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ONE-SIDED TESTING PROBLEMS IN MULTIVARIATE ANALYSIS'

By MiceasL D. PERLMAN’
University of Cambridge

1. Introduction. Suppose one obtains N independent observations from =z
p-dimensional normal distribution with mean u and covariance matrix =. Under
either of the assumptions (a) = is known or (b) = = ¢°Z, with ¢ unknown and
2o known, the problem of testing H:u = 0 against the restricted alternative
K, =2 0,7=1, -, p, (with at least one inequality strict) has been studied
extensively in the past ten years. Bartholomew, Chacko, Kudd, Niiesch, and
Shorack have derived the likelihood ratio tests (LRT) and their null distribu-
tions and have studied their power functions. Computations of Bartholomew
(1961a) and Niiesch (1964) show that the LRT’s have substantially higher
power than the usual x* or F tests used for testing » = 0 against the unrestricted
alternative u 7 0. Abelson and Tukey have proposed simple tests based on the
best linear contrast, and their idea has been extended by Schaafsma and Smid.
Bartholomew’s computations show that these tests are also substantially better
than the usual tests, but neither the LRT nor the Abelson-Tukey test is uni-
formly more powerful than the other.

In this paper we study the above and related testing problems with restricted
hypotheses or alternatives, under the assumption that = vs completely unknown.
Two procedures are considered: the LRT’s and a family of tests based on the
notions of Schaafsma and Smid. In Section 5 the LRT is derived for the general
problem of testing H:u e ®, vs. K:u & ®, where ®; and ®; are positively homo-
geneous sets with ®; C ®; , and it is shown that the power of the LRT approaches
one as the distance from the hypothesis H becomes large. In Section 7 the exact
null distribution of the LRT is obtained for the special case where ®; = {0} and
® = {pp: = 0,7 =1, --- , p}. Since this distribution depends on the unknown
matrix =, this result in itself cannot be used to obtain the level « rejection region
of the LRT. In Section 6, however, sharp upper and lower bounds (as = varies)
on the null distribution of the LRT statistic are derived for the more general case
of a one-sided alternative, where ®; = {0} and ®; = @, a cone (see Section 2 for
definitions). These bounds are independent of the particular cone @, and the
upper bound provides a simple formula for the level & cutoff point of the LRT.
Similar results are given in Section 8 for the problem of testing a one-sided
hypothesis against unrestricted alternatives, where ® = €, a cone, and @, is the
entire space. Cases where only a subset of the components of u are tested are also
discussed (Sections 6, 7, 8).
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In Section 9 the family of somewhere most powerful similar tests, defined by
Schaafsma and Smid (1966), is investigated for the case ®; = {0} and ®; = G, a
cone. It is shown that for this problem all such tests have low power at some
alternative points which are arbitrarily far from the null hypothesis u = 0,
whereas the power of the LRT approaches one uniformly as the distance from
the null hypothesis becomes large. This contrasts with the situation under as-
sumption (a) (respectively (b)), where there exists a most stringent somewhere
most powerful (respectively similar) test whose power compares favorably with
that of the corresponding LRT.

Sections 2, 3, and 4 contain definitions and preliminary lemmas. Attention is
called to Section 3, where some basic facts in multivariate normal distribution
theory are presented. In particular, Lemma 3.2 is a key result for the distribu-
tion theory in Sections 6, 7, and 8 and, it is felt, is an important result in its own
right.

2. Definitions and notation. &, denotes p-dimensional Euclidean space. For a
point z in &, we write x = 0 (z > 0) to indicate that each component of z is
non-negative (positive). The closed positive orthant is denoted by 0, ie., 0 =
{z:x = 0}. The symbol 3¢ is used to denote any (p — 1)-dimensional subspace in
&, . Associated with any such subspace are two closed halfspaces whose intersec-
tion is 3¢; we denote either of these halfspaces by 3¢*. The symbol £ denotes any
semi-infinite halfline, or ray, emanating from the origin. For any set @ and any
linear transformation 4:8, — &, , A(@) is the image of @ under 4.

A set ® in &, is positively homogeneous if x ¢ ® implies cx ¢ @ for all positive real
numbers c. All positively homogeneous sets to be considered are assumed to be
closed setsaswell. A set @ containing at least one non-zero point is one-sided (with
respect to the origin) if there exists a non-zero point z such that a'z > 0 for all
non-zero a ¢ @. A closed, positively homogeneous, one-sided set € is called a
cone. Note that the properties defined here are preserved under linear trans-
formations.

Examples of cones include: any halfline £; the positive orthant 0; any right
circular cone @ ,0 < A = 1, defined by €\ = {x:x'z/ (x'xz'z)* = N}, wherezisan
arbitrary nonzero point.

2.1°. For any cone € there exist a halfline £ and a half-space 3¢t such that
£ c e cjet.5et may be chosen such that €nge™ = {0}.

2.2°. For any cone C there exists a right circular cone @\, 0 < X\ < 1, such
that @ C G, .

2.3°. If the cone € contains an open set, there exists a right circular cone €, ,
0 < » < 1, such that ¢, C €.

2.4°. For any right circular cone @, with 0 < X\ < 1, there exist a halfline £, a
halfspace 3¢, and sequences {A,}, {B.} of non-singular linear transformations
such that

A,,(e)\) :)«An+1((‘3)\), n:=l An(e)\> = &,
B.(@) C B,u(@), Ui B.(@) interior (3¢1).
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If V is a square matrix, write V > 0 to denote that V is positive definite
symmetric. If V' > 0, the unique positive definite symmetric square root of V' is
denoted by V*.

Partitioning V as V = (V) (4,j = 1, - -+, k) with each V; a square matrix,
we set V”j =Vu— V”V]—JIVM .

Let Z:p X 1 be partitioned as Z' = (Zi', Zy') with Z1:g X 1 andlet V:p X p
be partitioned as V = (Vi;) (4,7 = 1, 2) with Vg X ¢. Assume V > 0. Then
(2.1) ZV7Z = (Zy — VuVaZe) Vita(Zs — VaViZs) + 22 Vals

= (Zy — VaViiZ1) Vasa(Za — VuViiZy) + Z/'ViZ, .

The multivariate normal distribution with mean u and positive definite co-
variance matrix = is denoted by 9(u, =). The Wishart distribution with n
degrees of freedom and expectation nZ is denoted by %W (n, 2). The dimension-
ality of these distributions will be clear from the context. A chi-square variate
with n degrees of freedom is denoted by x»_. In this paper, whenever the quotient
of two chi-square variates appears, e.g. Xn'/Xn', the numerator and denominator
are independent. Throughout this paper, ¢ and d denote arbitrary positive
constants.

3. Some results in multivariate distribution theory. We now present several
basic and useful results in multivariate normal distribution theory. Several of
these are well-known but others (in particular 3.6° and 3.7°) have not appeared
in a published work, to the author’s knowledge. These facts and their proofs
may be found in a set of unpublished notes of Stein (1966).

Let X:p X 1and S:p X p be independent random variables with X ~ 9U(u, =)
and S ~ W(n, T). Partition X as X' = (Xi, Xy) with Xy:k X 1 (1 =k < p)and
partition u, S, and T accordingly. Let v = (X1 — SuSnXs)/(1 + Xy S X,)?
and § = v'Sﬁl.w/fy'Eﬁl.w. Then

3.1°. Conditional on X, , Xi ~ Nu + ZuZa(Xs — m), Zul.

3.2°. Sy.. is independent of (Siz, Sz2) and Su.2 ~ W(n — p + k, Z1.2)-

3.30. Conditional on Szz , SmS;z% ~ 9‘6(2122;21832 , Zi1-2 ® I), where ® de-
notes the Kronecker product. That is, conditional on Sy the columns of S8
are independent and the jth column is distributed as 9(¢;, Z1u.2), where £; is the
jth column of 125 Sk .

3.4°. X and X'S7'X/X'=7'X are independent, and X'S7'X/X'z7'X ~
1/ Xft—-p+1 .

3.5°% X'S7'X ~ xgz(,/z”ly) /Xa—p41, where the numerator and denominator
are independent chi-square variates, the numerator non-central.

3.6°. Conditional on (S, Se2, X1, X2), 8 ~ 1/ x%_p41 - Therefore & is inde-
pendent of (S, Sz , X1, X») and hence 8 is independent of v.

3.7°. Conditional on (S, X;), X: and S12822 X, are independent, X; ~
31[[.&1 + 2122;21(}(2 - pz), 211.2] (by 3.10), and S12;S;21X2 ~ 9([2122;21)(2 ]
(X4 823 X5) Zu12) (by 3.3°).

Therefore, conditional on (Se: , X2),

v~ (u — 2122;21#2)/(1 + X, 221X2)§, Ziea].
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In particular, if 4 = 0 then v is independent of (Ss:, X3),
v~ (0, Zu0), and ¥'Zhay ~ xi”

The following lemma concerning orthogonally invariant multivariate distri-
butions is similar to results appearing in Bartholomew (1961a) and Kudo (1963).

Lemma 3.1. Let Z be a random vector in &, (p = 2) which possesses a density
with respect to Lebesgue measure. Suppose that the distribution of Z is orthogonally
inwariant, i.e., for any orthogonal transformation T, Z and TZ are identically
dustributed. Then

(i) Z'Z is independent of Z/(Z'Z) ¥ the unit vector lying along Z.
(i) Z/(Z'Z)} is distributed uniformly over 8 = {x:x'z = 1}, the unit sphere

n &y .

(iii) For any (measurable) positively homogeneous set ®, P{Ze® =
m(® N 8)/m(8), where m is Lebesgue measure over 8.

(iv) For any non-singular linear transformation A:8, — &, let Y,(4) =
m(A(0) N 8)/m(8), where O is the positive orthant. Then P{AZ = 0} = y,(47).

REMARKS. As a consequence of (i), the events {Z'Z = d} and {Z ¢ @} are
independent.

For the degenerate cases p = 1 and p = 0, we set ¢,(4) = % and 1, respec-
tively.

The conditions of the lemma are satisfied in the following two cases: Z =
=X and Z = ='87'X, where X ~ 91(0, 2), 8§ ~ W(n, =), and S and X are
independent. This implies that the events {X=™'X = d} and {X ¢ ®} are inde-
pendent, and also that the events {X'ST'28™'X = d} and {S™'X ¢ ®} are inde-
pendent. These facts are in a sense analogous to the following results, which are
essential for the distribution theory of Sections 6, 7, 8, and which are important
in their own right.

LemMma 3.2. Let X ~ 91(0, 2) and S ~ W(n, Z) be independent, let ® be a
(measurable) positively homogeneous set, and let ¢ be a positive number. Then

(i) the events {X'S™'X = ¢} and {X ¢ ®} are independent;

(ii) the events {X'S™'X = ¢} and {S™'X ¢ ®} are independent.

Proor. We may take = = I without loss of generality.

(i) By 3.4°, X and v = X'S7'X/X’X are independent. Therefore

PX'S7'X 2¢,Xe® = PpX'X = ¢, X e @]
= E{P[X'X = ¢/v, X e @ | 0]}
=E{P[X'X = ¢/v|v]P[X ¢ @]}
= P[X'S7'X = c]P[X ¢ @],
where the third equality follows from the remarks after Lemma 3.1.
(ii) Let X* = X/(X'X)? be the unit vector along X. By Lemma 3.1, X* and

X'X are independent. Let T' = T'(X™) be a random orthogonal matrix (p X p)
defined in such a way that TX* = ¢, = (1, 0, ---, 0)’ and let W = ST,
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The conditional distribution of W given X is again W(n, I) so W and X are
independent. Since X = X*(X'X)? = I'e,(X'X)? it follows that
(3.1) X'S7X = &\ Wl (X'X) = w(X'X)
where W™ = (w*). Also,

87X = I'WTTX = (W) (X'X)} = T'w®(X'X)},
where w® is the first column of W™ Thus, since @ is positively homogeneous,
(3.2) (87X e @ = {T"w" ¢ @}.
Partition W and W™ as follows:

wy Wi wu : W12
W = , Wt = ,
W21 W22 W21 Wl2

1 .
where wy; and w'' are scalars. Then from well-known relations between W and

W—l
wll W1—11~2 1
w® = - = Wiia.
w — W WaWiis —~WauaWa

Note that w' = Wi, is a positive scalar (with probability one) and is inde-
pendent of W33 W (see 3.2°). Then (3.1) and (3.2) become

(X'S7X = ¢} = {Wila(X'X) 2 ¢},

1
{S_IXNP}={I‘/< )g@},
— W Wa

1
Therefore, setting p = ( >,
—WaaWa
PIX'S?'X 2 ¢, S'X e @] = P(Wits(X'X) 2 ¢, T'pe ®}

= B{(P[Wiis 2 ¢/X'X, peT(®) | X}}
= E{P[Wiis 2 ¢/X'X | X]P[p e T(®) | X}}

= B(P[Wiis 2 ¢o/X'X | X}E{Plp e T(®) | X}}
= PX'S7'X = JP[S"'X ¢ @|.

Here, the third equality follows from the independence of W and X and the in-
dependence of Wi1.; and p, while the fourth equality follows from the independ-
enceof X’X and ' = T(X™). ]
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4. Orthogonal projection onto a positively homogeneous set. If Z:p X pisa
positive definite symmetric matrix, the inner product (-, -)z on &, is defined
by (2, ¥)z = 2'='y. The associated norm ||-|s is defined by |z]|s* = (z, z)s .
The distance || — @||z from the point z to the set @ is given by infi..q)[| — 2|z -

DeriniTioN. Let @ be a closed positively homogeneous set in &, . For any
point z and any = > 0, the orthogonal projection ws(x; ®) of x onto ® with re-
spect to the inner product (-, -)s is any point in ® (not necessarily uniquely de-
termined) which minimizes ||z — 2|z among all z¢ ®. Any such minimizing
point is called a version of rs(z; ®).

If x ¢ ® then 7z(z; @) is uniquely determined and is equal to x. If @ is convex
then 7z(x; @) is uniquely determined for any =z. Note that ||z — @|z =
||x — w3(x; (P)[[z

Lemma 4.1. For any closed positively homogeneous set ® and any point x,

(i) (wrz(z; @), 2 — m2(x; @)z = 0,

(i) flalls" = [|rs(z; ®)|Is" + | — ms(z; @5

Proor. Since wz(z; ®) is not uniquely determined, we show that (i) and (ii)
hold for all versions of wz(x; ®). Let z be any such version. If z = 0 the results
are trivial, so assume z 5 0. Let £* = {yy = a2z, —© < a < =}, a one-dimen-
sional subspace. Since z 5 0, it is readily shown that z = w3(z; £*). Therefore,
(i) and (ii) follow from well-known properties of orthogonal projection onto a
subspace. []

Remark. By (ii), ||7v=(z; ®)|z is a well-determined function even though
wz(x; @) is not.

LemMma 4.2. If A8, — &, is a non-singular linear transformation

(i) Awrz(z; @) = wazar(Az; A(®)),
i) [lrs(z; @)|ls = |masa(Az; A(®)) [lazer,

(iii) ||z — m=2(z; @)||z = [|[Az — 7aza (Az; A(®)) ] azar -

Lemma 43. () If @1 D @ D - D ® D ---, then ||z — m=(z; @)z T
|l — 7z(x; ®)|z, where ® = =1 Cn

i) If 1T @C -+ C®C - then ||z — ws(z; @u)|z | |l — m2(z; @)=
where ® = closure of Uy @, .

b. The likelihood ratio test. Let Y1, Y2, :--, Yy be independent random
vectors of dimension p X 1, each distributed as 91(9, £) with unknown mean 5
and unknown covariance matrix 2. Assume N = p + 1 so that S =

Y (Y:— Y) (Y: — Y) is positive definite with probability one. Let ®; and
®; be closed positively homogeneous sets in &, such that ®; C @, and consider
the problem of testing H:n e ®; vs. Kine ®;. Since X = N'Y and S are suffi-
cient statistics for n and 2, and since 9 ¢ ®; if and only if u = N %77 e ®;, we treat
the problem in the following equivalent form: observe X ~ 9t(u, Z£) and S ~
W(N — 1, 2) with X and S independent, and

(5.1) test H:u ¢ ®; against K:u ¢ @

with = completely unknown. This general problem includes all cases to be treated
later. When @; and @, are subspaces, this problem reduces to a standard prob-
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lem in multivariate analysis which has been thoroughly investigated by Giri
(see Giri (1968) and the references listed there).

In Theorem 5.1 the likelihood ratio test (LRT) for (5.1) is derived. In Theo-
rem 5.3 it is shown that the power of the LRT approaches one uniformly as the
distance from the true mean u to the set ®; becomes large.

Throughout the remainder of this paper, P,,s denotes the underlying proba-
bility measure when the true parameter values are p, Z.

TarEOREM 5.1. The LRT for (5.1) s the following: reject H if

(52) U(01, ) = [|X — ms(X; @)||s" — [IX — 7s(X; @) 5]
X = ws(X; e[S = e
Proor. The likelihood function is proportional to -

L=[2""exp{~}tr 278 — }(X — w)'z27(X — w)}.
For fixed u it is well-known (e.g. Anderson (1958), Lemma 3.2.2) that
max(s>o0} L = lS + (X—‘ IJ«) (X - l~'«),|—N/2

= |87 L+ (X — w)'STHX — ™"

=[S+ | X = wlls T,
so for 7 = 1, 2 we obtain

maxee;,z>0 L = S|V + | X — ms(X; @)l sT™

Hence the LRT statistic is a strictly increasing function of U(®y, ®). ]
Remarks. By Lemma 4.1 (ii) we can rewrite the LRT statistic as

(5.3) U(®y, ®)
= [lrs(X; @) |ls" — [|ms(X; @) ST + | X — 7s(X; @) |87

If ®1, ®, ®, ® are positively homogeneous sets such that ¢ Cc e C
®, C @, then

(5.4) U(®y, ®) < U, ®).

We have shown that ms(X; ®) is the (not necessarily uniquely determined)
MLE of x under the restriction x4 ¢ ® with = unknown.

Lemma 5.2. Let Vip X 1 be a random vector, T:p X p a random positive defi-
nite symmetric matriz, and ¢ an arbitrary positive number. Set ¥ = Y (v) =
V + v, where v:p X 1 is a vector parameler. For each ¢ > 0 there exists M (e) > 0
such that for any set @ in &, ,

(5.5) lv — @llr = M(e) implies P[|Y — Gllr = c] 2 1 — e
Proor. Choose a = a(e) > 0 such that
(5.6) PllY — vz Sal 21— ¢/2.

Choose b = b(e) > 0 such that
P[T™ — bl is positive definite] = 1 — ¢/2;
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that is, such that PDmin(T™") > b] = 1 — ¢/2, where Amia(7 ") is the smallest
characteristic root of 7. It then follows that

Phlz —ylli < |lx —y|lrforallz, yin g,] = 1 — ¢/2,
0
Phlv—@l: <|» — @|rforallves,, @ C §,] =1 — ¢2.

Therefore ||» — @[l = M implies P[bM = ||v — @Q|z] = 1 — ¢/2. Hence by
(5.6), |lv — @l = M implies P[||Y — G|l = bM — a] = 1 — e Setting M =
M(e) = (a + ¢)/b, we obtain (5.5). []

TraEOREM 5.3. The power of the LRT (5.2) approaches one uniformly in u and
Zas|u— Cufls = o withue ®..

Proor. Precisely, we show that for ¢ > 0 there exists M (e¢) > 0 (not depend-
ing on u, T, ®1, @) such that
(57) pe®and|up — ®ills = M(e) imply P, s[U(®1, ®) = c] =1 — e
First, | X — ®,ls = || X — ul|s since u & @, so from (5.2) we have

U(e1, @) z [|X — @1ls> — | X — wlllL + [|X — pfl7

The distribution of | X — u|s’ = (X — u)'S™(X — u) is independent of u and =;
thus it suffices to show that (5 7) holds with U(®1, ®,) replaced by X — ®1s-
Letting ¥ = ”X y =27 #, Q=23 ((Pl) and T = 37'8=* , we see that
V=Y —»~90,I) and T~W(N — 1,I). By Lemma 42 | X — ®1f|s =
|Y — @|lrand [|p — ®1f|z = ||» — @||1. Thus, Lemma 5.2 provides the desired
result. []

6. One-sided alternatives. We now study the null distribution of the LRT
statistic in the case where ®; = {0}, the set consisting of the origin alone, and
®2 = @, a cone as defined in section 2. We write U(@) for U({0}, €). From
(5.2) and (5.3) we have
(6.1) U(e) = [|X[|s" = |X — 7s(X; @)||s'1 + [|X — 7s(X; @)[|sT

= |lrs(X; @)L + | X — ms(X; @) 5T
In order to carry out the LRT at size o we must determine that positive number
¢« which satisfies
supz>0; Po,z[U(C) = ¢a] = a.

In general, there is no explicit formula for Py s[U(@) = ¢]. In Theorem 6.2

however, we obtain sharp upper and lower bounds (as Z varies) on the null

distribution of U(@), and these bounds (and therefore also ¢.) do not depend

on the particular cone € (provided @ contains an open set). Using the upper

bound an explicit formula for ¢, is obtained which can be readily applied.
LemMma 6.1. For any cone @ and any £ > 0,

(6.2) Pos[UC) = ¢] = :Plx*/xv—» = ¢,
(63) PO.E[U(G) 2’ C] = §P[Xp—1/XN—p = C] + %P[sz/xgl—-p 2 C],
where x1°, Xo1 , Xo, ANA Xy—p denote independent chi-square variates.
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Proor. By (5.4) we have U(£) = U(e) < U(5") where the halfline £ and
the halfspace 3¢ are as in 2.1°. Hence for any = > 0,
Pos[U(L) = ¢] £ Pos[U(C) 2 ¢] = Pos[U(IET) Z ¢].
By Corollary 7.6 (withq = 0,7 = 1,s = p — 1),
(6.4) PoslU(L) 2 ¢] = 3Plx"/xv—» Z cl.
Also, by an argument similar to that leading to (8.4), one finds that
(6.5) Pos[U(5T) = ] = 3P[xp-1/xv—» Z ] + 3Pt /xiv— Z ¢]- 0
THEOREM 6.2. Let C be a cone. Then
(6.6) infisse) Pos[U(C) 2 ¢ = 3P/xb-s
Furthermore, if @ contains a p-dimensional open set,
(6.7)  supizse) Pos[U(€) Z ¢ = $Plo1/xv-» Z ¢ + 3Pl /xiv—p Z C.

In this latter case the level a cutoff point cq for the LRT is the unigue solution of the
equation

(6.8) a = %P[Xi—l/XI%’—p = cd + %P[sz/ng—p 2 Cal

Proor. Let 8 = 3Plx'/xv—» = ¢l and v = 3Plpa/xvo = d
+ 1P[xy/xh-» = cl. By (6.2) we have inf{z>q Po,z[U(€) = ¢] = B. To obtain
the opposite inequality we exhibit a sequence {Z.}, =, > 0, such that as n — «

I

cl.

(69) Po,zn[U( (‘3) ; c] b B
Let @\, £, and {4,} be as given in 2.2° and 2.4°, and let =, = (4,/A,)7". Then
(6.10) B < PoslU(R) 2 c] £ PozlU(C) Z ]

= P U(4n(@)) Z ¢,

where the equality is obtained by applying Lemma 4.2 in (6.1) and noting that
A.X ~ (0, I) and 4,84, ~ W(N — 1,I). Now for fixed X and S, U(4.(C))
— U(L) asn — » by Lemma 4.3 (i). Therefore

Pos[U(An(C)) Z c] = PoslU(L) 2 ] = 6,

the equality coming from (6.4). This, together with (6.10), yields (6.9).
Next, assuming that € contains an open set, we obtain (6.7) by exhibiting a
sequence { Z,} such that asn — o

(6.11) Py, lU(C) = c] — 7.

Let @, , 3¢, and { B,} be as given in 2.3° and 2.4°, and let =, = (B.'B,)"". Then
as in (6.10),

v = Pos,[U(C) = ¢] 2 Po,z|U(C) = c] = PoilU(Ba(G)) 2 ¢l
Applying Lemma 4.3 (ii) and using (6.5), asn — o
Pot[U(Ba(@,)) 2 o] = PodU(3C") Z ¢l = . 0
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ReMmARK. For the problem of testing H:u = 0 vs. K:u ¢ @ under assumptions
(a) or (b) (see Introduction), power studies have indicated that the LRT has
greater power than the best invariant test for testing H against the unrestricted
alternative u % 0. In the case £ unknown, the best invariant test for testing
H vs. p 5 0 is Hotelling’s T*-test, which rejects H if | X[ = X'S™X = ¢ and
which is unbiased. It follows from Theorem 6.2 and the continuity of the power
function of the LRT, that the LRT is not unbiased for testing H vs. K (assum-
ing €@ contains an open set). This implies that there exist alternative points near
H at which the power of the level & LRT is less than that of the level o T test.
Another possibly unfavorable (for the LRT) observation is the following. Since
1X]|s* = U(e), for any u, = we have that P, s[U(€) = ca] £ P, s[|| X]s’ = cal.
Therefore, the level « LRT is uniformly less powerful-than the level a* 7°-test,
where, however,

o = P[Xp2/XIZV—za Zco] =a+ %{P[sz/xﬁf—za 2 Co] — P[X?D-—l/ng—p Z Cal} > o

These considerations indicate that there is a need for a careful comparison of the
power of the LRT with that of the T-test before the LRT can be wholeheartedly
recommended for use in practice.

The above results can be applied to the problem of testing a subset of the
components of p against one-sided alternatives. Partition u in the form u' =
(', pe'y ), With pizg X 1, perr X 1, pgzs X 1, g + r + s = p, and partition Z,
X, and S accordingly.

We are concerned with the testing problem (5.1) when ®; and ®. have the
form

(6.12) Cr = {pme&y, p =0, =0},
Py = {uim 8, e C, us = 0.

The LRT statistic U(®1, ®) is given in (5.2). Using (2.1) repeatedly and
setting ¥ = X, — SusS5Xs, T = Su.s we have

U(®y, @) = [|Y]|2 — |Y — 7x(Y; €))7
(6.13) 1+ X/SuXs + |Y — mo(Y; )T
=[1Z|s" = 1Z — 7e(Z; @)1 [L + |1Z — 72(Z; ©) ||+

where Z = Y/(1 + X5 S5 Xs) ¥ By applying 3.7° it can be shown that when
us = 0 the distribution depends only on u, and Zs.3 (see the proof of the follow-
ing theorem and also of Theorem 8.5.)

THEOREM 6.3. Let ®;, ®: be given by (6.12), with C a cone in & . Under the
null hypothesis H:u e @y,

inf(sy. 5500 Pu,slU(C1, ®2) = ¢] = 3Pxs"/Xi-ser = .

Furthermore, if € contains an r-dimensional open set,
SUD(55y. 5500 Pu,s[U(®1, @) = ¢l = 3P[Xr—t/Xv-sr = €] + 3P[0/ XNmsmr 2 €,

from which the level o cutoff point for the LRT may be determined,
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Proor. If ue ®, it follows from 3.2° and 3.7° that Z ~ 9(0, Zns), T ~
W(N — 1 — s, Zns), and Z and T are independent. Comparing (6.13) with
(6.1) we see that the null distribution of U(®;, ®) is identical to that of
U(e), with Zs.; substituted for Z, » for p, and N — s for N. The result then fol-
lows from Theorem 6.2. []

7. Testing H:p = 0 against K:p= 0. In this section the LRT for the testing
problem considered in Section 6 is studied in further detail for the special case
C = 0, the positive orthant. Niiesch attempted to treat the case = unknown but
his work is invalidated by an error (see Shorack (1967), p. 1751).

For purposes of comparison we state the results of Bartholomew, Kudd, and
Niiesch for the case = known: the LRT for testing H:u = 0 vs. K:u ¢ O with 2
known rejects H if ||rz(X; 0)|s* = ¢; the null distribution of the LRT statistic
is given by

(7.1) Posl|rs(X;0)||s = ¢] = 2.ba Pl = cw(p, k, 2)

where the weight w(p, k, Z) is the probability that exactly % of the p components
of mz(X; ©) are strictly positive. Discussions concerning these weights and rele-
vant tables are given by Bartholomew, Miles, Chacko, Niesch (1964), and
Shorack (see also Theorem 7.4). Notice that 73(X; ©) is uniquely determined
since O is convex. We abbreviate m=(X; 0) by 7z .)

From (6.1), the LRT statistic for testing H:u = 0 vs. K:u ¢ O with = unknown
is U(0). Theorem 6.2 can be applied to provide the value of the level a cutoff
point ¢, for the LRT. The fact that 0 is a convex polyhedral cone whose faces
are sections of subspaces, however, enables us to obtain explicitly in Theorem 7.4
the distribution of U(0©) under the null hypothesis H:u = 0. This is achieved by
conditioning on the event that ms(X; 0) lies in a given face of ©. We abbreviate
U(0) by U, m5(X; 0) by 7s, and write the 7th component of rg as 7s,; .

To begin the evaluation of Py,s[U = cJ, set up a 1-1 correspondence between
the 27 faces of © (including the ‘“faces” {x: x > 0} and {z: z = 0}) and the 2”
subsets of the set {1, - - - , p} of indices as follows: to any subset M of {1, - - - , p}
let correspond the face Xy = {x:2; > 0if ¢ e M, x; = 0if ¢ ¢ M}. Then the
event that =g lies in the face Xy is given by

(7.2) {(X,8):mseXu} = {(X,8):7m5:>0 if ieM,ms:=0 if izM}.

Suppose without loss of generality that M consists of the last ¥ members of
{1, - -+, p}. Partition X, S, and = as follows:

Xi Su  Sw Zu Zp
7 X< ) s< ) ( )

X, So1 Sa Zo1 2o
with Xo:k X 1, See:k X %, and Zep:k X k. (Note: for a general subset M with
k elements, permute the components of X so that those whose indices belong to
M oceupy the final k& positions, and permute the rows and columns of S and 2

accordingly.) A proof of the next lemma is given by Niesch (1966).
Lemma 7.1. (i) {(X, 8):mse Xu = {(X, 8): X, — SuS11 Xy > 0, Sii Xy < 0).
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(i1) Given that mse Xy , then

0
s = (X — Su srf&)‘

TueOREM 7.2. Under the hypothesis H:u = 0, the conditional distribution of U
gtven the event {ms &€ Xu} 1s

(7.4) Pos[U z c|mse Xu) = Pli’/xv—» = ¢,
where k = #(M), the number of elements in M (i.e., the dimension of the face
Ur) .

Proor. Applying Lemma 7.1 (ii) in (6.1) and using (2.1), we find that =5 ¢
X implies .

U= (X, — 8SuS1iX1) Ser1(Xs — SuStiX1) /(1 4+ Xy S Xy).
Then by Lemma 7.1 (i), 3.2° and 3.7° we have (omitting subscripts from P, x)
(75)  PIU = ¢, ms & Xu) = Ply'Saay = ¢,v > 0, SiiX;y < 0]

= Ply'Sev Z ¢, v > 0P[S1i Xy < 0],
(7.6) Plrse Xu) = Ply > 0, SuX, < 0] = Ply > 0]P[SuX; <0,
where v = 7(X, 8) = (X — SuSuiX1)/(1 + Xi'SiiXy)}. By 3.7°, however,
v ~ (0, Z9.1) and hence by Lemma 3.2 (i)
(7.7) Pl Sy = ¢,v > 0] = Ply'Sezry = c]Ply > 0]
= Plx*/xv-» Z clPly > 0],

the last equality a consequence of 3.5°. []

Notice that the conditional distribution of U does not depend on 2, and de-
pends on the face %) only through its dimension k. For any z ¢ 0, let K(x) =
the number of positive components of z = the dimension of the face of © in which
z lies. Then by the last remark

(7.8) PoslU = ¢| K(ws) = k] = Plxs’/xi—» = c).

From (7.4) and (7.8) we obtain the following expressions for the null distribu-
tion of the LRT statistic U:

(7.9) PoslU = ¢ = 2u Plxi’/xiv—» = ¢]Po,slms & Xl

= Zl€=1 P[sz/XIZV—p = c]Po3[K(ms) = k],
where in the first summation M ranges over all subsets of {1, --- , p} and k =
#(M).

Again suppose that M consists of the last & elements of {1, - - - , p}.
LemMa 7.3. Let ¢,(A) be as defined in Lemma 3.1. Then

(7.10) Pos[rs € Xu] = Poslrs e Xarl = i(Z51) ¥pi(Zh).
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Proor. From Lemma 7.1, {rs € Xy} = {Xs — ZuZ0 X1 > 0, 211Xy < 0},
Since X; and X, — 25211 X; are independent (omitting subseripts from Py, s)

(7.11) Plrse Xu] = P[X: — Za2iiX: > 0JP[21iX: < 0].

By Lemma13.1, Ply > 0] = P[X; — a2 X1 > 0] = ¢u(Z2h) since v and
Xy — ZuZ1' X, are both distributed as 91(0, Ta.;). Next let

Y = 23X, ~9(0,I), T = 23 8u2 ~ W(N — 1, 1),
and Z = T7'Y. Then P[Sii X1 £ 0] = P[21#Z < 0] and we again apply Lemma

3.1 to conclude P[SiiX; < 0] = P[Z1#X: £ 0] = ¢,(Z}h). Comparing (7.6)

and (7.11) completes the proof. []
Summing (7.10) over all M having exactly & elements,

(7.12)  PoslK(ws) = k] = Pos[K(ws) = kl = D san—k ¥ie(Zed)¥pi(Zh).

Notice that Py s[K(ws) = k] = w(p, k, =), the weights appearing in (7.1).
TrEOREM 7.4. Under the hypothesis H:u = 0, the distribution of the LRT sta-
tistic U 1s
PolU 2 o] = 2w Pha’/x—» Z cli(2231) e (Zh)
= Zlf=l P[Xk2/X12V—p g C]w(p7 k} 2)’
where w(p, k, Z) = Z#w):k (2o Ypr(Z4). In the first summation M ranges

over all subsets of {1, -+, p} and k is the number of elements in M. The partitioning
of 2 is in accordance with the note after (7.3).

Remark. Notice that Pox[U = 0] = Pos[S7X £ 0] = P32 X £ 0] =
w(?; 0, 2) = 1A(/:D(zj) > 0.

Let A: &, — &, be a non singular linear transformation. Applying Lemma 4.2,
the LRT statistic U(A(0)) for testing H:u = 0 vs. K:ue A(0) can be put into
the form

(7.13) U(A(9) = ||lxe(Z; 0)||2°[1 + |Z — 72(Z;0) ||,
where Z = A7 X ~ (47, A7'24"") and
T=A47'84""~wW(N —1,47'24").

CoRroLLARY 7.5. Under the hypothesis H:u = 0, the distribution of the LRT sta-
tistic U(A(0)) s

Po,slU(A(9) = o] = D uPlx/xb—p = cltr(Azs1)¥pr(Adr)
= DB Plxi/xh-p = clw(p, k, A)

where A = AT'ZA". The partitioning of A is in accordance with the note after
(7.3).
Finally, the preceding results can be applied to the problem of testing a subset
of the components of the mean against one-sided alternatives of the form 4(0).
COROLLARY 7.6. Let ®,, ®; be defined by (6.12) with @ replaced by A(0).
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Under the hypothesis H:u & ®1 , the distribution of the LRT statistic U(®y, ®2) s
PuslU(@r, @) Z ¢l = 2u PO’/ Xv—sr Z clPu(Ast) Yriu(Ah)
= ZI:=1 P[XkZ/X?V-s-—. = C]ID(T, k; A)

where A = A7'Sy3A". In the first summation M ranges over all subsets of
{1, .-+, 7} and A s partitioned in accordance with the note after (7.3).

8. One-sided hypotheses. The geometrical techniques of Section 6 can be
applied in other special cases of the general problem (5.1). For example, an easy
modification of the argument leading to Theorem 6.2 provides the following
sharp bounds for the null distribution of the LRT statistic for testing H:u = 0
vs. K:p & &, — € (the complement of @, where @ is a cone in &,). The LRT sta-
tistic U(§, — @) is given by (6.1) with € replaced by &, — €. Note that the
bounds do not depend on €.

TueorewMm 8.1. For any cone @,

sup(z>0Po,s[U(8,—€) = ¢] = Plx,"/xv—» = cl.
If @ contains a p-dimensional open set then
infiz50Po,3[U(8, — €) Z ¢l = §PIxp1/xv—p = ¢l + 3Plxy’/xv-» Z cl.

A more interesting special case of (5.1) is that involving one-sided hypotheses.
Specifically, we treat the problem of testing H:u ¢ @vs. K:u ¢ &, where € is a cone.
From (5.2), the LRT statistic for this problem has the simple form

Ue, &) = |X — ms(X;e)|s = X — e||s

which is simply the distance (determined by S) from X to €. We derive sharp
upper and lower bounds on the null distribution of U(E, &,) (Theorems 8.3 and
8.4), thereby providing an explicit formula for the level a cutoff point ¢ i.e.,
that positive number satisfying

SUpPee,z>0 Pu,s[U(C, &) = ¢*] = a.

These bounds (and also ¢*) do not depend on the particular cone €.

The next lemma, which is needed in the derivation of the upper bound, states
an interesting “monotonicity” property of the power function P,,:[U(@, &,) = ],
considered as a funetion of p with = fixed.

LemMma 8.2. If the cone C is convez, then for any p , us € &p satisfying us — uy € @
we have

P#z.z [U(ea 817) = C] = Pux.E[U(ey 817) Z C]'

Proor. Foranyy e §letC, =C+y={rix=24+v,2¢ 0. Ifye e, e, C
e by the convexity of €, and thus | X — €|’ £ ||X — €,||s" Hence, setting
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pe — m = v & G, we have
Pusl|X — €’ Z o S Pl X — e’ 2 o
= Pusf(X —v) —els" 2 d
= PllX — efs = dl. 0
THEEOREM 8.3. For any cone €
(8.1) SUPee. 350 PuslU(C, &) = ¢l = 3P [x3o1/Xy—ps1 = ]
+ 3Plxy /xv-» Z c

= supgso Po,s[U(C, &) = cl.

v

The level a cutoff point ¢ for the LRT <s the unique solution to the equation
a = 3Pt/ Xv-p11 Z €] + 3P [x0 /Xi—p = .
Proor. Trivially,
supiz>o) Pos[|[ X — €[|s" = ¢] £ supjuee,s>0 Pusl|X — €[ls" = d].

In order to show that
(8.2) supuee,z>0 PullX — €lls” = ¢l £ 3PIXot/xi—pi1 Z ]

+ '21'P [sz/ Xlzv—p = C],
fix pe € and = > 0 and let £ be any halfline contained in €. Then | X — €||s’ <
IX — &5, so
(83) Pu:l|X —els’ 2 d £ PuslllX — £]ls’ 2 ] £ Posl|X — 2]l = o,
the second inequality following from Lemma 8.2 (£ is convex). Applying Lemma
42 with 4 = =7, Posl|X — g|s 2 = Pl|Z — £¥|s 2 ¢, where
Z =YX ~90, I), T = 27827 ~ W — 1, I), and £* = =27(g)
is again a halfline. By means of an orthogonal transformation we may take
¥ = (@ =2 0, ;3 = --- = x, = 0}. Partition Z and T as follows:
Z' = (2.,2)),T = (Ts;) (4,j = 1,2), where Z; and Ty, are both scalars. Then
using (2.1) we easily find that |Z — £¥||7° =Z, T3 22 if Zy — TwwT%Z: = 0 and
1Z — &¥,° = Z'T7'Z if Z, — TwT%Zs < 0. Therefore, since 1 + Z:' T3 2,
and Ty are positive scalars,

Pl|Z — £/ = d
= P2 T%Z: = ¢, (Zs — TT52:) /(1 + 2,/ T2Z)* = 0]
+ PIZ'T7'Z = ¢, (Z1 — TwT5Z:) Triz < 0] .

By 3.7° and 3.5° the first term on the right is equal to
P2/ T2 2 P2y — TuT5Z: Z 0] = 3Plxo1/Xi—n1 Z .

Since (Z; — T1wT%2Z:) T1is is the first component of T7'Z, Lemma 3.2(ii)
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implies that the second term on the right is equal to
PIZ'T7Z 2 cP|Z, — TuT5Z: < 0] = 3Plx"/xb—p Z cl.
Thus we conclude that
(84) Posl|X — &lls’ 2 o] = $Pi-1/xw-pn1 Z ] + $Plo"/ X Z C].
To complete the proof of the theorem it suffices to show that
(8.5) supizso) Pozl|X — €5’ 2 ¢l 2 $P[Xp-1/Xv—p+1 Z ¢]
+ 3Py /xw—p Z cl.
As in the proof of Theorem 6.2, there exist a halfline £ and a sequence {4.} of
nonsingular linear transformations such that (17-1 4.{€) = £.By Lemma 4.3(i)

this implies that | X — 4.(@)[s — || X — £|s" as n — «. Therefore, with
=, = (4,'4,) ™ we apply Lemma 4.2 to obtain

Pos|X — €| 2 ¢l = Poal|X — 4a(@)|ls Z ] > Poul|X — glls" = ¢l [

ReMARK. It should be noted that it is not necessarily true that for = fixed,
suppueer PuzlU(C, &) 2 c] = Pos[U(C, &) Z cl.

By Lemma 8.2, however, this is true if € is convex.

TurorEM 8.4. If the cone @ contains a p-dimensional open set, then for any

fized T >0

infi,.e) P,:U(C, &) = c] = 0.

Proor. We shall prove the stronger result that for = fixed,

(8.6) supeey Pu,z[U(C, &) = 0] = 1.
Note that {U(@, &) =0} = {|[X — €|l =0} = {Xec}.Let &, = 8§ — €
(the complement of €) and @ = &,. Since € contains an open set, there exists
po € @ such that [jup — @ ||z = 8 > 0. Then p, = nyo & @ satisfies [y — @1f|z =
n§ — . It follows from the proof of Theorem 5.3 (in particular, from (5.7)
with U(®, ®) replaced by ||X — @is) that |un — @iz — « implies
P, sl|X — ®ils = d] — 1, for any positive number d. Since | X — Pills = &
implies X & @, this implies (8.6). []

To conclude this section we consider the problem of testing a one-sided hy-
pothesis involving a subset of the components of the mean p. Precisely, using
the notation introduced in the paragraph preceding (6.12), we consider the
problem of testing H:u ¢ @, vs. K:u € ®; where now

(8.7) ®r = {pim e 8, e C s =0},
®r = {1 €8, €&, us = O},
The LRT statistic U(®: , ®;) can be put into the form
U(er, @) = |2 — mo(Z; ©)lls" = |1Z — el
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‘where Z = (X — 885 X3)/(1 + X' S5 Xs)} and T = Spps ~ W(N — 1 — s,
Sws). By 8.2°, Z and T are independent. It is shown below that the distribu-
tion of U(®;, ®2) depends only on u; and Zs.s .

TuEOREM 8.5. Let ®; and @, be given by (8.7) with © a cone in &, , and suppose
that the hypothesis H:u & ®1 18 true. Then
(8.8)  SUD(see,Tss. 5500 Pus[U(®1, @) = ¢l 1Pt/ Xh—sra = ]
+ 3P[x,"/X—s—r Z ]

= SUP{zy,.3>0} (Pu*,E[U((Pl ’ ®2) = C],

v

where u* is any point in ®y with w* = 0. If in addition C contains an r-dimen-
sional open set, then for any fixed = > 0

(8.9) infiuyeey Py, s[U(C1, @) Z ¢] = 0.
Proor. Trivially
(8.10)  SUP(z45.550) Pur,s[U(®1, ®2) = ¢l
< SUD(see, 305, 5500 Pu,slU(CP1, @) = cl.

Next, us = 0 for any p € @1, so from 3.7° the condltlonal distribution of Z given
(X3, Sss) is 9U(», Zae.3), where v = pp/(1 + X3/ S5X5)} is in @ if and only if
us € @. Therefore, conditional on (X3, Ss), the distribution of U(®1, @) is
identical with that of U(@, &,), with Zs.; substituted for Z, r for p, N — s for
N, and » for u. Hence, by Theorem 8.3, P, s[U(®1, ®) = c| X3, Sss] = B for
any u € ®; , where 8 is the middle expression in (8.8), and so

(8.11) SUP(uge e, Zag. 550 Pu,z[U(CP1, ®2) = c] = B.

Finally, if 4* & ®; is such that u,* = 0 then the conditional distribution of Z is
91(0, Zx2.3) 50 the unconditional distribution of U(®,, ®;) is identical with that
of U(e, &,) (with the proper substitution of parameters). Therefore, by Theo-
rem 8.3

SUD(z4,.550) Pus,s[U(®1, @) = c] = 8.

Now assume € contains an open set and fix £ > 0. It follows by an argument
similar to the proof of Theorem 8.4 and by the above remarks concerning the
conditional distribution of U(®;, ®;) that there exists a sequence {un}, un € ®1,
such that P, s[U(®1, ®) = ¢|X;, Sl — 0 as n — . Hence, by the bounded
convergence theorem (noting that the distribution of (X3, Sz) does not depend
on pn)

P, slU(®, ®) = c] = E{P,, s[U(®1, ®) = c| Xs, Sul} — 0. 0

9, The Schaafsma-Smid approach. In this section familiarity with the ter-
minology of Schaafsma and Smid (1966) is assumed.

A straightforward application of the methods in Chapters 4 and 5 of Lehmann
(1959) leads to the following characterization of the family D of all S.M.P.
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similar level o tests for the problem of testing H:ux = 0 vs. K:u ¢ © with 2 un-
known.

LemMa 9.1. For any non-zero uo & @ and any Zo > 0, the most powerful similar
level o test for testing H:p = 0, = > 0 vs. the simple alternative p = po, Z = Zo
1s the one -sided Student’s-t test, denoted by ¢ (&), which rejects H if (N — D/ x/
(& SEO) > ly_1ia, Where fo = Zo wo and ly_1.« 18 the upper a-percentage point of
the Student’s-t distribution with N — 1 degrees of freedom. ¢(&) depends on (uo , Zo)
only through &/ | %)

When the true parameter values are (u, =),

(N — 1)}/ X/ (&' Sk)* ~ tyaalten/ (8281,

where tN_l()\) denotes a non-central Student’s-t vanate with non-centrality
parameter . Define M (\) for A real by M(\) = Pltya(N) = ty—sal . M()) isa
continuous, strictly increasing function of X with M(—w) = 0, M(0) = «q,
M (o) = 1. The power P,, z[¢(£o) re]ects H] of the test ¢(&) at the alternative
point (u, =) is given by Mg n/ (£'=%0)"]. Since the test ¢(£) is most powerful
similar at the alternative point (u, Z), where £ = ="'y, the envelope power
function is M[(1'=""u)}]. Note that this approaches one if and only if x 57— o,

TaEOREM 9.2. Suppose the cone C contains two or more distinct halflines. For
any S.M.P. similar level o test ¢(%0), there exists a sequence {(ua , Za)} of allerna-
tie points (ua € @, Z, > 0) such that asn — o

(i) I-‘nlzn_ll‘n —> @,

(i) Py,.z,l0(&) rejects H) — 0 or a.

Proor. Let £; and £, be distinet halflines contained in € and let »; be any
DON-2ero element in £;. Either & 2 £, or & £ £2 (or both). Suppose Eo F4 £1 If
So n < O then with u, = nnyand 2, = = (any ﬁxed z> O) we have u, E,. Y =
2’27 — o and P, 3,[¢(%) rejects H] = n&o Vl/(io St —0.If &'n = 0,
it is easy to construct a sequence {En} such that »/Zn vy — © and & Saf — .
Then with pn = » for all n, pn 'S 'un — o and P, z[¢(f) rejects H]
= Mt n/ (8 Zaks)!] — a. In either case, (i) and (ii) hold. If & & £», replace
» by » in the preceding argument. []

Since u'='u is the natural measure of distance from the alternative point
(u, =) to the hypothesis H, this result states that for any S.M.P. similar test
#(%) there exist alternative points located arbitrarily far from H, which cannot
be distinguished from H by ¢(%). By contrast, Theorem 5.3 1mphes that the
power of the LRT for this problem approaches one uniformly as u 57 — .
We conclude that in this testing situation the LRT is preferable to any S.M.P.
similar test.

Acknowledgment. I wish to thank Professor Ingram Olkin for calling my at-
tention to this problem area and for his guidance, criticism, and encouragement,
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