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ON A FLUCTUATION THEOREM FOR PROCESSES WITH INDEPENDENT
INCREMENTS II'

By C. C. HevpE
Awustralian National University and University of North Carolina

1. Introduction and summary. Let £(¢), ¢ = 0, £(0) = 0 be a separable sto-
chastic process with stationary independent increments whose sample func-
tions are continuous on the right. Write £(¢f) = supo<s<:£(s) and

T, =min[u:0 £ u £ ¢; &(u) = E¢)].

The object of this paper is to establish the following, theorem:
TarEOREM. The limiting distribution

(1) limse Pr (7T, < 2) = F(x)
exusts if and only if
(2) lime ¢ [§ Pr (£(u) > 0) du = «, 0<ac=l,
and then F (x) s related to a by

F(z) = Fo(z) = (sinma)r " [55797% (1 — v) ™ dy,
(3) 0<a<l,0=z=1;
0;

1%

Fo(z) =0 4 <0, 1 & =
Fiiz) =0 ¢ 2<1, 1 4 2=1.

This theorem is the exact counterpart to a theorem of Spitzer ([4], Theorem 7.1)
for sums of independent and identically distributed random variables. It con-
tains as a special case the well-known arc-sine limit theorem for the Brownian
motion process. An earlier version of the theorem was obtained by Heyde [3]
under the additional condition f% 1 Pr (8(t) > 0)dt < o, the violation of
which leads to Pr (£(t) = 0) = 0, ¢t > 0. It should be remarked that 7'; has the
same distribution as N; = p{u:0 < u = ¢; £(u) > 0}, p denoting ordinary
Lebesgue measure. This follows from the well-known corresponding result of
Sparre-Andersen for sums of independent and identically distributed random
variables by a straightforward limiting argument.

2. Proof of the Theorem. We introduce a sequence X, ., ¢ = 1, 2, 3,---
of independent and identically distributed random variables defined for integer
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valued m = 1 by
X = £27) — £27"( — 1)),
and write Sp,0 = 0, Spn = D te1 Xm,i = £(27™n), n = 1. Write also,
Twn=min[k:0 £k = n, Snir = MaXo<j<n Sm,jl-
Then, from well-known results of Sparre-Andersen,
Pr (Twn=k) = Pr(Twr = k) Pr (Tnpst =0), 0=k=mn,
and for0 £ ¢ < 1,
> oo Pr (maxo<;<k Sm,j = 0)t*
= 2 i Pr (T = 0)t" = exp { 2T, Pr (Sws < 0)},
Do Pr (T = k)t
= exp {21 %%k Pr (Smi > 0)},

(see for example Spitzer [4]), and we readily find upon taking generating func-
tions that for0 = v < 1, u > 0,

(4) oo E(e Ty

=1 —0v)"exp{—2ma1t™n (1 — &™) Pr (Sp. > 0)}.
Now, put v = e? ™ u = 27"sin (4), rewrite it in the form
(1 — 6—2'7"2) Z:=0 E(e_z—m””"”) P

=exp{—Dman e’ (1 — e ™) Pr (5(27™n) > 0)},
and let m — . It follows from a straightforward argument in the spirit of

Baxter and Donsker [1] (see Lemma 2 and the first part of the proof of Theorem
1) that

(5) 2[teE(e"™) dt = exp {— [T ¢ Pr (§(t) > 0)e™'(1 — &) di}.

This result provides the basis for the proof of the theorem.

We now establish that the condition (2) is sufficient for the existence of the
limit distribution (1) and that the form (3) follows. In order to do this, we show
firstly that under (2) and when 0 < X\ < 1,

(6) lim,.o [0 Pr (£(8) > 0)e (1 — e ™) dt = alog (1 + )\).
Write
A(t) =t [4Pr (&(u) > 0) du.
Then, integration by parts gives
[ot7 Pr(£(t) > 0)e™ (1 — e ™) dt = [7 A(t)C(z, t) dt,
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where
Clz,t) = t7¢ " [(1 4+ t2) — (1 + t(1 + N)e™™.
We note that C(z, t) = 0 and lim,.,C(z, t) = 0. Thus, forz > 0,
JeAWDC(, t)dt = [TIA() — alC(z, t) dt + o 5 C(z, t) dt
= [TIA@) — alC(z, t) dt + alog (1 + )

upon performing a simple integration. Now, in view of (2) we can, given ¢ > 0
arbitrarily small, choose 7 so large that [A(t) — a| < e for ¢ = T and then

IS [A(t) — «C(, t) di]

< [T14() — a|C(z, t) dt + €log (142 —elog (1 +2)
as z — 0 since lim,.o C(2, t) = 0. The result (6) follows immediately. Then,
putting s = Mz in (5) where 0 < X\ < 1 and making use of (6),
(7) lim..oz 5 e “E(e ™) dt = (1 + \)™"
Now,

2 [ee?E(e™ ) dt =2 [T e Doimo (— ) BTH (k) dt = D im0 NeAL(2),

where
Ai(z) = —(=2)"" (k)7 [T e B(T/) dt,
so that from (7),
lim,.o Do NAw(z) = (14 N7 = 220N (3,

and consequently,

(8) lim,.o 4x(2) = (%), k=0
But, ET/* is monotone in ¢ so, using Theorem 4, 423 of Feller [2], it follows from
(8) that ast — o, E(t'T,)* — (—1)*(%), k = 0. Furthermore it is easy to
verify that (—1)*(7%) = f?f «* dF ,(z), where F,(z) is given by (3) and, since

the moment problem in this case has a unique solution, the proof of the sufficiency
part of the theorem is complete.

Finally, suppose that T has a proper limiting distribution. Then, { "ET, — a
for some 0 < a = 1 ast— . Also, upon differentiating with respect to s in (5)
and putting s = 0,

2 [ce™B(T,) dt = [v e Pr(£(t) > 0) dt.
Consequently, noting that ET'; is monotone in ¢, we have from Theorem 4, 423
of [2] that
2 [Ce ™ Pr(&(t) > 0)dt — o
as z — 0, and the condition (2) follows from Theorem 2, 421 of [2]. This completes
the proof of the theorem.
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