

We have used this expression in various ways. The first term was used to com-
pute the tabular values at f = . Using both terms, one can get an approxima-
tion for larger f for values of A outside the tabular range, as was done in Example
7. The expression was used to help with the interpolation of 4 for intermediate
values of f, as explained in Section 6. Finally, it serves to guide our discussion of
interpolation in the next Section.

6. Interpolation. One of the most attractive features of A4 is its near-linearity
as a function of v. Since both the constant term and the 1/f term of the ex-
pansion (5) are linear in v, it appears that the error of linear interpolation of A
with respect to » will be of order 1/f°. A numerical investigation of the table
shows that in fact the error does not exceed about .02/f°. Unless one has both a
very small f and a need for high precision, one may safely use linear interpolation
with respect to ». (Quadratic interpolation gives four-decimal accuracy in all
cases, aside from the inevitable rounding errors.)

The interpolation of A with respect to u is not quite so attractive. We see from
(5) that the constant term is a quadratic function of u, suggesting the use of
three-point interpolation even for very large f. Furthermore since the 1/f term
is a quartic function of 4, one might expect to need five points unless f is fairly
large. Fortunately, the nonquadratic component of the 1/f term, u'/192f, is so
small that the error of its quadratic interpolation is negligible, and as a practical
matter the maximum error of three-point interpolation of 4 with respect to u
is about .01/f% Therefore, three-point interpolation may be used except when f
is very small and maximum precision is sought.

Even linear interpolation of A with respect to u is reasonably good, thanks to
the smallness of the nonlinear terms of (5). Roughly speaking, for f above about
5, the error of linear interpolation is bounded by .0004 -+ .005/f. Linear inter-
polation is good to two decimal places even at f = 3.

The fact that A has an expansion in powers of 1/f suggests that A4 be inter-
polated harmonically with respect to f. Accordingly, we have chosen for the ta-
ble the f values 6, 8, 12, 24, «, giving unit spacing on the scale 24/f. It turns out
that three-point (harmonic) interpolation may be relied on in all cases, and even
linear (harmonic) interpolation will lead to an error less than .0007.

In judging the significance of these errors, one must remember that 4 is the
coefficient of a remainder term that is usually itself small. An error of order 1/f*
in A will appear as an error of order 1/f*in u, v or 8. An error in the third decimal
place of A is likely to be reflected in a or 8 by an error in the fourth or fifth
deeimal place. As the eight Examples show, even linear interpolation in the Ta-
ble of A gives good results, even for small values of f.
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The smoothness of 4 is made more attractive by comparison with other quan-
tities that might be used for a one-page table. For example, if one carries (4) one
step farther, one finds that it contains the term 5u°/96f%. This quantity is not
negligible if one seeks reasonably accurate values of §, and its interpolation with
respect to u requires a six-point formula if the u-interval is wide.

6. Calculation of the Table. The Table of A was compiled from a variety of
sources. At o = .05, for example, the values of 4 for very small f were derived
from D. B. Owen’s excellent five-decimal table of § [5], and we should like to ex-
press our thanks to Professor Owen for helpful correspondence. As f increases,
the error in A derived from this table increases like f%, and this source is not ade-
quate above f = 6, where the possible error in A approaches .0001. Starting at
the other end, the values at f = « were calculated from (5). The values at
f = 24 and f = 12 were readily obtained to the necessary accuracy by the series
method explained in [1]. Finally, the values at f = 8 were interpolated, use being
made of both terms of (5) as well as the values previously computed. The pro-
cedure was similar at the other values of &, except that at & = .1 the table in
Section 6 of [4] was used for very small f, and except that at & = .005and « = .01,
the interpolation method was used for f = 12 instead of f = 8. As indicated, the
fifth decimal place for intermediate f is not reliable, and no doubt some of these
entries may be misrounded. However, when 70 of the least reliable values were
checked by high-order interpolation based on Table B-9 of [3], we were led to
change the rounding of only one entry.
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